

## **Final**

# Focused Preliminary Assessment/ Site Inspection Camp Johnson MILCON Area and Military Munitions Response Program UXO-20

Marine Corps Base Camp Lejeune Jacksonville, North Carolina



Prepared for

# **Department of the Navy**

Naval Facilities Engineering Command Mid-Atlantic

Contract No. N62470-08-D-1000 CTO-011

**April 2011** 

Prepared by

CH2MHILL.

#### Final

## Focused Preliminary Assessment/Site Inspection Camp Johnson Construction Area and Military Munitions Response Program UXO-20

# Marine Corps Base Camp Lejeune Jacksonville, North Carolina

Contract Task Order 011
April 2011

Prepared for

Department of the Navy
Naval Facilities Engineering Command
Mid-Atlantic Division

Under the

NAVFAC CLEAN 1000 Program Contract N62470-08-D-1000

Prepared by



11301 Carmel Commons Blvd., Suite 304 Charlotte, North Carolina 28226 NC Engineering License #F-0699

## **Executive Summary**

This Preliminary Assessment/Site Inspection (PA/SI) presents data, results, and conclusions of the investigations conducted at the Camp Johnson Construction Area (CJCA), Marine Corps Base Camp Lejeune (MCB CamLej), North Carolina. The CJCA includes:

- Military Munitions Response Program (MMRP) UXO-20 (Former 1,000-inch Range [ASR #2.32] and Former A-1 50-foot .22 Caliber Range [ASR #2.87]);
- Solid Waste Management Unit (SWMU) 46/Installation Restoration (IR) Site 15-Former Montford Point Burn Dump;
- SWMU 47/IR Site 17-Montford Point Area Rip Rap; and
- SWMU 241/IR Site 85-Former Camp Johnson Battery Dump.

The scope of the work was provided by Naval Facilities Engineering Command (NAVFAC) – Mid Atlantic Division, NAVFAC CLEAN 1000 Program Contract N62470-08-D-1000. Field investigation activities were conducted in accordance with the *Site-Specific Work Plan Addendum for Focused Preliminary Assessment/Site Inspection – Camp Johnson MILCON Area, Marine Corps Base Camp Lejeune, North Carolina* (CH2M HILL, 2009). The Work Plan was approved by NAVFAC, MCB CamLej, the U.S. Environmental Protection Agency (EPA), and the North Carolina Department of Environment and Natural Resources (NCDENR).

MCB CamLej is planning a military construction (MILCON) project within the CJCA. This focused PA/SI was conducted to identify and characterize potential environmental impacts associated with the use of UXO-20 and the SWMU/IR sites, evaluate the potential risks to human health and the environment posed by historical land use practices, and evaluate whether additional investigation and/or remediation activities are necessary.

Field activities included land surveying, vegetation clearing, buried utility locating, environmental sampling, and excavation of test trenches. Environmental sampling activities consisted of the collection of surface soil, subsurface soil, groundwater, and discarded batteries for laboratory analysis. Soil concentrations were compared to North Carolina Soil Screening Levels (NCSSLs) (NCDENR, 2010), EPA Industrial and Residential Soil Adjusted Regional Screening Levels (RSLs) (EPA, 2010), and twice the mean Base background concentrations (Base background) for inorganic constituents (Baker, 2001). Groundwater samples were compared to North Carolina Groundwater Quality Standards (NCGWQS) (NCDENR, 2010), EPA Tap Water RSLs (EPA, 2010), EPA's maximum contaminant levels (MCLs) (EPA, 2009b), and twice the Base background for inorganic constituents (Baker, 2001). A summary of the results from these investigation activities is provided below.

#### **UXO-20**

Two-hundred fourteen surface soil samples, 77 subsurface soil samples, and 37 groundwater samples were collected from UXO-20 for analysis of select metals (antimony, arsenic, copper, lead, and zinc).

ES080210002430WDC iii

#### Surface and Subsurface Soil

Arsenic was the most prevalent metal detected in surface and subsurface soils across UXO-20, with concentrations exceeding regulatory criteria and twice the Base background. No other analyzed metals were detected at concentrations exceeding both twice the Base background and regulatory screening criteria.

#### Groundwater

Two metals, arsenic and lead, were detected at concentrations exceeding regulatory screening criteria and twice the Base background in groundwater samples collected at UXO-20.

#### IR Site 15

Ten surface soil samples, ten subsurface soil samples, and five groundwater samples were collected from IR Site 15. The samples were analyzed for volatile organic compounds (VOCs), semi-VOCs (SVOCs), polychlorinated byphenols (PCBs), organochlorine pesticides (OCPs), target analyte list (TAL) metals, and dissolved TAL metals (groundwater only).

#### Surface Soil

VOCs or SVOCs were not detected at concentrations exceeding regulatory criteria in surface soil samples collected at IR 15. One PCB, arochlor-1254, was detected above regulatory criteria at one surface soil sample location. One pesticide, dieldrin, was detected above regulatory criteria at two surface soil sample locations. Four metals were detected at concentrations exceeding regulatory criteria and twice the Base background in surface soil samples at IR 15, including aluminum, arsenic, chromium, and iron.

#### Subsurface Soil

VOCs, SVOCs, or PCBs were not detected at concentrations exceeding regulatory criteria in subsurface soil samples collected at Site 15. One pesticide, dieldrin, was detected above regulatory criteria at one subsurface soil sample location. Five metals were detected at concentrations exceeding regulatory criteria and twice the Base background in subsurface soil samples, including arsenic, chromium, iron, lead, and manganese.

#### Groundwater

VOCs, SVOCs, OCPs, or PCBs were not detected at concentrations exceeding regulatory criteria in groundwater samples collected at Site 15. Three metals were detected at concentrations exceeding both twice the Base background and regulatory criteria in groundwater samples, including, chromium, iron, and manganese. Two dissolved metals, iron and manganese, were detected at concentrations exceeding regulatory criteria and twice the Base background.

iv ES080210002430WDC

#### IR Site 17

Five surface soil samples, five subsurface soil samples, and two groundwater samples were collected from IR Site 17. The samples were analyzed for VOCs, SVOCs, PCBs, OCPs, TAL metals, and dissolved TAL metals (groundwater only).

#### Surface Soil

VOCs, SVOCs, OCPs, or PCBs were not detected at concentrations exceeding regulatory criteria in surface soil samples collected at Site 17. Three metals (arsenic, chromium, and iron) were detected at concentrations exceeding regulatory criteria and twice the Base background in surface soil samples.

#### Subsurface Soil

One VOC, 1,2-dibromo-3-chloropropane, was detected above regulatory criteria in one subsurface soil sample at Site 17. SVOCs, pesticides, or PCBs were not detected above regulatory criteria in the subsurface soil samples. Four metals were detected at concentrations exceeding regulatory criteria and twice the Base background in subsurface soil samples, including aluminum, arsenic, chromium, and iron.

#### Groundwater

Chloroform was detected at a concentration exceeding regulatory criteria in one groundwater sample collected at Site 17. SVOCs, OCPs, or PCBs were not detected in the groundwater samples at concentrations exceeding regulatory criteria. Metals and dissolved metals were not detected in the groundwater samples at concentrations exceeding regulatory criteria and twice the Base background.

#### IR Site 85

Thirteen surface soil samples, 12 subsurface soil samples, and nine groundwater samples were collected from IR Site 85. The samples were analyzed for VOCs, SVOCs, PCBs, OCPs, the TAL metals and dissolved TAL metals (groundwater only). A representative sample of the discarded batteries observed at IR Site 85 was collected and analyzed for TAL metals.

#### Surface Soil

VOCs, SVOCs, or PCBs were not detected at concentrations exceeding regulatory criteria in surface soil samples collected at Site 85. Dieldrin was detected above regulatory criteria at two surface soil sample locations. Eleven metals were detected at concentrations exceeding regulatory criteria and twice the Base background in surface soil samples at IR Site 85, including antimony, arsenic, cadmium, chromium, cobalt, iron, lead, manganese, mercury, thallium, and zinc.

#### Subsurface Soil

One VOC, 1,2-dibromo-3-chloropropane, was detected above regulatory criteria in one subsurface soil sample location at Site 85. SVOCs, pesticides, or PCBs were not detected above regulatory criteria in the subsurface soil samples. Two metals, aluminum and arsenic, were detected at concentrations exceeding regulatory criteria and Base background in subsurface soil samples.

ES080210002430WDC

#### Groundwater

Methylene chloride was detected in two groundwater samples collected at IR 85. SVOCs, OCPs, or PCBs were not detected in the groundwater samples at concentrations exceeding regulatory criteria. Three metals were detected in the groundwater samples at concentrations exceeding regulatory criteria and Base background in the groundwater samples, including, aluminum, iron, and chromium. One dissolved metal, iron, was detected in the groundwater samples at concentrations exceeding regulatory criteria and twice the Base background.

#### **Discarded Batteries**

Eleven metals were detected in the battery sample collected from IR Site 85. Of these, lead and mercury were detected at concentrations exceeding the EPA maximum toxicity characteristic. Therefore, upon removal, the batteries were treated as hazardous waste.

## **Human Health and Ecological Risk Screening**

A preliminary human health risk screening (HHRS) and ecological risk screening (ERS) were performed to evaluate potential pathways and associated risks to human health and ecological receptors from exposure to soil and groundwater at the CJCA. A brief summary of the HHRS and ERS findings is presented below by assessment area.

#### **UXO-20**

Based on the analytical data for surface soil, subsurface soil, and groundwater samples collected from UXO-20, constituents detected do not present any unacceptable risks to human health or populations of ecological receptors.

#### IR Site 15

Based on the analytical data for surface and subsurface soil samples collected at Site 15, detected constituents do not present an unacceptable risk to human health. However, chromium was identified as a constituent of potential concern (COPC) in groundwater. Exposure to groundwater at Site 15 may present an unacceptable risk to human health and further assessment is recommended.

Based on the analytical data collected from Site 15, exposure to PCBs and metals in surface soil and pesticides and metals in subsurface soils present potentially unacceptable risks to ecological receptors. Further assessment is recommended. No unacceptable risks to ecological receptors were identified in groundwater at Site 15.

#### IR Site 17

Based on the analytical data for surface soil, subsurface soil, and groundwater samples collected from Site 17, constituents detected do not present any unacceptable risks to human health or populations of ecological receptors.

vi ES080210002430WDC

#### IR Site 85

Based on the analytical data collected at Site 85, exposure to groundwater may present an unacceptable risk to human health due to chromium, based on the screening value for hexavalent chromium. Further assessment of groundwater is recommended. Unacceptable human health risks were not identified for surface and subsurface soils.

Based on surface soil samples collected at Site 85, exposure to metals presents a potentially unacceptable risk to ecological receptors and further assessment is recommended. Unacceptable risks to populations of ecological receptors were not identified for subsurface soil and groundwater.

ES080210002430WDC vii

# Contents

| Exe | cutive          | Summ                                       | nary                                                          | iii  |  |  |  |  |
|-----|-----------------|--------------------------------------------|---------------------------------------------------------------|------|--|--|--|--|
| Acr | onym            | s and A                                    | Abbreviations                                                 | xiii |  |  |  |  |
| 1.  | Intr            | Introduction                               |                                                               |      |  |  |  |  |
|     | 1.1             |                                            | tives and Approach                                            |      |  |  |  |  |
|     | 1.2             | Repor                                      | rt Organization                                               | 1-2  |  |  |  |  |
| 2.  | Site Background |                                            |                                                               |      |  |  |  |  |
|     | 2.1             | •                                          |                                                               |      |  |  |  |  |
|     | 2.2             | Site Description and History               |                                                               |      |  |  |  |  |
|     |                 | 2.2.1                                      | Site Description                                              |      |  |  |  |  |
|     |                 | 2.2.2                                      | Site History                                                  |      |  |  |  |  |
|     | 2.3             | Previo                                     | ous Investigations                                            |      |  |  |  |  |
|     |                 | 2.3.1                                      | IR Site 15                                                    |      |  |  |  |  |
|     |                 | 2.3.2                                      | IR Site 17                                                    |      |  |  |  |  |
|     |                 | 2.3.3                                      | IR Site 85                                                    |      |  |  |  |  |
| 3.  | Phv             | sical Se                                   | ettings and Regional Hydrogeology                             | 3-1  |  |  |  |  |
|     | 3.1             | Physical Setting and Regional Hydrogeology |                                                               |      |  |  |  |  |
|     |                 | 3.1.1                                      | Regional and Facility-wide Physiography, Climate, and Surface |      |  |  |  |  |
|     |                 |                                            | Hydrology                                                     |      |  |  |  |  |
|     |                 | 3.1.2                                      | Site Topography, Drainage, and Surface Features               |      |  |  |  |  |
|     | 3.2             | Geology and Hydrogeology                   |                                                               |      |  |  |  |  |
|     |                 | 3.2.1                                      | General Regional Geologic and Hydrogeologic Framework         |      |  |  |  |  |
|     |                 | 3.2.2                                      | Site-Specific Geologic and Hydrogeologic Framework            |      |  |  |  |  |
|     | 3.3             | Regio                                      | Regional Water Usage                                          |      |  |  |  |  |
| 4.  | Fiel            | d Inves                                    | stigation Activities and Data Evaluation                      | 4-1  |  |  |  |  |
|     | 4.1             |                                            | Investigation Activities                                      |      |  |  |  |  |
|     |                 | 4.1.1                                      | Site Surveying                                                |      |  |  |  |  |
|     |                 | 4.1.2                                      | Vegetation Clearing                                           |      |  |  |  |  |
|     |                 | 4.1.3                                      | Surface Soil Sampling                                         |      |  |  |  |  |
|     |                 | 4.1.4                                      | Subsurface Soil Sampling                                      |      |  |  |  |  |
|     |                 | 4.1.5                                      | Temporary Monitoring Well Installation                        | 4-4  |  |  |  |  |
|     |                 | 4.1.6                                      | Groundwater Sampling                                          | 4-4  |  |  |  |  |
|     |                 | 4.1.7                                      | Test Pits                                                     |      |  |  |  |  |
|     |                 | 4.1.8                                      | Quality Assurance/Quality Control Sampling                    | 4-6  |  |  |  |  |
|     | 4.2             | Data '                                     | Tracking and Validation                                       | 4-6  |  |  |  |  |
|     | 4.3             | Inves                                      | tigation-Derived Waste Management                             | 4-6  |  |  |  |  |
| 5.  | Res             | ults                                       |                                                               | 5-1  |  |  |  |  |
|     | 5.1             | UXO 20                                     |                                                               |      |  |  |  |  |
|     |                 | 5.1.1                                      | Surface Soil                                                  | 5-1  |  |  |  |  |
|     |                 | 5.1.2                                      | Subsurface Soil                                               |      |  |  |  |  |
|     |                 | 513                                        | Groundwater                                                   | 5-2  |  |  |  |  |

|    | 5.2                | IR Site        | e 15                                                            | 5-2 |  |  |
|----|--------------------|----------------|-----------------------------------------------------------------|-----|--|--|
|    |                    | 5.2.1          | Surface Soil                                                    | 5-2 |  |  |
|    |                    | 5.2.2          | Subsurface Soil                                                 | 5-3 |  |  |
|    |                    | 5.2.3          | Groundwater                                                     | 5-4 |  |  |
|    | 5.3                | IR Site        | e 17                                                            | 5-4 |  |  |
|    |                    | 5.3.1          | Surface Soil                                                    |     |  |  |
|    |                    | 5.3.2          | Subsurface Soil                                                 | 5-5 |  |  |
|    |                    | 5.3.3          | Groundwater                                                     |     |  |  |
|    | 5.4                | IR Site        | e 85                                                            |     |  |  |
|    |                    | 5.4.1          | Surface Soil                                                    | 5-6 |  |  |
|    |                    | 5.4.2          | Subsurface Soil                                                 | 5-7 |  |  |
|    |                    | 5.4.3          | Groundwater                                                     | 5-8 |  |  |
|    |                    | 5.4.4          | Batteries                                                       |     |  |  |
| 6. | Ц                  | nan Ha         | ealth Risk Screening                                            | 6.1 |  |  |
| υ. | 6.1                |                | an Health Conceptual Site Model                                 |     |  |  |
|    | 6.2                |                | an Health Risk-Based Screening and Risk Ratio Evaluation        |     |  |  |
|    | 0.2                | Methodology    |                                                                 |     |  |  |
|    |                    | 6.2.1          | Step 1                                                          |     |  |  |
|    |                    | 6.2.2          | Step 2                                                          |     |  |  |
|    |                    | 6.2.3          | Step 3                                                          |     |  |  |
|    | 6.3                |                | an Health Risk Screening Results                                |     |  |  |
|    | 0.0                | 6.3.1          | UXO-20                                                          |     |  |  |
|    |                    | 6.3.2          | IR Site 15                                                      |     |  |  |
|    |                    | 6.3.3          | Site 17                                                         |     |  |  |
|    |                    | 6.3.4          | Site 85                                                         |     |  |  |
| 7  | D <sub>u</sub> o 1 |                |                                                                 |     |  |  |
| 7. | 7.1                |                | y Ecological Risk Screeningcological Setting and Available Data |     |  |  |
|    | 7.1                | 7.1.1          | UXO-20                                                          |     |  |  |
|    |                    | 7.1.1          | IR Site 15                                                      |     |  |  |
|    |                    | 7.1.2          | IR Site 17                                                      |     |  |  |
|    |                    | 7.1.3<br>7.1.4 | IR Site 85                                                      |     |  |  |
|    | 7.2                |                |                                                                 |     |  |  |
|    | 7.2                | 0 0)           |                                                                 |     |  |  |
|    | 7.3                |                | O .                                                             |     |  |  |
|    |                    | 7.3.1          | UXO-20                                                          |     |  |  |
|    |                    | 7.3.2          | IR Site 15                                                      |     |  |  |
|    |                    | 7.3.3          | IR Site 17                                                      |     |  |  |
|    | 7.4                | 7.3.4          | IR Site 85                                                      |     |  |  |
|    | 7.4                |                | lemental EvaluationIR Site 15                                   |     |  |  |
|    |                    | 7.4.1          | IR Site 17                                                      |     |  |  |
|    |                    | 7.4.2<br>7.4.3 | IR Site 85                                                      |     |  |  |
|    | 7.5                |                | nary                                                            |     |  |  |
|    |                    |                |                                                                 |     |  |  |
| 8. |                    |                | ns and Recommendations                                          |     |  |  |
|    | 8.1                |                | usions                                                          |     |  |  |
|    |                    | 8.1.1          | UXO-20                                                          | 8-1 |  |  |
|    |                    |                | IR Site 15                                                      | 8-1 |  |  |

|                                                                                                    | 8.2<br>8.3                                                                                                                         |                                                                                                                | IR Site 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8-3<br>8-4 |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|
| 9.                                                                                                 | Refe                                                                                                                               | rences.                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9-1        |  |  |  |  |  |  |
| Appe                                                                                               | endic                                                                                                                              | es                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |  |  |  |  |  |  |
| A                                                                                                  |                                                                                                                                    |                                                                                                                | Records Search Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |  |  |  |  |  |  |
| В                                                                                                  | Archival Records Search Report Soil Boring Logs, Test Pit Logs, Well Construction Diagrams, and Temporary Well Abandonment Records |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |  |  |  |  |  |  |
| C                                                                                                  | Inv                                                                                                                                | estigati                                                                                                       | ive-Derived Waste Manifest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |  |  |  |  |  |  |
| D                                                                                                  | La                                                                                                                                 | boratory                                                                                                       | y Analytical Reports and Chain of Custody Forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |  |  |  |  |  |  |
| E                                                                                                  |                                                                                                                                    |                                                                                                                | ealth Risk Screening Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |  |  |  |  |  |  |
| F                                                                                                  | Eco                                                                                                                                | ological                                                                                                       | Risk Screening Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |  |  |  |  |  |  |
| Tabl                                                                                               | es                                                                                                                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |  |  |  |  |  |  |
| 3-1<br>3-2<br>3-3                                                                                  | Su                                                                                                                                 | mmary                                                                                                          | tigraphic Units of the Inner Coastal Plain<br>of Well Construction Information<br>Vater Supply Wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |  |  |
| 4-1<br>4-2                                                                                         |                                                                                                                                    |                                                                                                                | mpling Table<br>of Water Quality Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |  |  |  |  |  |  |
| 5-1<br>5-2<br>5-3<br>5-4<br>5-5<br>5-6<br>5-7<br>5-8<br>5-9<br>5-10<br>5-11<br>5-12<br>5-13<br>6-1 | UX<br>IR<br>IR<br>IR<br>IR<br>IR<br>IR<br>IR<br>IR                                                                                 | (O 20 Su<br>(O 20 G<br>Site 15 S<br>Site 15 S<br>Site 17 S<br>Site 17 S<br>Site 85 S<br>Site 85 S<br>Site 85 S | urface Soil Analytical Results ubsurface Soil Analytical Results roundwater Analytical Results Surface Soil Analytical Results Subsurface Soil Analytical Results Groundwater Analytical Results Surface Soil Analytical Results Subsurface Soil Analytical Results Groundwater Analytical Results Groundwater Analytical Results Surface Analytical Results Surface Analytical Results Groundwater Analytical Results Groundwater Analytical Results Groundwater Analytical Results Groundwater Analytical Results Battery Analytical Data of Ecological Screening |            |  |  |  |  |  |  |
| Figu                                                                                               |                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |  |  |  |  |  |  |
| 1-1                                                                                                |                                                                                                                                    | e Locati                                                                                                       | ion Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |  |  |  |  |  |  |
| 2-1<br>2-2<br>2-3                                                                                  | UX<br>Sit                                                                                                                          | (O-20 ar<br>e 15 His                                                                                           | nd IR Site Locations<br>storical Sample Locations<br>storical Sample Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |  |  |  |  |  |  |
| 3-1<br>3-2                                                                                         |                                                                                                                                    |                                                                                                                | phic Provinces of Eastern North Carolina<br>hic Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |  |  |  |  |  |  |

ES080210002430WDC

- 3-3 Cross Section Location Map
- 3-4 Cross Section (A-A')
- 3-5 Cross Section (B-B')
- 3-6 Cross Section (C-C')
- 3-7 Generalized Groundwater Flow in the Surficial Aquifer
- 3-8 Water Supply Well Location Map
- 4-1 UXO-20 Surface Soil Sample Locations
- 4-2 IR Site 15 Environmental Sample Locations
- 4-3 IR Site 17 Environmental Sample Locations
- 4-4 IR Site 85 Environmental Sample Locations
- 4-5 UXO-20 Subsurface Soil and Groundwater Sampling Locations
- 4-6 IR Site 15 Test Pit Locations
- 4-7 IR Site 85 Test Pit Locations
- 5-1 UXO-20 Analytical Exceedances in Surface Soil
- 5-2 UXO-20 Subsurface Soil and Groundwater Analytical Exceedances
- 5-3 IR Site 15 Analytical Exceedances
- 5-4 IR Site 17 Analytical Exceedances
- 5-5 IR Site 85 Analytical Exceedances
- 6-1 Conceptual Site Model for HHRA

xii ES080210002430WDC

# **Acronyms and Abbreviations**

μg/kg micrograms per kilogram μg/L micrograms per liter

amsl above mean sea level ASR archive search report

Baker Environmental, Inc.

CERCLA Comprehensive Environmental Response, Compensation, and

Liability Act

CJCA Camp Johnson Construction Area

CLEAN Comprehensive Long-Term Environmental Action Navy

COC chain-of-custody

COPCs constituents/chemicals of potential concern

CSF cancer slope factor

CSI Comprehensive Site Investigation

CSM conceptual site model

DDD dichlorodiphenyldichloroethane DDE dichlorodiphenyldichloroethylene DDT dichlorodiphenyltrichloroethane

DPT direct-push technology

ERS ecological risk screening ESV ecological screening value

FFA federal facilities agreement FID flame-ionization detector ft bgs feet below ground surface

HHRA human health risk assessment HHRS human health risk screening

HI hazards index HQ hazard quotient

IDW investigation-derived waste

IEUBK Integrated Exposure Uptake Biokinetic

IR Installation Restoration

IRIS Integrated Risk Information System

m meter

MCB CamLej Marine Corps Base Camp Lejeune

MCCSS Marine Corps combat service support school

MCL maximum contaminant level mg/kg milligrams per kilogram MILCON military construction

ES080210002430WDC xiii

NAVFAC Naval Facilities Engineering Command

Navy Department of the Navy

NCDENR North Carolina Department of Environment and Natural Resources

NCGWQS North Carolina Groundwater Quality Standards

NC SSL North Carolina Soil Screening Limit

NFA no further action

NRWQC national recommended water quality criterion

NTCRA non-time-critical removal action

OCP organochlorine pesticide

PAH polycyclic aromatic hydrocarbon

PA/SI Preliminary Assessment/Site Inspection

PCB polychlorinated biphenyl
Pre-RI Pre-Remedial Investigation
PRG preliminary remediation goals

QA/QC quality assurance/quality control

RCRA Resource Conservation and Recovery Act

RFA RCRA Facility Assessment RFI RCRA Facility Investigation RSL regional screening level

SI Site Investigation

SOP standard operating procedure

SSL soil screening level

SVOC semi-volatile organic compound SWMU Solid Waste Management Unit

TAL target analyte list TCL target compound list

UCL upper confidence limit

USACE U.S. Army Corps of Engineers

UXO Unexploded Ordnance

VOC volatile organic compound

XRF x-ray fluorescence

ES080210002430WDC

## Introduction

Marine Corps Base Camp Lejeune (MCB CamLej) is planning a military construction (MILCON) project covering approximately 240 acres within the Camp Johnson Construction Area (CJCA), identified on **Figure 1-1**. Due to the various historical land uses within the CJCA, it was necessary to evaluate the presence of potential impacted environmental media. This document presents the findings of a Focused Preliminary Assessment/Site Inspection (PA/SI) conducted within the CJCA, MCB CamLej, North Carolina.

The Focused PA/SI specifically addressed 4 areas of historical land use or waste disposal within the CJCA, including:

- Military Munitions Response Program Site Unexploded Ordnance (UXO)-20 (Former 1,000-inch Range and Former A-1 50-foot .22 Caliber Range)
- Solid Waste Management Unit (SWMU) 46/Installation Restoration (IR) Site 15-Former Montford Point Burn Dump
- SWMU 47/IR Site 17-Montford Point Area Rip Rap
- SWMU 241/IR Site 85-Former Camp Johnson Battery Dump

This Focused PA/SI was conducted by CH2M HILL under the Naval Facilities Engineering Command Mid-Atlantic (NAVFAC) Comprehensive Long-Term Environmental Action Navy (CLEAN) 1000 Contract N62470-08-D-1000, Task Order 11 in accordance with the *Sitespecific Work Plan Addendum for Focused Preliminary Assessment/Site Inspection—Camp Johnson MILCON Area, Marine Corps Base Camp Lejeune, North Carolina* (CH2M HILL, 2009). This report is for submittal to NAVFAC Mid-Atlantic, MCB CamLej, the U.S. Environmental Protection Agency (EPA), and the North Carolina Department of Environment and Natural Resources (NCDENR).

## 1.1 Objectives and Approach

The overall objective of this Focused PA/SI is to evaluate the potential presence and nature of environmental impacts within the boundaries of the CJCA and to evaluate whether the area is fit for MILCON.

Specifically, the objectives of the CJCA Focused PA/SI for each assessment area are listed below:

- UXO-20 Former 1,000-inch range (archive search report [ASR] #2.32) and Former A-1 50-foot .22 caliber range (ASR #2.87) — to assess the potential for soil and groundwater contamination resulting from the former range activities
- SWMU 46/IR Site 15 Former Montford Point Burn Dump to assess the nature and extent of potential soil and groundwater contamination and address data gaps from previous investigation activities

ES080210002430WDC 1-1

- SWMU 47/IR Site 17 Montford Point Area Rip-Rap to assess the potential for soil and groundwater contamination resulting from historical disposal activities
- SWMU241/IR Site 85 Former Camp Johnson Battery Dump to assess the nature and extent of potential soil and groundwater contamination and address data gaps from previous investigation activities

The specific tasks completed to meet the stated objectives included:

- Identifying historical activities conducted within the CJCA that may have resulted in environmental impacts
- Collection of surface soil, subsurface soil, and groundwater samples from locations within UXO-20 and Sites 15, 17, and 85 for laboratory analysis
- Excavation of test pits at Sites 15 and 85
- Removal of discarded batteries from Site 85 for laboratory analysis and disposal
- Ecological and human health risk screenings using analytical data from various media collected from UXO-20 and Sites 15, 17, and 85.

## 1.2 Report Organization

This Focused PA/SI report contains the following sections:

- Section 1 Introduction
- Section 2 Site Background
- Section 3 Physical Setting and Regional Hydrogeology
- Section 4 Field Investigation Activities
- Section 5 Field Investigation Results
- Section 6 Human Health Risk Assessment
- Section 7 Ecological Risk Assessment
- Section 8 Conclusions
- Section 9 References

Figures and tables are provided at the end of each respective section and appendices are provided at the end of Section 9.

1-2 ES080210002430WDC



## Site Background

## 2.1 MCB CamLej Setting and History

MCB CamLej encompasses approximately 244 square miles of land in Onslow County, North Carolina, adjacent to the southern boundary of the city of Jacksonville. Jacksonville is the largest city near MCB CamLej and contains approximately half of the county's total population. Since 1990, much of the MCB CamLej complex has been part of Jacksonville.

MCB CamLej is bordered by the Atlantic Ocean to the east, U.S. Route 17 to the west and State Route 24 to the north. It is bisected by the New River, which flows into the Atlantic Ocean in a southeasterly direction. The MCB CamLej complex consists of multiple geographical locations under the jurisdiction of the Base command. These areas include Camp Geiger, Camp Johnson, Courthouse Bay, Stone Bay, Mainside, the Greater Sandy Run Area, and the Rifle Range Area.

MCB CamLej was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List effective 4 November 1989. Subsequent to this listing, EPA Region IV, NCDENR, the United States Department of the Navy (Navy), and the Marine Corps entered into a Federal Facilities Agreement (FFA) for Camp Lejeune. The primary purpose of the FFA was to ensure that environmental impacts associated with past and present activities at the Base are thoroughly investigated and that appropriate CERCLA response and Resource Conservation and Recovery Act (RCRA) corrective action alternatives are developed and implemented, as necessary, to protect public health and welfare and the environment.

## 2.2 Site Description and History

#### 2.2.1 Site Description

The CJCA encompasses approximately 240 acres within Camp Johnson as shown on **Figure 2-1**. The CJCA is located on Hoover Road and is bounded by U.S. Highway 17 bypass to the north, the New River to the west, Montford Landing Road to the east, and Harding Road to the south.

Approximately 75 acres of the CJCA consists of the following former small arms ranges and firing points:

- Former 1,000-inch range (ASR #2.32)
- Former A-1 50-foot .22 caliber range (ASR #2.87), which appears as three separate range fans and firing points

ES080210002430WDC 2-1

Additionally, the CJCA also encompasses all or portions of the following former IR sites:

- SWMU 46/IR Site 15-Former Montford Point Burn Dump
- SWMU 47/IR Site 17-Montford Point Area Rip-Rap
- SWMU 241/IR Site 85-Former Camp Johnson Battery Dump

#### 2.2.2 Site History

In October 2008, CH2M HILL completed a detailed historical review of information related to past uses of the CJCA. Information obtained from this review is presented in the Archival Records Search Report in **Appendix A**. Camp Johnson, formerly named Montford Point Camp, was the original training center for African-American Marines. Between 1941 and 1949 approximately 20,000 African-American Marines were trained at Montford Point. In 1949, the military was fully integrated and the area continued to be used for schools and training. Montford Point Camp was renamed Camp Johnson in 1974, and currently houses the Marine Corps Combat Service Support Schools (MCCSSS), which serve as training facilities for various duties within the Marine Corps. The MCCSSS consist of four military occupation skills schools, four tenant schools, and the Navy's Field Medical School. Approximately 10,000 students per year are trained at Camp Johnson.

#### 1,000-inch Range (ASR #2.32)

The 1,000-inch Range at Camp Johnson operated from 1940 until the mid 1950s (**Figure 2-1**). Camp Training Order Number 5-1946 identified this range as a Familiarization Range for .30 caliber Browning automatic rifle and interviews with base personnel indicate the range was used for small arms (rifles from the M1 up to the Browning automatic rifle) (Richardson, 2008). Reference to the 1,000-inch Range was noted on the 1946 range overlay map (U.S. Army Corps of Engineers [USACE], 2001), which indicated the location of the firing position and direction of fire, but did not specify the range fan.

#### A-1 50-foot .22 Range (ASR #2.87)

The former A-1 50-foot .22 Caliber Range appears on three range overlay maps (1951, 1953, and 1954) in varying shapes and locations (**Figure 2-1**). The range was reportedly used as a small arms firing range during the 1950s and is believed to have been inactive since 1957 (USACE, 2001). Although the name of the range suggests that .22-caliber weapons were used, the available documentation does not specify the type of small arms used on the range.

#### IR Site 15

IR Site 15 (Site 15), formerly known as SWMU 46, is the former Montford Point Burn Dump (**Figure 2-1**). The site operated between 1946 and 1958 and was reportedly used to dispose sewage treatment sludge, litter, asphalt, and sand (CH2M HILL/ Baker Environmental, Inc. [Baker], 2005a). Site 15 currently consists of an open area surrounded by vegetation, and encompasses approximately 24 acres. However, historical investigations indicate that the former disposal area covered only roughly 2 acres in the eastern portion of the site.

2-2 ES080210002430WDC

#### IR Site 17

IR Site 17 (Site 17) encompasses approximately 5 acres along the eastern shoreline of the New River and is covered by vegetation and concrete rip rap (**Figure 2-1**). Limited historical information is available for the site, which was originally evaluated during the Initial Assessment Study (WAR, 1983). Based on the results of that study, Site 17 was not considered for further investigation and no intrusive environmental investigations have historically been conducted at the site.

#### IR Site 85

IR Site 85 (Site 85), the Former Camp Johnson Battery Dump, encompasses approximately 4.5 acres in the Camp Johnson support operations area of the Base (**Figure 2-1**) and was used as a battery dump during the 1950s. In 1992, decomposed batteries used in military communication equipment during the Korean War era were unearthed as a roadway was being widened. Military personnel using this area also discovered discarded charcoal canisters from air purifying respirators. The discarded battery packs and charcoal canisters were observed in piles randomly located throughout a 2 to 3-acre area. Investigations at Site 85 identified 16 battery piles across the site that ranged in size from 7 to 30 feet in diameter with heights of 1 to 3 feet.

## 2.3 Previous Investigations

#### 2.3.1 IR Site 15

#### **RCRA Facility Assessment**

In January 1989, EPA Region IV and NCDENR conducted initial RCRA Facility Assessments (RFAs) of 76 SWMUs at MCB CamLej. SWMU 46 was identified as a site that required confirmatory sampling (Environmental Safety and Design, 1996).

#### **Confirmatory Site Investigations**

In 1997, Baker conducted a Phase I Confirmatory Site Investigation (CSI) (Baker, 2001) to evaluate whether material disposed of at the site during landfill operations or in the recent past had impacted surface and subsurface soils. Surface and subsurface soil samples were collected and analyzed for semi-volatile organic compounds (SVOCs) and RCRA metals. The analytical data indicated that the concentration of arsenic detected in a subsurface soil sample collected from SWMU46-ISO3 exceeded the NCDENR soil screening limits (SSLs), EPA Region IX preliminary remediation goals (PRGs) for residential land use, and Base background criteria. Additionally, the concentrations of cadmium and lead detected in a subsurface soil sample collected from SWMU46-ISO2 exceeded NCDENR SSLs, EPA residential PRGs, and Base background criteria (Figure 2-2). Based on these results, additional assessment was recommended.

ES080210002430WDC 2-3

In 2002, Baker conducted a Phase II CSI (Baker, 2002) to assess soil and groundwater impacts and to evaluate the horizontal and vertical extent of buried waste. Baker collected surface soil, subsurface soil, and groundwater samples from 6 locations. The concentration of mercury detected in the surface soil sample collected from SWMU46-TW01 exceeded NCDENR soil to groundwater screening criteria, EPA residential PRGs, and Base background criteria. Additionally, concentrations of chromium, lead, and silver detected in the surface soil sample collected from SWMU46-TW04 exceeded NCDENR soil to groundwater screening criteria, EPA residential PRGs, and Base background criteria.

The concentration of lead detected in the groundwater sample collected from SWMU46-TW06 exceeded the North Carolina Groundwater Quality Standard (NCGWQS). However, water quality monitoring conducted during the collection of this sample indicated the presence of very high turbidity (999 nephelometric turbidity units). No other metals were detected in the groundwater samples at concentrations exceeding the NCGWQS.

The Phase II CSI (Baker, 2002) also included a geophysical survey to assess the approximate extent of buried debris. **Figure 2-2** illustrates the distribution of electromagnetic anomalies within the boundary of the geophysical survey area, and shows the presence of a large continuous anomaly surrounded by smaller irregular anomalies.

#### **RCRA Facility Investigation**

In 2004, Baker conducted a RCRA Facility Investigation (RFI) to further characterize SWMU 46 and necessity for future corrective action based on risks to human health and the environment (CH2M HILL/Baker, 2005a). Assessment activities included a supplemental geophysical survey, excavation of test trenches, collection of soil samples from the test trenches, collection of surface and subsurface soil samples, and the installation and sampling of one permanent monitoring well.

The additional geophysical survey was performed to assess the boundary of the buried waste. In order to truth the geophysical survey, several test trenches were advanced near the predicted horizontal limits of the buried waste (**Figure 2-2**). Potential landfill material such as glass, metal debris (car parts, bedsprings, cable, and conduit), ceramic, ash, and other burned debris were encountered in the test trenches. Confirmatory soil samples were collected from each test trench at depths ranging from 3 to 7 feet bgs.

Based on the analytical data, elevated concentrations of metals were detected in surface soil samples, particularly in soil mounds located in the southeast portion of the site. Additionally, elevated concentrations of metals, SVOCs, and pesticides were detected in subsurface soil samples collected from the test trenches (Figure 2-2). Specifically, concentrations of several pesticides, including 4,4-dichlorodiphenyldichloroethane (4,4-DDD), 4,4-dichlorodiphenyltrichloroethane (4,4-DDT), alpha-chlordane, and gamma-chlordane exceeded North Carolina soil to groundwater screening levels and EPA industrial PRGs. The pesticide concentrations detected in the test trench samples were collected from soils both in contact with the debris as well as adjacent to the debris; however, the highest concentrations were detected in soils collected from within the debris. Because the pesticides were detected in soils in contact with the debris as wells as native soil, it is unclear if the concentrations are attributed to past disposal activities.

2-4 ES080210002430WDC

In order to confirm the previous detections of lead in the groundwater sample collected from temporary monitoring well SWMU46-TW06 during the CSI, a permanent monitoring well (SWMU46-MW01) was installed in approximately the same location as SMWU46-TW06. Laboratory analysis of a groundwater sample collected from SWMU46-MW01 did not detect COCs in excess of applicable criteria. Consequently, no further assessment of groundwater quality was performed.

A human health risk assessment (HHRA) indicated that an unacceptable hazard level was present for future construction workers due to exposure to chromium in surface and subsurface soil. In addition, the HHRA identified an elevated risk to future child residents due to exposure to chromium in soil and groundwater. It should be noted, however, that the concentration for chromium in groundwater used to calculate the risk was collected from a temporary monitoring well that exhibited high turbidity during sample collection. A high sediment content in the groundwater sample may bias the concentration higher as a result of metals adsorbing onto the sediment grains. No other risks were identified in the HHRA. An ecological risk assessment conducted for the RFI concluded that terrestrial receptors may be at risk due to exposure to metals in surface soils.

#### Additional Assessment Activities

In 2006, CH2M HILL conducted additional soil assessment activities in support of an Interim Remedial Measures (IRM) removal action to remove impacted soil mounds and surface soils identified in the RFI (CH2M HILL, 2006). The investigation activities included the collection of soil samples from soil mounds and surface soil. These samples were analyzed for volatile organic compounds (VOCs), SVOCs, pesticides, polychlorinated biphenyls (PCBs), and RCRA metals. VOCs, SVOCs, and PCBs were either not detected or the concentrations were below the screening levels. Surface soils containing pesticides and metals that were identified for removal included SWMU46-SS01, SWMU46-SS02, and SWMU46-SS04. The soil mounds surrounding soil samples SWMU46-SM04, SWMU-SM06, and SWMU46-SM07 were identified for removal as shown in Figure 2-2.

#### Removal Action

The IRM removal action was completed in March 2007, and included excavation of the soil mounds and surface soil areas to a depth of 1 ft bgs (Shaw, 2007). A total of 1,039 tons of soil were removed from the site and disposed at the MCB CamLej landfill. Confirmatory soil samples were collected from the excavated material and the results indicated that one composite soil sample (SWMU46-0005) was reported to contain a concentration of mercury (0.14 milligram per kilogram [mg/kg]) greater than the NC SSL (0.015 mg/kg); however, the concentration was only slightly greater than the Base background concentration (0.12 mg/kg), and no additional excavation was conducted. On December 28, 2007, following completion of the removal action, SWMU 46 was transferred to the Installation Restoration Program as Site 15.

#### 2.3.2 IR Site 17

No previous intrusive investigations have been conducted at Site 17.

ES080210002430WDC 2-5

#### 2.3.3 IR Site 85

#### **Pre-Remedial Investigation**

A Pre-Remedial Investigation (Pre-RI) screening study was conducted at Site 85 from 1995 to 1998 and included the collection of soil and groundwater samples for laboratory analysis of metals (Baker, 1998). Analytical data indicated the presence of elevated metals concentrations in surface and subsurface soils near the battery disposal piles (**Figure 2-3**). Metals were detected in all of the surface soil samples; however, only the sample collected from 85-SB02 exhibited concentrations that exceeded the NCDENR soil to groundwater screening levels and the EPA risk-based concentrations (RBCs) for residential soils. Metals were reportedly not detected at concentrations greater than the regulatory screening levels in the subsurface soil samples; however, concentrations of metals that exceeded twice the Base background level were detected in three subsurface soil samples (85-SB01, 85-SB02, and 85-SB03). Groundwater analytical data indicates concentrations of metals exceeded the regulatory screening levels that were in effect at the time of the investigation (**Figure 2-3**).

A baseline Risk assessment, completed as part of the Pre-RI, identified potential risks to current military personnel due to exposure to metals in surface soil. Potential risks due to exposure to surface soil and groundwater were also identified for future child and adult residents. As a result of the findings in the Pre-RI, it was recommended that an Engineering Evaluation/Cost Analysis (EE/CA) be completed to evaluate remedial alternatives for soil contamination at the site.

#### Non-time-critical Removal Action

The EE/CA (Baker, 1999) recommended removal of the soil and batteries through a non-time-critical removal action (NTCRA) followed by re-evaluation of site groundwater. The NTCRA was completed from October to December 1999, and included the excavation and removal of 158 tons of soil and debris from the 16 separate battery pile locations shown on **Figure 2-3** (OHM, 2000). Confirmatory soil samples were collected beneath each battery pile following excavation to confirm that the cleanup goals (EPA Region III Industrial Soil RBCs) were achieved. Following the NTCRA, five permanent groundwater monitoring wells were installed in the vicinity of the battery pile removal areas to monitor metals in the shallow groundwater. Five groundwater monitoring events were conducted from July 2001 through July 2002 and the results indicated that concentrations of metal were not detected above regulatory criteria. Consequently, the site was granted No Further Action (NFA) status in May 2005.

2-6 ES080210002430WDC





- Phase II CSI Surface/Subsurface Soil/Groundwater Sample (Baker 2002)
- RFI Monitoring Well (Baker/CH2M HILL 2005)
- RFI Soil Boring (Baker/CH2M HILL 2005)
- NTCRA Soil Mound Sample Location (CH2M HILL, 2006)
- NTCRA Surface Soil Sample Location (CH2M HILL 2006)



Approximate Electromagnetic Geophysical Anomaly Area

IR Site A RFI Test Trench Sample Location (Baker/CH2M HILL 2005) SWMU46-SB03 - Highlighted Sample Locations Exceeded Regulatory Criteria



1 inch = 100 feet

Site 15 Historical Sample Locations Preliminary Assessment/Site Inspection Camp Johnson Construction Area MCB CamLei North Carolina





# Physical Settings and Regional Hydrogeology

## 3.1 Physical Setting and Regional Hydrogeology

The following sections describe the physical characteristics of the region, MCB CamLej, and the CJCA.

# 3.1.1 Regional and Facility-wide Physiography, Climate, and Surface Water Hydrology

The MCB CamLej facility lies within the Tidewater region of the Atlantic Coastal Plain Physiographic Province in North Carolina. This physiographic province stretches from Georgia to Long Island, New York. The Tidewater region is generally swampy and of low relief, with elevations averaging about 20 feet above mean sea level (amsl). The physiography of the area is typical of the Atlantic Coastal Plain with stepped terraces consisting of wide, gently eastward-sloping plains separated by linear, steeper, northward and eastward-facing scarps (**Figure 3-1**). Within MCB CamLej, the topography is characterized by low elevations and relatively low relief. The surface elevations at MCB CamLej range from sea level to approximately 70 feet amsl, with most of MCB CamLej's topography ranging from 20 to 40 feet amsl. The relief between stream and inter-stream areas typically ranges from 20 to 30 feet. The New River and its tributaries bisect the Base in a northwest to southeast alignment and the land at MCB CamLej generally slopes toward the New River with a grade of about 0.5 percent.

Mild winters and hot humid summers generally characterize climatic conditions within southeastern North Carolina and at MCB CamLej. Winters are usually short and mild with occasional short, cold periods. Summers are long, hot and humid. Average annual precipitation in the area is approximately 50 inches. The average ambient air temperature is 62 degrees Fahrenheit (weatherreports.com).

#### 3.1.2 Site Topography, Drainage, and Surface Features

The CJCA is generally undeveloped with areas of dense vegetation and sporadic open areas. Additionally, several areas across the CJCA have been identified as wetlands or potential wetlands areas as shown on **Figure 2-1**. The surface topography slopes gently toward the southwest and the New River, ranging in elevation from roughly 5 to 20 ft amsl, as shown on **Figure 3-2**.

## 3.2 Geology and Hydrogeology

### 3.2.1 General Regional Geologic and Hydrogeologic Framework

MCB CamLej is underlain by an eastward thickening sediment wedge of marine and non-marine origins ranging in age from early Cretaceous to Holocene. The wedge of sediment begins at the western boundary of the Atlantic Coastal Plain physiographic province, known as the Fall Line, and dips southeastward towards the coast. Along the coastline,

ES080210002430WDC 3-1

several thousands of feet of interlayered, unconsolidated sediments are present consisting of gravel, sand, silt, clay deposits, calcareous clays, shell beds, sandstone and limestone that was deposited over pre-Cretaceous crystalline basement rock. Within the MCB CamLej area, approximately 1,500 feet of a sedimentary sequence overlies the crystalline basement rock. The geologic formations of southeastern North Carolina and MCB CamLej are presented in **Table 3-1**.

The sedimentary sequence of southeastern North Carolina includes seven aquifers and their associated confining units (less permeable beds of clay and silt) including the surficial, Castle Hayne, Beaufort, Peedee, Black Creek, and Upper and Lower Cape Fear aquifers shown in **Table 3-1** (Cardinell et al., 1993). Inter-stream areas generally provide the recharge for aquifers within the Coastal Plain region, and have been estimated to have a yearly recharge range of 5 to 21 inches from infiltration of rainfall (Heath, 1989). In general, natural discharge of groundwater from the Coastal Plain aquifer system is into streams, swamps, and lakes. Evapotranspiration from the vadose zone and upward leakage through confining units into streams, estuaries, swamps, and even the ocean also contribute to groundwater discharge. Within the vicinity of MCB CamLej, the New River estuary serves as the principal discharge area for groundwater from the Castle Hayne aquifer (Harned, 1989).

#### 3.2.2 Site-Specific Geologic and Hydrogeologic Framework

This section presents the geological and hydrogeological characteristics of the CJCA, as indicated by the intrusive sampling activities conducted during the Focused PA/SI.

#### Site Geology

The regional stratigraphic framework of the Lower Coastal Plain in North Carolina is summarized by **Table 3-1**. However, the lithology described in this section is limited to the undifferentiated formation as observed during the Focused PA/SI field activities.

Soil boring logs presented in **Appendix B** show that the shallow soils consist predominantly of fine grained sand with varying amounts of silt or clay. Discontinuous layers of fine grained clayey sands and sandy clays were observed to approximately 11 feet below ground surface (ft bgs). This clay layer was generally underlain by fine grained sands and silty sands to approximately 20 ft bgs.

#### Site Hydrogeology

Site-specific hydrogeologic information was derived from the temporary groundwater monitoring wells installed within the surficial aquifer. During the July 2009 PA/SI field investigation, groundwater elevations ranged from approximately 5 feet amsl to 28 ft amsl (**Table 3-2**). **Figure 3-7** illustrates the estimated groundwater flow direction within the surficial aquifer. The variability and heterogeneity of the shallow undifferentiated soils leads to localized recharge rates and variable water table elevations. Outlier groundwater elevations were not used in estimating the generalized groundwater flow direction. The figure indicates that shallow groundwater across the CJCA generally flows to the southwest, which generally follows the topography of the CJCA.

3-2 ES080210002430WDC

## 3.3 Regional Water Usage

Regionally in southeastern North Carolina, the Castle Hayne aquifer may be utilized as a potable source of domestic water supply, watering lawns, or filling swimming pools. Potable water supplies for MCB CamLej and the surrounding residential areas are provided by water supply wells that pump groundwater from the Castle Hayne aquifer. Although freshwater is present within the surficial, Castle Hayne, Beaufort, and Peedee aquifers, all of which are located below MCB CamLej, only the Castle Hayne aquifer is used by MCB CamLej as a water supply source (Cardinell et al., 1993).

**Figure 3-8** illustrates the locations of public water supply wells within a 4-mile radius of the CJCA, and shows that no wells are located within the CJCA boundary. Three wells were identified off Base north of U.S. Route 17 within a 4-mile radius of the CJCA (NC OneMap, 2009), and 30 water supply wells are located on Base within a 4-mile radius of the CJCA sites. Of the on-base wells, 19 are currently active, and serve the Camp Geiger, Marine Corps Air Station, Verona Loop, Hadnot Point and Holcomb Boulevard well fields, shown on **Table 3-3** and **Figure 3-8**. MCB CamLej controls all the land between the CJCA sites and associated groundwater discharge points.

According to the Wellhead Protection Plan, the CJCA is not located within a well head protection area (AH Environmental Consultants, 2002).

ES080210002430WDC 3-3

**TABLE 3-1**Geologic and Hydrogeologic Units of the Inner Coastal Plain Camp Johnson Construction Area
Focused PA/SI Report
MCB CamLej, North Carolina

|            | Geologic    | Units                                                   | Hydrogeologic Units                     |  |  |
|------------|-------------|---------------------------------------------------------|-----------------------------------------|--|--|
| System     | Series      | Formation                                               | Aquifer and Confining Unit              |  |  |
| Queternery | Holocene    | Undifferentiated                                        | Surficial Aquifor                       |  |  |
| Quaternary | Pleistocene | Ondinerentiated                                         | Surficial Aquifer                       |  |  |
|            | Di:         | Yorktown Formation <sup>1</sup>                         | Yorktown confining unit <sup>1</sup>    |  |  |
|            | Pliocene    | Yorktown Formation                                      | Yorktown Aquifer <sup>1</sup>           |  |  |
|            |             | Fastover Formation <sup>1</sup>                         | Yorktown Aquifer <sup>1</sup>           |  |  |
|            |             | Eastover Formation                                      | Pungo River confining unit <sup>1</sup> |  |  |
| Tertiary   | Miocene     | D D: E :: 4                                             | Pungo River confining unit <sup>1</sup> |  |  |
|            |             | Pungo River Formation1 Pungo River Aquifer <sup>1</sup> | Pungo River Aquifer <sup>1</sup>        |  |  |
|            |             | Belgrade Formation                                      | Castle Hayne confining unit             |  |  |
|            | Oligocene   | River Bend Formation                                    | Castle Hayne Aquifer                    |  |  |
|            | Eocene      | Castle Hayne Formation                                  | Castle Hayne Aquifer                    |  |  |

#### Notes:

Created by: B. Propst/CLT Checked by: K. Howell/CLT

<sup>&</sup>lt;sup>1</sup> Geologic and hydrogeologic units not present beneath MCB Camp Lejeune. Source: Cardinell et al., 1993.

**TABLE 3-2**Summary of Well Construction Information
Camp Johnson Construction Area
Focused PA/SI Report
MCB CamLej, North Carolina

| Well ID     | Date      | Screened<br>Interval (ft) | Ground<br>Elevation<br>(ft msl) | DTW<br>(ft btoc) | TOC<br>Elevation<br>(ft msl) | GW Elevation<br>(ft msl) |
|-------------|-----------|---------------------------|---------------------------------|------------------|------------------------------|--------------------------|
| CJCA - TW01 | 7/28/2009 | 8-18                      | 19.70                           | 16.27            | 21.70                        | 5.43                     |
| CJCA - TW02 | 7/28/2009 | 8-18                      | 18.27                           | 9.46             | 20.19                        | 10.73                    |
| CJCA - TW03 | 7/28/2009 | 10-20                     | 19.01                           | 15.92            | 19.57                        | 3.65                     |
| CJCA - TW04 | 7/29/2009 | 6-16                      | 22.62                           | 12.08            | 23.58                        | 11.50                    |
| CJCA - TW05 | 7/28/2009 | 13-23                     | 20.10                           | 16.35            | 21.24                        | 4.89                     |
| CJCA - TW06 | 7/28/2009 | 6-16                      | 17.61                           | 13.81            | 18.56                        | 4.75                     |
| CJCA - TW08 | 7/27/2009 | 8-18                      | 12.93                           | 11.25            | 14.47                        | 3.22                     |
| CJCA - TW09 | 7/26/2009 | 6-16                      | 14.03                           | 11.01            | 15.27                        | 4.26                     |
| CJCA - TW10 | 7/27/2009 | 2-12                      | 25.63                           | 4.41             | 26.77                        | 22.36                    |
| CJCA - TW11 | 7/27/2009 | 8-18                      | 13.41                           | 9.46             | 14.70                        | 5.24                     |
| CJCA - TW12 | 7/26/2009 | 8-18                      | 14.97                           | 11.30            | 16.26                        | 4.96                     |
| CJCA - TW13 | 7/26/2009 | 5-15                      | 12.27                           | 7.69             | 13.64                        | 5.95                     |
| CJCA - TW14 | 7/26/2009 | 10-20                     | 15.07                           | 10.67            | 15.71                        | 5.04                     |
| CJCA - TW15 | 7/26/2009 | 8-18                      | 17.32                           | 11.81            | 18.55                        | 6.74                     |
| CJCA - TW16 | 7/25/2009 | 7-17                      | 11.61                           | 10.42            | 12.23                        | 1.81                     |
| CJCA - TW17 | 7/24/2009 | 8-18                      | 8.23                            | 11.41            | 9.57                         | -1.84                    |
| CJCA - TW18 | 7/26/2009 | 9-19                      | 14.3                            | 9.60             | 15.52                        | 5.92                     |
| CJCA - TW19 | 7/26/2009 | 8-18                      | 23.37                           | 12.42            | 25.43                        | 13.01                    |
| CJCA - TW20 | 7/26/2009 | 7-17                      | 12.39                           | 11.70            | 15.65                        | 3.95                     |
| CJCA - TW21 | 7/26/2009 | 6-16                      | 11.34                           | 11.71            | 13.33                        | 1.62                     |
| CJCA - TW22 | 7/24/2009 | 12-22                     | 20.52                           | 9.91             | 22.31                        | 12.40                    |
| CJCA - TW23 | 7/23/2009 | 2-12                      | 8.72                            | 4.80             | 10.29                        | 5.49                     |
| CJCA - TW24 | 7/27/2009 | 6-16                      | 27.34                           | 8.47             | 28.35                        | 19.88                    |
| CJCA - TW25 | 7/27/2009 | 8-18                      | 13.04                           | 11.35            | 15.04                        | 3.69                     |
| CJCA - TW26 | 7/27/2009 | 6-16                      | 6.89                            | 6.24             | 9.32                         | 3.08                     |
| CJCA - TW27 | 7/23/2009 | 10-20                     | 10.84                           | 15.60            | 12.53                        | -3.07                    |
| CJCA - TW28 | 7/23/2009 | 2-12                      | 2.89                            | 4.96             | 4.73                         | -0.23                    |
| CJCA - TW29 | 7/25/2009 | 6-16                      | 14.01                           | 13.58            | 16.18                        | 2.60                     |
| CJCA - TW30 | 7/25/2009 | 6-16                      | 10.53                           | 11.79            | 12.79                        | 1.00                     |
| CJCA - TW31 | 7/23/2009 | 2-12                      | 6.63                            | 8.79             | 9.12                         | 0.33                     |
| CJCA - TW32 | 7/25/2009 | 6-16                      | 12.79                           | 10.68            | 13.99                        | 3.31                     |
| CJCA - TW33 | 7/25/2009 | 6-16                      | 14.89                           | 12.35            | 15.96                        | 3.61                     |
| CJCA - TW34 | 7/25/2009 | 6-16                      | 12.72                           | 13.10            | 14.96                        | 1.86                     |
| CJCA - TW35 | 7/22/2009 | 5-15                      | 7.95                            | 8.65             | 9.19                         | 0.54                     |
| CJCA - TW36 | 7/22/2009 | 6-16                      | 15.98                           | 11.87            | 17.98                        | 6.11                     |
| CJCA - TW37 | 7/22/2009 | 5-15                      | 11.48                           | 13.87            | 13.80                        | -0.07                    |
| CJCA - TW38 | 7/23/2009 | 10-20                     | 4.94                            | 5.61             | 6.70                         | 1.09                     |
| IR15 - TW01 | 7/28/2009 | 10-20                     | 15.94                           | 12.79            | 16.49                        | 3.70                     |
| IR15 - TW02 | 7/29/2009 | 10-20                     | 15.02                           | 14.47            | 15.66                        | 1.19                     |
| IR15 - TW03 | 7/28/2009 | 8-18                      | 15.91                           | 15.92            | 17.45                        | 1.53                     |
| IR15 - TW04 | 7/29/2009 | 8-18                      | 15.31                           | 11.20            | 17.11                        | 5.91                     |
| IR15 - TW05 | 7/28/2009 | 6-16                      | 12.32                           | 8.39             | 12.91                        | 4.52                     |
| IR17 - TW01 | 7/29/2009 | 6-16                      | 6.63                            | 10.88            | 7.40                         | -3.48                    |
| IR17 - TW02 | 7/29/2009 | 7-17                      | 8.29                            | 10.07            | 16.16                        | 6.09                     |
| IR85 - MW01 | 7/23/2009 | ND                        | NM                              | 13.51            | NM                           |                          |
| IR85 - MW02 | 7/23/2009 | ND                        | NM                              | 15.26            | NM                           |                          |
| IR85 - MW04 | 7/22/2009 | ND                        | NM                              | 11.77            | NM                           |                          |
| IR85 - MW05 | 7/21/2009 | ND                        | NM                              | ND               | NM                           |                          |
| IR85 - TW04 | 7/27/2009 | 10-20                     | 17.72                           | 14.65            | 20.48                        | 5.83                     |
| IR85 - TW05 | 7/29/2009 | 10-20                     | 17.30                           | 15.67            | 19.89                        | 4.22                     |
| IR85 - TW06 | 7/30/2009 | 6-16                      | 14.32                           | 10.22            | 15.00                        | 4.78                     |
| IR85 - TW07 | 7/30/2009 | 7-17                      | 14.80                           | 11.90            | 16.55                        | 4.65                     |
| IR85 - TW08 | 7/30/2009 | 8-18                      | 16.14                           | 12.52            | 17.74                        |                          |

#### Notes:

ND- no data available NM - not measured

TABLE 3-3
Regional Water Supply Wells
Camp Johnson Construction Area
Focused PA/SI Report
MCB CamLej, North Carolina

| Well ID    | Status   | Well Field        | Year Drilled | Total Depth<br>(ft) | Diameter<br>(in) | Original<br>Pump Rate<br>(gpm) | Pump Rate<br>2001 (gpm) |
|------------|----------|-------------------|--------------|---------------------|------------------|--------------------------------|-------------------------|
| PSW-TC502  | Inactive | Camp Geiger       | 1942         | 184                 | 10               | 400                            | 235                     |
| PSW-TC600  | Active   | Camp Geiger       | 1942         | 70                  | 8                | 130                            | 104                     |
| PSW-TC604  | Inactive | Camp Geiger       | 1942         | 113                 | 8                | 250                            | 157                     |
| PSW-TC700  | Inactive | Camp Geiger       | 1941         | 76                  | 18               | 125                            | 149                     |
| PSW-TC1000 | Inactive | Camp Geiger       | 1942         | 153                 | 8                | 200                            | 60                      |
| PSW-TC1001 | Inactive | Camp Geiger       | 1975         | 100                 | 8                | 175                            | 160                     |
| PSW-TC1251 | Active   | Camp Geiger       | 1975         | 155                 | 8                | 200                            | 175                     |
| PSW-TC1253 | Active   | Camp Geiger       | 1975         | 250                 | NA               | 200                            | 195                     |
| PSW-TC1254 | Inactive | Camp Geiger       | 1975         | 195                 | NA               | 200                            | 100                     |
| PSW-AS106  | Inactive | MCAS              | 1954         | 179                 | NA               | 225                            | 183                     |
| PSW-AS131  | Inactive | MCAS              | NA           | 200                 | NA               | 260                            | 275                     |
| PSW-AS190  | Active   | MCAS              | NA           | 180                 | NA               | 250                            | 159                     |
| PSW-AS191  | Active   | MCAS              | NA           | 180                 | NA               | 250                            | 285                     |
| PSW-AS203  | Inactive | MCAS              | NA           | 173                 | NA               | 130                            | 220                     |
| PSW-AS4140 | Active   | MCAS              | NA           | 193                 | NA               | 110                            | 110                     |
| PSW-AS4150 | Active   | MCAS              | NA           | 193                 | NA               | 128                            | 115                     |
| PSW-AS5001 | Active   | MCAS              | NA           | 193                 | NA               | 185                            | 50                      |
| PSW-AS5009 | Inactive | MCAS              | NA           | 196                 | NA               | 100                            | 111                     |
| PSW-VL101  | Active   | Verona Loop       | 1994         | 300                 | 8                | 950                            | 700                     |
| PSW-VL102  | Active   | Verona Loop       | 1997         | 280                 | 12               | 1001                           | 850                     |
| PSW-HP622  | Active   | Hadnot Poirnt     | NA           | 227                 | NA               | 300                            | 280                     |
| PSW-HP643  | Active   | Holcomb Boulevard | 1971         | 240                 | 10               | 260                            | 146                     |
| PSW-HP644  | Active   | Holcomb Boulevard | 1971         | 255                 | 10               | 160                            | 192                     |
| PSW-HP698  | Active   | Holcomb Boulevard | 1985         | 124                 | 10               | 250                            | 170                     |
| PSW-HP699  | Active   | Holcomb Boulevard | 1985         | 108                 | 10               | 275                            | 108                     |
| PSW-HP700  | Active   | Holcomb Boulevard | 1985         | 130                 | 10               | 275                            | 100                     |
| PSW-HP701  | Active   | Holcomb Boulevard | 1985         | 100                 | 10               | 150                            | 185                     |
| PSW-HP703  | Active   | Holcomb Boulevard | NA           | NA                  | NA               | 275                            | 190                     |
| PSW-HP704  | Active   | Holcomb Boulevard | 1985         | 124                 | 10               | 200                            | 100                     |
| PSW-HP707  | Inactive | Holcomb Boulevard | 1986         | 130                 | NA               | 120                            | 133                     |
| BA-1       | Active   | Off base          | NA           | NA                  | NA               | NA                             | NA                      |
| BA-1A      | Active   | Off base          | NA           | NA                  | NA               | NA                             | NA                      |
| BA-2       | Active   | Off base          | NA           | NA                  | NA               | NA                             | NA                      |

#### Notes

On-Base well data from: AH Environmental Consultants, 2002. Wellhead Protection Plan, 2002 Update.

Off-base well data from: Source Water Assessment Program accessible at http://swap.den.enr.stste.nc.us/swap\_app/newer.htm

MCAS - Marine Corps Air Station

NA - Not available

ft- feet

gpm - gallons per minute

in - inch



Source: USGS Report by Cardinell, A.P., S.A. Berg, and O.B. Lloyd, Jr. (1993)

Figure 3-1
Physiographic Provinces of Eastern North Carolina
Preliminary Assessment/Site Inspection
Camp Johnson Construction Area
MCB CamLej
North Carolina











- 1) The depth and thickness of the subsurface strata indicated on this section (profile) were generalized from and interpolated between test locations. Information on actual subsurface conditions apply only to the specific locations indicated. Subsurface conditions at other locations may differ from
- 2) Goundsurface elevation at CJCA-SB37/TW19 has been inferred based on the topographic map and ground elevations at CJCA SB22/TW12 and CJCA SB51/TW26.

Figure 3-4 Cross Section (A-A') Preliminary Assessment/Site Inspection Camp Johnson Construction Area MCB CamLej North Carolina





Horizontal : 1" = 200' Vertical: 1" = 5' V.E. = 40x



#### NOTE

1) The depth and thickness of the subsurface strata indicated on this section (profile) were generalized from and interpolated between test locations. Information on actual subsurface conditions apply only to the specific locations indicated. Subsurface conditions at other locations may differ from conditions occurring at the indicated locations.

Figure 3-5 Cross Section (B-B') Preliminary Assessment/Site Inspection Camp Johnson Construction Area MCB CamLej North Carolina





Horizontal : 1" = 200' Vertical: 1" = 5' V.E. = 40x



#### NOTE

1) The depth and thickness of the subsurface strata indicated on this section (profile) were generalized from and interpolated between test locations. Information on actual subsurface conditions apply only to the specific locations indicated. Subsurface conditions at other locations may differ from conditions occurring at the indicated locations.

Figure 3-6 Cross Section (C-C') Preliminary Assessment/Site Inspection Camp Johnson Construction Area MCB CamLej North Carolina







#### SECTION 4

# Field Investigation Activities and Data Evaluation

## 4.1 Field Investigation Activities

Field activities were conducted in June and July 2009 in accordance with the standard operating procedures (SOPs) outlined in the work plan (CH2M HILL, 2009) and detailed in both the MMRP Master Project Plans (CH2M HILL, 2008a), and the Master Project Plans (CH2M HILL, 2008b).

The Focused PA/SI field activities consisted of the following:

- Site surveying
- Vegetation clearing
- Surface and subsurface soil sampling
- Installation and abandonment of temporary groundwater monitoring wells
- Groundwater sampling
- Test pit excavation

A summary of the environmental samples collected and sample analysis is provided in **Table 4-1**. Detailed investigation activities conducted at UXO-20 and IR Sites 15, 17, and 85 are summarized below.

## 4.1.1 Site Surveying

Land surveying activities were conducted by Lanier Surveying of Swansboro, North Carolina, a North Carolina-registered Land Surveyor, in June 2009. The land surveying was conducted in two phases:

- Phase 1 Surveyed and marked the center points of the sampling grids, transects, and surface soil, subsurface soil, and groundwater sample locations;
- Phase 2 Surveyed 50 temporary groundwater monitoring well top-of-casing elevations.

## 4.1.2 Vegetation Clearing

To facilitate access to the sampling and test pit locations, vegetation was removed along transects from approximately 10 acres of UXO-20 and approximately 2 acres in each of the IR sites. Vegetation less than 3 inches in diameter was cut to within 6 inches of the ground surface, mulched, and left in place. Trees larger than 3 inches in diameter were left undisturbed. All vegetation clearing was performed by Wetlands and Woodlands Management of Castle Hayne, North Carolina.

On June 17, 2009, during vegetation clearance activities near UXO-20, seven 4-inch canisters with black handles labeled "Grenade Hand - Sig Smoke, Green L68A1" were found by CH2M HILL personnel. The canisters appeared to be spent smoke grenades. After

ES080210002430WDC 4-1

evaluation of the canisters by CH2M HILL UXO technicians, it was determined that they did not pose a hazard to field personnel and were left in place. Avoidance practices were used for the remainder of the field effort and no additional items were observed.

## 4.1.3 Surface Soil Sampling

Surface soil sampling activities at the CJCA were conducted from July 6 through 10, 2009. The activities specific to the former ranges and IR sites are summarized below.

#### **UXO-20**

UXO-20 was divided into 1-acre grids in which three surface soil samples were collected using the TR-02-1 sampling method as summarized below and described in the United States Army Corps of Engineers (USACE) Technical Report ERDC/CRREL TR-02-1, "Guide for Characterization of Sites Contaminated with Energetic Materials" (Thiboutot, Ampleman, and Hewitt, 2002). A total of 214 surface soil samples were collected from UXO-20 (CJCA-SS01 through CJCA-SS214), as shown on **Figure 4-1**.

Each sample location was defined as 1 meter (m)  $\times$  1 m in size. Each surface soil sample was composed of a minimum of 30 aliquots of soil collected from 0 to 1 ft bgs from random locations within each 1 m  $\times$  1 m area. The soil samples were collected using a JMC Backsaver<sup>TM</sup> equipped with a 0.56-inch inner diameter sampling tube. The sample aliquots at each location were composited into a single sample following the *Homogenization of Soil and Sediment Samples* SOP in Appendix C of the MRP Master Project Plans (CH2M HILL, 2008a).

Following homogenization, the soil was transferred to the appropriate sample containers, placed on ice, and shipped under chain of custody via FedEx courier to GPL Laboratories of Frederick, Maryland, for analysis of the following parameters:

• Select metals – arsenic, antimony, copper, lead, and zinc (SW846 6010B/7471A)

Additionally, 32 surface soil samples (15 percent) collected from UXO-20 were analyzed for pH by SW846 9045C for geochemical evaluation purposes.

#### IR Sites 15, 17, and 85

**Figures 4-2** through **4-4** illustrate the locations of the surface soil samples collected from Sites 15, 17, and 85, respectively. The surface soil samples collected at each site included:

- Site 15- 10 surface soil samples
- Site 17 5 surface soil samples
- Site 85 13 surface soil samples

Surface soil samples at the three IR sites were obtained from a depth of 0 to 1 ft bgs using stainless steel trowels. A portion of each sample was split and field screened for the presence of VOCs using a flame-ionization detector (FID) and the presence of metals using a hand held x-ray fluorescence (XRF) instrument. An undisturbed portion of the sample was placed in VOC-specific Terra Core™ soil samplers with in-field preservation, of either sodium bicarbonate or methanol. The remaining sample was homogenized in a stainless steel bowl and placed in appropriate sample containers for the remaining analytes. The

4-2 ES080210002430WDC

samples were packed on ice and shipped under chain of custody via FedEx courier to GPL Laboratories of Frederick, Maryland, for analysis of the following parameters:

- Target compound list (TCL) VOCs (SW846 8260B)
- Total Metals (SW846 6010B/7470A)
- TCL SVOCs (SW846 8270C)
- Pesticides/PCBs (SW846 8081A/8082)
- pH (SW846 9045C)

## 4.1.4 Subsurface Soil Sampling

A total of 104 subsurface soil samples were collected from direct-push technology (DPT) bore holes advanced in accordance with the *Direct-Push Soil Sample Collection* SOP in Section 3.4 of the Master Project Plans (CH2M HILL, 2008b). DPT drilling services were provided by South Atlantic Environmental Drilling and Construction Company (SAEDACCO), Inc. of Fort Mill, South Carolina. Prior to advancing the DPT soil borings, subsurface utilities were cleared to a minimum of 5 ft bgs using a hand auger. Continuous soil cores were collected from each boring and described using the Unified Soil Classification System. Soil boring logs are provided in **Appendix B**.

**Figures 4-2** through **4-5** illustrate the locations of subsurface soil samples collected at each site:

- UXO-20 77 subsurface soil samples
- Site 15 10 subsurface soil samples
- Site 17 5 subsurface soil samples
- Site 85 -12 subsurface soil samples

Soil boring CJCA-SB07 was not collected in lieu of an overlapping Site 85 soil boring. Each soil boring was screened for the presence of VOCs using an FID, and metals using a hand held XRF. Soil samples collected for laboratory analysis were selected from the depth that exhibited the greatest field screening reading within the interval of 2 to 7 ft bgs. If the FID and XRF screening did not indicate impacts within this zone, a composite sample of the entire interval was collected for analysis.

Subsurface soil samples collected within UXO-20 were analyzed by a fixed base laboratory for the following parameters:

• Select metals - arsenic, antimony, copper, lead, and zinc (SW846 6010B/7471A)

Additionally, 11 subsurface soil samples (15 percent) collected from UXO-20 were analyzed for pH by SW846 9045C for geochemical evaluation purposes.

Subsurface soil samples collected from Sites 15, 17, and 85 were analyzed by a fixed base laboratory for the following parameters:

- TCL VOCs (SW846 8260B)
- Total Metals (SW846 6010B/7470A)
- TCL SVOCs (SW846 8270C)
- Pesticides/PCBs (SW846 8081A/8082)
- pH (SW846 9045C)

ES080210002430WDC 4-3

## 4.1.5 Temporary Monitoring Well Installation

A total of 50 DPT boring locations were completed as temporary groundwater monitoring wells. Temporary well locations are shown by **Figures 4-2** through **4-5**, and included:

- UXO-20 38 temporary wells
- Site 15 5 temporary wells
- Site 85 5 temporary wells
- Site 17 2 temporary wells

The temporary monitoring wells were constructed using 1-inch inner diameter Schedule 40 polyvinyl chloride casing with 10 feet of 0.010-inch machine slotted well screen, equipped with a pre-packed sand filter. The screened interval of each temporary monitoring well was set to bracket the water table, at depths ranging from 13 to 20 ft bgs. A sand pack was placed around the well screen to approximately one ft above the top of the well screen and a bentonite seal was installed above the sand pack extending to ground surface. Well construction information is summarized in **Table 3-2**. Well construction diagrams are provided in **Appendix B**.

Following installation, the temporary monitoring wells were developed by surging and pumping until the water quality parameters stabilized. The wells were constructed, developed, and subsequently abandoned in accordance with *Temporary Well Installation* SOP in Section 3.6 of the Master Project Plans (CH2M HILL, 2008b).

## 4.1.6 Groundwater Sampling

Groundwater samples were collected from the 50 newly installed temporary monitoring wells and 4 of the existing permanent monitoring wells located at Site 85. Following well development, the 50 temporary monitoring wells were allowed to equilibrate for a period of at least 24 hours prior to collecting the groundwater sample. Depth-to-water measurements were collected from each well prior to purging and sampling using an electronic water level probe. Water level measurements are presented in **Table 3-2**.

All groundwater samples were collected using low-flow sampling techniques in accordance with the *Low-Flow Groundwater Sampling from Monitoring Wells* SOP in Section 3.11 of the Master Project Plans (CH2M HILL, 2008b). During purging, water quality parameters (conductivity, dissolved oxygen, pH, temperature, turbidity, and oxidation-reduction potential) were measured using a water quality meter. Groundwater samples were collected after water quality parameters had stabilized over consecutive readings and at least one well volume had been purged.

Parameters were considered stabilized when three successive readings were as follows:

- pH within 0.1 pH unit
- Temperature is stable
- Conductivity within 10 percent
- Oxidation-reduction potential within 10 millivolts
- Turbidity below 10 Nephelometric turbidity units

If water quality parameters did not stabilize, at least three well volumes were purged prior to sampling. If purging resulted in the well going dry, the well was allowed time to recharge

4-4 ES080210002430WDC

and the sample was collected. In wells in which at least three well volumes were purged and turbidity remained above 10 NTUs, groundwater samples were collected when turbidity measurements were as low as practicable. A summary of the water quality parameters are presented in **Table 4-2**.

Groundwater samples collected from UXO-20 were analyzed for the following parameters:

- Select Metals arsenic, antimony, copper, lead, and zinc (SW846 6010B/7470A)
- Dissolved Metals- arsenic, antimony, copper, lead, and zinc (SW846 6010B/7470A) at wells located near the New River

Groundwater samples collected from Sites 15, 17, and 85 were analyzed for the following parameters:

- TCL VOCs (SW846 8260B)
- Total Metals (SW846 6010B/7470A)
- Dissolved Metals (SW846 6010B/7470A)
- TCL SVOCs (SW846 8270C)
- Pesticides/PCBs (SW846 8081A/8082)

All groundwater samples were collected in appropriately labeled containers, immediately packed on ice in coolers and shipped under chain-of-custody via FedEx courier to GPL Laboratories of Frederick, Maryland.

#### 4.1.7 Test Pits

A total of 12 test pits were excavated at Sites 15 and 85. The test pits were completed in accordance with Section 3.15, *Test Pits/Trenching*, of the Master Project Plans (CH2M HILL, 2008b). Following buried utility clearance, an excavator equipped with a 2-foot wide bucket was used to excavate a trench. The length and depth of each test pit varied based upon the transition from waste material (if encountered) to native soils. The test pits excavated at Site 15 ranged from 8 to 9 feet long and 5.5 to 7 feet deep. At Site 85, the test pits ranged from 3 to 13 feet long and 2 to 6 feet deep. The test pit excavations were completed by SAEDACOO, under direct supervision of a CH2M HILL geologist. The excavation was completed by removing lifts of no more than 12 inches at a time, until an assessment of the material could be made. The material removed from each pit was temporarily staged on 10-mil gauge plastic sheeting, described in accordance with the USCS, photographed, and screened for the presence of VOCs using an FID, and metals with a hand-held XRF. **Appendix B** contains the test pit logs and digital imagery. Upon completion of the test pit activities, the excavated material was returned to the test pits.

#### Site 15

Eight test pits (IR15-TP01 through IR15-TP08) were excavated to depths ranging from 2 to 7 ft bgs to assess the boundaries of the former disposal area. The test pits were located near the approximate boundary of the geophysical survey in areas not previously delineated (**Figure 4-6**).

Several pieces of ceramic and a metal pipe were observed in IR15-TP04. Debris was not observed in remaining test pits and the test pit logs indicate the areas were composed of native material (**Figure 4-6**).

ES080210002430WDC 4-5

#### Site 85

Four test pits (IR85-TP01 through IR85-TP04) were excavated to investigate for the presence of buried waste, including batteries (**Figure 4-7**). The depths of the test pits were generally 2 to 3 ft bgs, with a maximum depth of 6 ft bgs.

Batteries were noted on the ground surface at each test pit, but were not observed deeper than 2 ft bgs. The batteries matched the description of those historically disposed of at Site 85. A representative sample of the batteries (IR85-BAT) was collected and shipped to GPL for analysis of target analyte list (TAL) metals. When encountered, the batteries were separated from the excavated soils and placed in a 55-gallon drum for disposal. The soils were contained separately in 55-gallon drums. No other debris was encountered in the Site 85 test pits.

## 4.1.8 Quality Assurance/Quality Control Sampling

Quality assurance/quality control (QA/QC) samples were collected in the same types of preserved containers as the field samples. QA/QC requirements for environmental sampling, handling, and management are detailed in Section 3.18 of the Master Project Plans. Field QC samples, including field blanks, equipment blanks, duplicate samples, and matrix spike/matrix spike duplicate samples, were collected during the investigation and submitted for laboratory analysis. QC samples were collected at the following rates.

- One matrix spike/matrix spike duplicate per 20 samples collected
- One duplicate per 10 samples collected
- One equipment blank per day per media
- One trip blank per cooler containing bottleware for VOC analysis
- One field blank per week

# 4.2 Data Tracking and Validation

Field samples and their corresponding analytical tests were recorded on chain-of-custody (COC) forms, which were submitted with the samples to the laboratory. COC entries were checked against the *Work Plan* (CH2M HILL, 2009) to verify all designated samples were collected and submitted for the appropriate analyses. Upon receipt of the samples by the laboratories, a comparison to the field information was made to verify that each sample was analyzed for the correct parameters. In addition, a check was made to ensure that the proper number and types of QA/QC samples were collected. Analytical data reports, in hard copy and electronic format, were submitted for third-party validation using the *National Functional Guidelines for Superfund for Organic Methods Data Review* (EPA, 2008), and *National Functional Guidelines for Inorganic Data Review* (EPA, 2004). The electronic data was downloaded into a CH2M HILL database. These steps (third-party validation and electronic data handling) serve to reduce inherent uncertainties associated with data authenticity and usability.

# 4.3 Investigation-Derived Waste Management

Investigation-derived waste (IDW) generated during the investigation was managed in accordance with Section 3.17 of the Master Project Plans. IDW included soil, liquid waste (e.g., purged groundwater or decontamination fluids), batteries, and personal protective

4-6 ES080210002430WDC

equipment (PPE). Soil and liquids were placed in DOT-approved 55-gallon drums, labeled, and staged for disposal. Samples were collected from the drummed IDW for characterization purposes. **Appendix C** contains the waste manifests for disposal of the batteries, soil and groundwater IDW generated during this investigation. Used PPE and trash were placed into opaque garbage bags and placed in an onsite dumpster.

ES080210002430WDC 4-7

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID | Sample ID        | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рН 9045 | SVOCs 8270C | /OCs 8260B | Pest/PCBs 8081/8082 | Sample Date | Sample Type |
|------------|------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|-------------|-------------|
|            |                  | ota                | Fota                         | Sele                | Sele                          | H B     | 3,0         | ő          | Pest                |             |             |
|            | C                | amp Jo             |                              | •                   |                               |         |             | ndwate     |                     |             |             |
| CJCA-TW01  | CJCA-TW01-09C    |                    |                              | Χ                   | Χ                             |         |             |            |                     | 28-Jul-09   | N           |
| CJCA-TW02  | CJCA-TW02-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09   | N           |
| CJCA-TW02  | CJCA-TW02-09C-MS |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09   | MS          |
| CJCA-TW02  | CJCA-TW02-09C-SD |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09   | SD          |
| CJCA-TW03  | CJCA-TW03-09C    |                    |                              | Χ                   | Χ                             |         |             |            |                     | 28-Jul-09   | N           |
| CJCA-TW04  | CJCA-TW04-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 29-Jul-09   | N           |
| CJCA-TW04  | CJCA-TW04-09C-MS |                    |                              | Χ                   |                               |         |             |            |                     | 29-Jul-09   | MS          |
| CJCA-TW04  | CJCA-TW04-09C-SD |                    |                              | Χ                   |                               |         |             |            |                     | 29-Jul-09   | SD          |
| CJCA-TW05  | CJCA-TW05-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09   | N           |
| CJCA-TW06  | CJCA-TW06-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09   | N           |
| CJCA-TW08  | CJCA-TW08-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09   | N           |
| CJCA-TW09  | CJCA-TW09-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-TW10  | CJCA-TW10-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09   | N           |
| CJCA-TW11  | CJCA-TW11-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09   | N           |
| CJCA-TW12  | CJCA-TW12-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-TW13  | CJCA-TW13-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-TW14  | CJCA-TW14-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-TW15  | CJCA-TW15-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-TW15  | CJCA-TW15D-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | FD          |
| CJCA-TW16  | CJCA-TW16-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | N           |
| CJCA-TW17  | CJCA-TW17-09C    |                    |                              | Χ                   | Χ                             |         |             |            |                     | 24-Jul-09   | N           |
| CJCA-TW18  | CJCA-TW18-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-TW19  | CJCA-TW19-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-TW20  | CJCA-TW20-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-TW21  | CJCA-TW21-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-TW22  | CJCA-TW22-09C    |                    |                              | Χ                   | Χ                             |         |             |            |                     | 24-Jul-09   | N           |
| CJCA-TW23  | CJCA-TW23-09C    |                    |                              | Χ                   | Χ                             |         |             |            |                     | 23-Jul-09   | N           |
| CJCA-TW24  | CJCA-TW24-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09   | N           |
| CJCA-TW24  | CJCA-TW24D-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09   | FD          |
| CJCA-TW25  | CJCA-TW25-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09   | N           |
| CJCA-TW26  | CJCA-TW26-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09   | N           |
| CJCA-TW27  | CJCA-TW27-09C    |                    |                              | Χ                   | Χ                             |         |             |            |                     | 23-Jul-09   | N           |
| CJCA-TW28  | CJCA-TW28-09C    |                    |                              | Χ                   | Χ                             |         |             |            |                     | 23-Jul-09   | N           |
| CJCA-TW29  | CJCA-TW29-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | N           |
| CJCA-TW29  | CJCA-TW29-09C-MS |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | MS          |
| CJCA-TW29  | CJCA-TW29-09C-SD |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | SD          |
| CJCA-TW30  | CJCA-TW30-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | N           |
| CJCA-TW31  | CJCA-TW31-09C    |                    |                              | Χ                   | Χ                             |         |             |            |                     | 23-Jul-09   | N           |
| CJCA-TW32  | CJCA-TW32-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | N           |
| CJCA-TW33  | CJCA-TW33-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | N           |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID | Sample ID            | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рН 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date | Sample Type |
|------------|----------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|-------------|-------------|
| CJCA-TW34  | CJCA-TW34-09C        |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | N           |
| CJCA-TW35  | CJCA-TW35-09C        |                    |                              | Χ                   | Χ                             |         |             |            |                     | 22-Jul-09   | N           |
| CJCA-TW35  | CJCA-TW35D-09C       |                    |                              | Χ                   | Χ                             |         |             |            |                     | 22-Jul-09   | FD          |
| CJCA-TW36  | CJCA-TW36-09C        |                    |                              | Χ                   | Χ                             |         |             |            |                     | 22-Jul-09   | N           |
| CJCA-TW37  | CJCA-TW37-09C        |                    |                              | Χ                   | Χ                             |         |             |            |                     | 22-Jul-09   | N           |
| CJCA-TW38  | CJCA-TW38-09C        | Χ                  | Χ                            |                     |                               |         |             |            |                     | 23-Jul-09   | N           |
| CJCA-TW38  | CJCA-TW38-09C-MS     | Χ                  | Χ                            |                     |                               |         |             |            |                     | 23-Jul-09   | MS          |
| CJCA-TW38  | CJCA-TW38-09C-SD     | Χ                  | Χ                            |                     |                               |         |             |            |                     | 23-Jul-09   | SD          |
|            | Car                  | mp Joh             | nson                         | Constr              | uction                        | Area    | Subsu       | rface S    | Soil                |             |             |
| CJCA-SB01  | CJCA-SB01-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-SB02  | CJCA-SB02-2-6-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 29-Jul-09   | N           |
| CJCA-SB02  | CJCA-SB02-2-6-09C-MS |                    |                              | Χ                   |                               |         |             |            |                     | 29-Jul-09   | MS          |
| CJCA-SB02  | CJCA-SB02-2-6-09C-SD |                    |                              | Χ                   |                               |         |             |            |                     | 29-Jul-09   | SD          |
| CJCA-SB03  | CJCA-SB03-2-7-09C    |                    |                              | Χ                   |                               | Χ       |             |            |                     | 26-Jul-09   | N           |
| CJCA-SB04  | CJCA-SB04-4-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 29-Jul-09   | N           |
| CJCA-SB05  | CJCA-SB05-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-SB06  | CJCA-SB06-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 29-Jul-09   | N           |
| CJCA-SB07  | CJCA-SB07-4-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-SB08  | CJCA-SB08-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 29-Jul-09   | N           |
| CJCA-SB09  | CJCA-SB09-2-4-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-SB09  | CJCA-SB09D-2-4-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | FD          |
| CJCA-SB10  | CJCA-SB10-2-6-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09   | N           |
| CJCA-SB11  | CJCA-SB11-2-7-09C    |                    |                              | Χ                   |                               | Χ       |             |            |                     | 26-Jul-09   | N           |
| CJCA-SB12  | CJCA-SB12-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 29-Jul-09   | N           |
| CJCA-SB13  | CJCA-SB13-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | N           |
| CJCA-SB13  | CJCA-SB13-2-7-09C-MS |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | MS          |
| CJCA-SB13  | CJCA-SB13-2-7-09C-SD |                    |                              | Χ                   |                               |         |             |            |                     | 26-Jul-09   | SD          |
| CJCA-SB14  | CJCA-SB14-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09   | N           |
| CJCA-SB15  | CJCA-SB15-6-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | N           |
| CJCA-SB16  | CJCA-SB16-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | N           |
| CJCA-SB18  | CJCA-SB18-2-5-09C    |                    |                              | Χ                   |                               | Х       |             |            |                     | 25-Jul-09   | N           |
| CJCA-SB19  | CJCA-SB19-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09   | N           |
| CJCA-SB20  | CJCA-SB20-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | N           |
| CJCA-SB20  | CJCA-SB20D-2-7-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | FD          |
| CJCA-SB21  | CJCA-SB21-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09   | N           |
| CJCA-SB22  | CJCA-SB22-4-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09   | N           |
| CJCA-SB23  | CJCA-SB23-2-3-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09   | N           |
| CJCA-SB24  | CJCA-SB24-2-4-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 24-Jul-09   | N           |
| CJCA-SB25  | CJCA-SB25-6-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09   | N           |
| CJCA-SB26  | CJCA-SB26-4-7-09C    |                    |                              | Х                   |                               |         |             |            |                     | 23-Jul-09   | N           |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID             | Sample ID                              | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рн 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date            | Sample Type |
|------------------------|----------------------------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|------------------------|-------------|
| CJCA-SB27              | CJCA-SB27-4-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09              | N           |
| CJCA-SB28              | CJCA-SB28-2-4-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 23-Jul-09              | N           |
| CJCA-SB29              | CJCA-SB29-2-7-09C                      |                    |                              | Χ                   |                               | Χ       |             |            |                     | 28-Jul-09              | N           |
| CJCA-SB30              | CJCA-SB30-2-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 23-Jul-09              | N           |
| CJCA-SB31              | CJCA-SB31-4-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 23-Jul-09              | N           |
| CJCA-SB31              | CJCA-SB31D-4-7-09C                     |                    |                              | Χ                   |                               |         |             |            |                     | 23-Jul-09              | FD          |
| CJCA-SB32              | CJCA-SB32-2-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09              | N           |
| CJCA-SB33              | CJCA-SB33-4-6-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 23-Jul-09              | N           |
| CJCA-SB34              | CJCA-SB34-2-4-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09              | N           |
| CJCA-SB35              | CJCA-SB35-2-4-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09              | N           |
| CJCA-SB35              | CJCA-SB35-2-4-09C-MS                   |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09              | MS          |
| CJCA-SB35              | CJCA-SB35-2-4-09C-SD                   |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09              | SD          |
| CJCA-SB36              | CJCA-SB36-4-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09              | N           |
| CJCA-SB37              | CJCA-SB37-6-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 24-Jul-09              | N           |
| CJCA-SB38              | CJCA-SB38-2-4-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 24-Jul-09              | N           |
| CJCA-SB39              | CJCA-SB39-2-4-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 23-Jul-09              | N           |
| CJCA-SB40              | CJCA-SB40-4-7-09C                      |                    |                              | Χ                   |                               | Χ       |             |            |                     | 28-Jul-09              | N           |
| CJCA-SB41              | CJCA-SB41-4-6-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 23-Jul-09              | N           |
| CJCA-SB42              | CJCA-SB42-2-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 28-Jul-09              | N           |
| CJCA-SB43              | CJCA-SB43-6-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09              | N           |
| CJCA-SB44              | CJCA-SB44-6-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 23-Jul-09              | N           |
| CJCA-SB45              | CJCA-SB45-2-5-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09              | N           |
| CJCA-SB45              | CJCA-SB45D-2-5-09C                     |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09              | FD          |
| CJCA-SB46              | CJCA-SB46-4-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09              | N           |
| CJCA-SB46              | CJCA-SB46-4-7-09C-MS                   |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09              | MS          |
| CJCA-SB46              | CJCA-SB46-4-7-09C-SD                   |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09              | SD          |
| CJCA-SB47              | CJCA-SB47-6-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09              | N           |
| CJCA-SB48              | CJCA-SB48-4-6-09C                      |                    |                              | Χ                   |                               | Χ       |             |            |                     | 27-Jul-09              | N           |
| CJCA-SB49              | CJCA-SB49-2-4-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09              | N           |
| CJCA-SB50              | CJCA-SB50-4-6-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09              | N           |
| CJCA-SB50              | CJCA-SB50D-4-6-09C                     |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09              | FD          |
| CJCA-SB51              | CJCA-SB51-2-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 25-Jul-09              | N           |
| CJCA-SB52              | CJCA-SB52-4-6-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09              | N           |
| CJCA-SB53              | CJCA-SB53-2-7-09C                      |                    |                              | Χ                   |                               | Х       |             |            |                     | 22-Jul-09              | N           |
| CJCA-SB54              | CJCA-SB54-6-7-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09              | N           |
| CJCA-SB54              | CJCA-SB54-6-7-09C-MS                   |                    |                              | Х                   |                               |         |             |            |                     | 22-Jul-09              | MS          |
| CJCA-SB54              | CJCA-SB54-6-7-09C-SD                   |                    |                              | X                   |                               |         |             |            |                     | 22-Jul-09              | SD          |
| CJCA-SB55              | CJCA-SB55-4-6-09C                      |                    |                              | Х                   |                               |         |             |            |                     | 22-Jul-09              | N           |
| CJCA-SB56<br>CJCA-SB57 | CJCA-SB56-2-7-09C<br>CJCA-SB57-2-4-09C |                    |                              | X                   |                               |         |             |            |                     | 27-Jul-09<br>23-Jul-09 | N<br>N      |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID | Sample ID            | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рн 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date | Sample Type |
|------------|----------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|-------------|-------------|
| CJCA-SB58  | CJCA-SB58-2-6-09C    |                    |                              | Χ                   |                               | Χ       |             |            |                     | 27-Jul-09   | N           |
| CJCA-SB59  | CJCA-SB59-2-4-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 23-Jul-09   | N           |
| CJCA-SB59  | CJCA-SB59D-2-4-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 23-Jul-09   | FD          |
| CJCA-SB60  | CJCA-SB60-4-6-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09   | N           |
| CJCA-SB61  | CJCA-SB61-2-4-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09   | N           |
| CJCA-SB62  | CJCA-SB62-2-4-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09   | N           |
| CJCA-SB63  | CJCA-SB63-2-4-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 23-Jul-09   | N           |
| CJCA-SB64  | CJCA-SB64-4-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09   | N           |
| CJCA-SB64  | CJCA-SB64D-4-7-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 27-Jul-09   | FD          |
| CJCA-SB65  | CJCA-SB65-2-4-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09   | N           |
| CJCA-SB65  | CJCA-SB65-2-4-09C-MS |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09   | MS          |
| CJCA-SB65  | CJCA-SB65-2-4-09C-SD |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09   | SD          |
| CJCA-SB66  | CJCA-SB66-4-6-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09   | N           |
| CJCA-SB67  | CJCA-SB67-6-7-09C    |                    |                              | Χ                   |                               | Χ       |             |            |                     | 22-Jul-09   | N           |
| CJCA-SB68  | CJCA-SB68-4-6-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09   | N           |
| CJCA-SB69  | CJCA-SB69-6-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 21-Jul-09   | N           |
| CJCA-SB70  | CJCA-SB70-4-6-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09   | N           |
| CJCA-SB70  | CJCA-SB70D-4-6-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 22-Jul-09   | FD          |
| CJCA-SB71  | CJCA-SB71-6-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 21-Jul-09   | N           |
| CJCA-SB72  | CJCA-SB72-4-6-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 21-Jul-09   | N           |
| CJCA-SB73  | CJCA-SB73-4-6-09C    |                    |                              | Χ                   |                               | Χ       |             |            |                     | 21-Jul-09   | N           |
| CJCA-SB74  | CJCA-SB74-2-7-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 21-Jul-09   | N           |
| CJCA-SB75  | CJCA-SB75-4-6-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 21-Jul-09   | N           |
| CJCA-SB76  | CJCA-SB76-4-6-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 21-Jul-09   | N           |
| CJCA-SB77  | CJCA-SB77-2-4-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 21-Jul-09   | N           |
| CJCA-SB78  | CJCA-SB78-4-6-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 21-Jul-09   | N           |
|            | c                    | amp J              | ohnso                        | n Cons              | structio                      | on Are  | a Surfa     | ice So     | il                  |             |             |
| CJCA-SS001 | CJCA-SS001-09C       |                    |                              | Χ                   |                               | Χ       |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS002 | CJCA-SS002-09C       |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS003 | CJCA-SS003-09C       |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS004 | CJCA-SS004-09C       |                    |                              | Х                   |                               | Х       |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS005 | CJCA-SS005-09C       |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS006 | CJCA-SS006-09C       |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS007 | CJCA-SS007-09C       |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS008 | CJCA-SS008-09C       |                    |                              | X                   |                               | Х       |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS009 | CJCA-SS009-09C       |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS010 | CJCA-SS010-09C       |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS011 | CJCA-SS011-09C       |                    |                              | X                   |                               | Х       |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS012 | CJCA-SS012-09C       |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS013 | CJCA-SS013-09C       |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS014 | CJCA-SS014-09C       | 1                  |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID | Sample ID         | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рн 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date | Sample Type |
|------------|-------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|-------------|-------------|
| CJCA-SS015 | CJCA-SS015-09C    |                    |                              | Х                   |                               | Χ       |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS016 | CJCA-SS016-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS017 | CJCA-SS017-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS018 | CJCA-SS018-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS019 | CJCA-SS019-09C    |                    |                              | Χ                   |                               | Χ       |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS020 | CJCA-SS020-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS021 | CJCA-SS021-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS021 | CJCA-SS021D-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | FD          |
| CJCA-SS022 | CJCA-SS022-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS023 | CJCA-SS023-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS023 | CJCA-SS023-09C-MS |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | MS          |
| CJCA-SS023 | CJCA-SS023-09C-SD |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | SD          |
| CJCA-SS024 | CJCA-SS024-09C    |                    |                              | Χ                   |                               | Χ       |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS025 | CJCA-SS025-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS026 | CJCA-SS026-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS027 | CJCA-SS027-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS028 | CJCA-SS028-09C    |                    |                              | Χ                   |                               | Χ       |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS029 | CJCA-SS029-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS030 | CJCA-SS030-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS031 | CJCA-SS031-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09    | N           |
| CJCA-SS032 | CJCA-SS032-09C    |                    |                              | Χ                   |                               | Χ       |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS033 | CJCA-SS033-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS034 | CJCA-SS034-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS035 | CJCA-SS035-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS036 | CJCA-SS036-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS037 | CJCA-SS037-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS038 | CJCA-SS038-09C    |                    |                              | Χ                   |                               | Χ       |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS039 | CJCA-SS039-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS040 | CJCA-SS040-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS041 | CJCA-SS041-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS041 | CJCA-SS041D-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | FD          |
| CJCA-SS042 | CJCA-SS042-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS042 | CJCA-SS042-09C-MS |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | MS          |
| CJCA-SS042 | CJCA-SS042-09C-SD |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | SD          |
| CJCA-SS043 | CJCA-SS043-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS044 | CJCA-SS044-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS044 | CJCA-SS044-09C    |                    |                              |                     |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS045 | CJCA-SS045-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS045 | CJCA-SS045-09C-MS |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | MS          |
| CJCA-SS045 | CJCA-SS045-09C-SD |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | SD          |
| CJCA-SS046 | CJCA-SS046-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID               | Sample ID                        | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рн 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date          | Sample Type |
|--------------------------|----------------------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|----------------------|-------------|
| CJCA-SS046               | CJCA-SS046D-09C                  |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | FD          |
| CJCA-SS047               | CJCA-SS047-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS048               | CJCA-SS048-09C                   |                    |                              |                     |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS048               | CJCA-SS048-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS049               | CJCA-SS049-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS049               | CJCA-SS049-09C-MS                |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | MS          |
| CJCA-SS049               | CJCA-SS049-09C-SD                |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | SD          |
| CJCA-SS050               | CJCA-SS050-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS051               | CJCA-SS051-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS052               | CJCA-SS052-09C                   |                    |                              |                     |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS052               | CJCA-SS052-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS053               | CJCA-SS053-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS053               | CJCA-SS053D-09C                  |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09             | FD          |
| CJCA-SS054               | CJCA-SS054-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS054               | CJCA-SS054D-09C                  |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | FD          |
| CJCA-SS055               | CJCA-SS055-09C                   |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS056               | CJCA-SS056-09C                   |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS056               | CJCA-SS056D-09C                  |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09             | FD          |
| CJCA-SS057               | CJCA-SS057-09C                   |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS058               | CJCA-SS058-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS058               | CJCA-SS058-09C                   |                    |                              | V                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS059               | CJCA-SS059-09C                   |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09             | N<br>N      |
| CJCA-SS060               | CJCA-SS060-09C                   |                    |                              |                     |                               |         |             |            |                     | 7-Jul-09             | N N         |
| CJCA-SS061<br>CJCA-SS062 | CJCA-SS061-09C<br>CJCA-SS062-09C |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09<br>9-Jul-09 | N N         |
| CJCA-SS062<br>CJCA-SS063 | CJCA-SS062-09C                   |                    |                              | ^                   |                               |         |             |            |                     | 9-Jul-09             | N N         |
| CJCA-SS063               | CJCA-SS063-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS064               | CJCA-SS064-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N N         |
| CJCA-SS065               | CJCA-SS065-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS065               | CJCA-SS065-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N N         |
| CJCA-SS066               | CJCA-SS066-09C                   |                    |                              | ^                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS067               | CJCA-SS067-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS068               | CJCA-SS068-09C                   |                    |                              | - `                 |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS068               | CJCA-SS068-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS069               | CJCA-SS069-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS070               | CJCA-SS070-09C                   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS070               | CJCA-SS070D-09C                  |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | FD          |
| CJCA-SS071               | CJCA-SS071-09C                   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS072               | CJCA-SS072-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS073               | CJCA-SS073-09C                   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS074               | CJCA-SS074-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N           |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID               | Sample ID                        | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рН 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date          | Sample Type |
|--------------------------|----------------------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|----------------------|-------------|
| CJCA-SS074               | CJCA-SS074-09C                   |                    |                              |                     |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS075               | CJCA-SS075-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS076               | CJCA-SS076-09C                   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS077               | CJCA-SS077-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS078               | CJCA-SS078-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS079               | CJCA-SS079-09C                   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS080               | CJCA-SS080-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS080               | CJCA-SS080D-09C                  |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | FD          |
| CJCA-SS081               | CJCA-SS081-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS081               | CJCA-SS081-09C-MS                | 1                  |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | MS          |
| CJCA-SS081               | CJCA-SS081-09C-SD                |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | SD          |
| CJCA-SS082               | CJCA-SS082-09C                   | 1                  |                              | Х                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS083<br>CJCA-SS083 | CJCA-SS083-09C                   | 1                  |                              | V                   |                               |         |             |            |                     | 9-Jul-09             | N<br>N      |
|                          | CJCA-SS083-09C                   | 1                  |                              | X                   |                               |         |             |            |                     | 9-Jul-09             |             |
| CJCA-SS084               | CJCA-SS084-09C                   | 1                  |                              |                     |                               |         |             |            |                     | 9-Jul-09             | N<br>N      |
| CJCA-SS085               | CJCA-SS085-09C                   | 1                  |                              | X                   |                               |         |             |            |                     | 7-Jul-09             | N<br>N      |
| CJCA-SS086<br>CJCA-SS086 | CJCA-SS086-09C                   |                    |                              | ^                   |                               |         |             |            |                     | 7-Jul-09<br>7-Jul-09 | N<br>N      |
| CJCA-SS087               | CJCA-SS086-09C<br>CJCA-SS087-09C |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09<br>7-Jul-09 | N N         |
|                          |                                  |                    |                              | X                   |                               |         |             |            |                     |                      | N N         |
| CJCA-SS088<br>CJCA-SS089 | CJCA-SS088-09C<br>CJCA-SS089-09C |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09<br>7-Jul-09 | N N         |
| CJCA-SS099               | CJCA-SS099-09C                   |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09             | N N         |
| CJCA-SS090               | CJCA-SS090-09C-MS                |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09             | MS          |
| CJCA-SS090               | CJCA-SS090-09C-SD                |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09             | SD          |
| CJCA-SS090               | CJCA-SS091-09C                   |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09             | N N         |
| CJCA-SS092               | CJCA-SS092-09C                   |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS092               | CJCA-SS092-09C                   |                    |                              |                     |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS092               | CJCA-SS092D-09C                  |                    |                              |                     |                               |         |             |            |                     | 7-Jul-09             | FD          |
| CJCA-SS092               | CJCA-SS092D-09C                  |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09             | FD          |
| CJCA-SS093               | CJCA-SS093-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS094               | CJCA-SS094-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS095               | CJCA-SS095-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS096               | CJCA-SS096-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS097               | CJCA-SS097-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS097               | CJCA-SS097-09C                   |                    |                              |                     |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS098               | CJCA-SS098-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS099               | CJCA-SS099-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09             | N           |
| CJCA-SS100               | CJCA-SS100-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS100               | CJCA-SS100-09C                   |                    |                              |                     |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS101               | CJCA-SS101-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS102               | CJCA-SS102-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | N           |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID               | Sample ID                           | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рн 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date          | Sample Type |
|--------------------------|-------------------------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|----------------------|-------------|
| CJCA-SS103               | CJCA-SS103-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS103               | CJCA-SS103-09C                      |                    |                              |                     |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS104               | CJCA-SS104-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS105               | CJCA-SS105-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS105               | CJCA-SS105D-09C                     |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | FD          |
| CJCA-SS106               | CJCA-SS106-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS106               | CJCA-SS106-09C                      |                    |                              |                     |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS107               | CJCA-SS107-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS108               | CJCA-SS108-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS109               | CJCA-SS109-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS110               | CJCA-SS110-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS111               | CJCA-SS111-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS112               | CJCA-SS112-09C                      |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS113               | CJCA-SS113-09C                      |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS114               | CJCA-SS114-09C                      |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS114               | CJCA-SS114-09C-MS                   |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09             | MS          |
| CJCA-SS114               | CJCA-SS114-09C-SD                   |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09             | SD          |
| CJCA-SS115               | CJCA-SS115-09C                      |                    |                              | Х                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS116               | CJCA-SS116-09C                      | -                  |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS117               | CJCA-SS117-09C                      | -                  |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS118               | CJCA-SS118-09C                      | -                  |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS119               | CJCA-SS119-09C                      |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS120               | CJCA-SS120-09C                      |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS121               | CJCA-SS121-09C                      |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS122               | CJCA-SS122-09C                      |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS123               | CJCA-SS123-09C                      |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS124               | CJCA-SS124-09C                      |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS125               | CJCA-SS125-09C                      |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS126               | CJCA-SS126-09C                      | 1                  |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS127               | CJCA-SS127-09C                      |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS128               | CJCA-SS128-09C                      |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS129               | CJCA-SS129-09C                      | 1                  |                              | X                   |                               |         |             |            |                     | 9-Jul-09             | N           |
| CJCA-SS130               | CJCA-SS130-09C                      |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS130               | CJCA-SS130D-09C                     |                    |                              | X                   |                               | -       |             |            |                     | 8-Jul-09             | FD          |
| CJCA-SS131               | CJCA-SS131-09C                      |                    |                              | X                   |                               | -       |             |            |                     | 8-Jul-09             | N           |
| CJCA-SS132               | CJCA-SS132-09C                      | 1                  |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | N<br>N      |
| CJCA-SS133               | CJCA-SS133-09C                      | 1                  |                              |                     |                               |         |             |            |                     | 8-Jul-09             | N<br>N      |
| CJCA-SS134<br>CJCA-SS134 | CJCA-SS134-09C                      | 1                  |                              | X                   |                               |         |             |            |                     | 8-Jul-09             | MS          |
|                          | CJCA-SS134-09C-MS                   |                    |                              |                     |                               | -       |             |            |                     | 8-Jul-09             |             |
| CJCA-SS134<br>CJCA-SS135 | CJCA-SS134-09C-SD<br>CJCA-SS135-09C | 1                  |                              | X                   |                               |         |             |            |                     | 8-Jul-09<br>9-Jul-09 | SD<br>N     |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID               | Sample ID                        | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рн 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date           | Sample Type |
|--------------------------|----------------------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|-----------------------|-------------|
| CJCA-SS136               | CJCA-SS136-09C                   |                    |                              |                     |                               |         |             |            |                     | 9-Jul-09              | N           |
| CJCA-SS136               | CJCA-SS136-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 9-Jul-09              | N           |
| CJCA-SS137               | CJCA-SS137-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N           |
| CJCA-SS138               | CJCA-SS138-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N           |
| CJCA-SS138               | CJCA-SS138D-09C                  |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | FD          |
| CJCA-SS139               | CJCA-SS139-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N           |
| CJCA-SS140               | CJCA-SS140-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N           |
| CJCA-SS140               | CJCA-SS140D-09C                  |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | FD          |
| CJCA-SS141               | CJCA-SS141-09C                   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09              | N           |
| CJCA-SS142               | CJCA-SS142-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N           |
| CJCA-SS142               | CJCA-SS142-09C-MS                |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | MS          |
| CJCA-SS142               | CJCA-SS142-09C-SD                |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | SD          |
| CJCA-SS143               | CJCA-SS143-09C                   |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09              | N           |
| CJCA-SS144               | CJCA-SS144-09C                   |                    |                              |                     |                               |         |             |            |                     | 8-Jul-09              | N           |
| CJCA-SS144               | CJCA-SS144-09C                   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09              | N           |
| CJCA-SS145               | CJCA-SS145-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N           |
| CJCA-SS146               | CJCA-SS146-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N           |
| CJCA-SS147               | CJCA-SS147-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N           |
| CJCA-SS148               | CJCA-SS148-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N<br>MC     |
| CJCA-SS148               | CJCA-SS148-09C-MS                |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | MS          |
| CJCA-SS148               | CJCA-SS148-09C-SD                |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | SD<br>FD    |
| CJCA-SS148               | CJCA-SS148D-09C                  |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              |             |
| CJCA-SS149               | CJCA-SS149-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N<br>N      |
| CJCA-SS150<br>CJCA-SS151 | CJCA-SS150-09C<br>CJCA-SS151-09C |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09<br>9-Jul-09  | N N         |
| CJCA-SS151<br>CJCA-SS152 | CJCA-SS151-09C                   |                    |                              | X                   |                               |         |             |            |                     | 10-Jul-09             | N N         |
| CJCA-SS152<br>CJCA-SS153 | CJCA-SS152-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N N         |
| CJCA-SS153<br>CJCA-SS154 | CJCA-SS153-09C<br>CJCA-SS154-09C |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09<br>10-Jul-09 | N N         |
| CJCA-SS154<br>CJCA-SS155 | CJCA-SS154-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N N         |
| CJCA-SS155<br>CJCA-SS156 | CJCA-SS155-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09<br>9-Jul-09  | N N         |
| CJCA-SS156<br>CJCA-SS156 | CJCA-SS156-09C-MS                |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09<br>9-Jul-09  | MS          |
| CJCA-SS156<br>CJCA-SS156 | CJCA-SS156-09C-MS                | -                  |                              | X                   |                               |         |             |            |                     | 9-Jul-09<br>9-Jul-09  | SD          |
| CJCA-SS156<br>CJCA-SS157 | CJCA-SS156-09C-SD                |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09<br>9-Jul-09  | N SD        |
| CJCA-SS157<br>CJCA-SS158 | CJCA-SS157-09C<br>CJCA-SS158-09C |                    |                              | ^                   |                               |         |             |            |                     | 9-Jul-09<br>9-Jul-09  | N N         |
| CJCA-SS156<br>CJCA-SS158 | CJCA-SS158-09C                   |                    |                              | Х                   |                               |         |             |            |                     | 9-Jul-09<br>9-Jul-09  | N N         |
| CJCA-SS156<br>CJCA-SS159 | CJCA-SS159-09C                   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09              | N N         |
| CJCA-SS159               | CJCA-SS159-09C                   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09              | N N         |
| CJCA-SS161               | CJCA-SS161-09C                   |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09              | N N         |
| CJCA-SS161<br>CJCA-SS162 | CJCA-SS161-09C                   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09              | N N         |
| CJCA-SS162<br>CJCA-SS163 | CJCA-SS162-09C                   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09              | N N         |
| CJCA-SS163               | CJCA-SS163D-09C                  |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09              | FD          |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID | Sample ID         | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рн 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date | Sample Type |
|------------|-------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|-------------|-------------|
| CJCA-SS164 | CJCA-SS164-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS164 | CJCA-SS164D-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | FD          |
| CJCA-SS165 | CJCA-SS165-09C    |                    |                              | Χ                   |                               | Х       |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS166 | CJCA-SS166-09C    |                    |                              | Χ                   |                               | Х       |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS167 | CJCA-SS167-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS167 | CJCA-SS167D-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | FD          |
| CJCA-SS168 | CJCA-SS168-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS169 | CJCA-SS169-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS170 | CJCA-SS170-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS171 | CJCA-SS171-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS172 | CJCA-SS172-09C    |                    |                              | Χ                   |                               | Χ       |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS173 | CJCA-SS173-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS174 | CJCA-SS174-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS175 | CJCA-SS175-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS175 | CJCA-SS175D-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | FD          |
| CJCA-SS176 | CJCA-SS176-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS176 | CJCA-SS176D-09C   |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | FD          |
| CJCA-SS177 | CJCA-SS177-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS178 | CJCA-SS178-09C    |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS179 | CJCA-SS179-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS180 | CJCA-SS180-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS181 | CJCA-SS181-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS182 | CJCA-SS182-09C    |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS183 | CJCA-SS183-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS184 | CJCA-SS184-09C    |                    |                              | Χ                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS185 | CJCA-SS185-09C    |                    |                              | X                   |                               | Х       |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS186 | CJCA-SS186-09C    |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS186 | CJCA-SS186D-09C   |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09    | FD          |
| CJCA-SS187 | CJCA-SS187-09C    |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS187 | CJCA-SS187-09C-MS |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09    | MS          |
| CJCA-SS187 | CJCA-SS187-09C-SD |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09    | SD          |
| CJCA-SS188 | CJCA-SS188-09C    |                    |                              | X                   |                               | Х       |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS189 | CJCA-SS189-09C    |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS190 | CJCA-SS190-09C    |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS191 | CJCA-SS191-09C    |                    |                              | X                   |                               | Х       |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS192 | CJCA-SS192-09C    |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS193 | CJCA-SS193-09C    |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09    | N           |
| CJCA-SS193 | CJCA-SS193D-09C   |                    |                              | X                   |                               |         |             |            |                     | 8-Jul-09    | FD          |
| CJCA-SS194 | CJCA-SS194-09C    |                    |                              | X                   |                               | Х       |             |            |                     | 9-Jul-09    | N           |
| CJCA-SS194 | CJCA-SS194-09C-MS |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09    | MS          |
| CJCA-SS194 | CJCA-SS194-09C-SD |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09    | SD          |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID         | Sample ID                                  | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рН 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date            | Sample Type |
|--------------------|--------------------------------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|------------------------|-------------|
| CJCA-SS195         | CJCA-SS195-09C                             |                    |                              | Χ                   |                               | Χ       | Χ           |            | Χ                   | 9-Jul-09               | N           |
| CJCA-SS196         | CJCA-SS196-09C                             |                    |                              | Χ                   |                               |         |             |            |                     | 9-Jul-09               | N           |
| CJCA-SS197         | CJCA-SS197-09C                             |                    |                              | Χ                   |                               | Χ       |             |            |                     | 9-Jul-09               | N           |
| CJCA-SS198         | CJCA-SS198-09C                             |                    |                              | Χ                   |                               | Χ       |             |            |                     | 9-Jul-09               | Ν           |
| CJCA-SS199         | CJCA-SS199-09C                             |                    |                              | Χ                   |                               | Χ       |             |            |                     | 9-Jul-09               | N           |
| CJCA-SS200         | CJCA-SS200-09C                             |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS201         | CJCA-SS201-09C                             |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS201         | CJCA-SS201-09C-MS                          |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | MS          |
| CJCA-SS201         | CJCA-SS201-09C-SD                          |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | SD          |
| CJCA-SS202         | CJCA-SS202-09C                             |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS203         | CJCA-SS203-09C                             |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS203         | CJCA-SS203D-09C                            |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | FD          |
| CJCA-SS204         | CJCA-SS204-09C                             |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS205         | CJCA-SS205-09C                             |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS205         | CJCA-SS205-09C-MS                          |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | MS          |
| CJCA-SS205         | CJCA-SS205-09C-SD                          |                    |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | SD          |
| CJCA-SS206         | CJCA-SS206-09C                             |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS207         | CJCA-SS207-09C                             |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS208         | CJCA-SS208-09C                             |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS209         | CJCA-SS209-09C                             |                    |                              | X                   |                               | .,      |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS210         | CJCA-SS210-09C                             |                    |                              | X                   |                               | Χ       |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS211         | CJCA-SS211-09C                             |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS212         | CJCA-SS212-09C                             |                    |                              | X                   |                               | Χ       |             |            |                     | 9-Jul-09               | N           |
| CJCA-SS213         | CJCA-SS213-09C                             |                    |                              | X                   |                               |         |             |            |                     | 7-Jul-09               | N           |
| CJCA-SS214         | CJCA-SS214-09C                             |                    |                              | X                   | A === C                       |         | Ouglis      | Cam        | nal Dia             | 7-Jul-09               | N           |
| CJCA-QC            | Camp John                                  | ISUN C             | onstru                       | _                   | nied 5                        | ampie   | wualit      | y Cont     | i Oi Bia            | 21-Jul-09              | EB          |
| CJCA-QC<br>CJCA-QC | CJCA-EB01-072109-IS<br>CJCA-EB01-072509-IS |                    |                              | X                   |                               |         |             |            |                     | 21-Jul-09<br>25-Jul-09 | EB          |
| CJCA-QC            | CJCA-EB01-072609                           |                    |                              | X                   |                               |         |             |            |                     | 26-Jul-09<br>26-Jul-09 | EB          |
| CJCA-QC            | CJCA-EB01-072709-GW                        |                    |                              | X                   |                               |         |             |            |                     | 27-Jul-09              | EB          |
| CJCA-QC            | CJCA-EB01-072709-GW                        |                    |                              | X                   |                               |         |             |            |                     | 29-Jul-09              | EB          |
| CJCA-QC            | CJCA-EB01-072909-IS<br>CJCA-EB02-072709-GW |                    |                              | X                   |                               |         |             |            |                     | 27-Jul-09              | EB          |
| CJCA-QC            | CJCA-EB02-072709-GW-MS                     |                    |                              | X                   |                               |         |             |            |                     | 27-Jul-09              | MS          |
| CJCA-QC            | CJCA-EB02-072709-GW-SD                     |                    |                              | X                   |                               |         |             |            |                     | 27-Jul-09              | SD          |
| CJCA-QC            | CJCA-EB02-072909-IS                        |                    |                              | X                   |                               |         | Χ           | Χ          | Х                   | 29-Jul-09              | EB          |
| CJCA-QC            | CJCA-EB02-073009                           |                    |                              | X                   |                               |         | X           | X          | X                   | 30-Jul-09              | EB          |
| CJCA-QC            | CJCA-EB03-072709-GW                        |                    |                              | X                   |                               |         |             |            |                     | 27-Jul-09              | EB          |
| CJCA-QC            | CJCA-EB070709                              |                    |                              | Х                   |                               |         |             |            |                     | 7-Jul-09               | EB          |
| CJCA-QC            | CJCA-EB070809                              |                    |                              | Х                   |                               |         |             |            |                     | 8-Jul-09               | EB          |
| CJCA-QC            | CJCA-EB070909                              |                    |                              | X                   |                               |         |             |            |                     | 9-Jul-09               | EB          |
| CJCA-QC            | CJCA-FB01-072109-IS                        |                    |                              | Х                   |                               |         |             |            |                     | 21-Jul-09              | FB          |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID             | Sample ID                                     | Total Metals 6010B                    | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | pH 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date            | Sample Type |
|------------------------|-----------------------------------------------|---------------------------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|------------------------|-------------|
| CJCA-QC                | CJCA-FB01-072909                              |                                       |                              | Х                   |                               |         | Х           | Х          | Χ                   | 29-Jul-09              | FB          |
| CJCA-QC                | CJCA-TB02-072909                              |                                       |                              |                     |                               |         |             | Χ          |                     | 29-Jul-09              | TB          |
| CJCA-QC                | CJCA-FB070709                                 |                                       |                              | Χ                   |                               |         |             |            |                     | 7-Jul-09               | FB          |
|                        |                                               |                                       | _                            | Site 15             | Groun                         | dwate   |             |            |                     |                        |             |
| IR15-TW01              | IR15-TW01-09C                                 | Х                                     | X                            |                     |                               |         | Х           | Х          | Х                   | 29-Jul-09              | N           |
| IR15-TW01              | IR15-TW01-09C-MS                              |                                       | Х                            |                     |                               |         |             |            |                     | 29-Jul-09              | MS          |
| IR15-TW01              | IR15-TW01-09C-SD                              |                                       | Х                            |                     |                               |         |             |            |                     | 29-Jul-09              | SD          |
| IR15-TW02              | IR15-TW02-09C                                 | X                                     | Х                            |                     |                               |         | Х           | X          | Х                   | 29-Jul-09              | N           |
| IR15-TW03              | IR15-TW03-09C                                 | X                                     | Х                            |                     |                               |         |             | Х          |                     | 28-Jul-09              | N           |
| IR15-TW03              | IR15-TW03D-09C                                | X                                     | X                            |                     |                               |         | .,          | X          | .,                  | 28-Jul-09              | FD          |
| IR15-TW04              | IR15-TW04-09C                                 | Х                                     | Х                            |                     |                               |         | Х           | Х          | Х                   | 29-Jul-09              | N           |
| IR15-TW05              | IR15-TW05-09C                                 | Χ                                     | Х                            |                     |                               |         |             | Χ          |                     | 28-Jul-09              | N           |
|                        |                                               |                                       | Sit                          | te 15 S             | ubsur                         | face So |             |            |                     |                        |             |
| IR15-SB01              | IR15-SB01-4-6-09C                             | Х                                     |                              |                     |                               | X       | Х           | Х          | Х                   | 29-Jul-09              | N           |
| IR15-SB02              | IR15-SB02-2-7-09C                             | Χ                                     |                              |                     |                               | Х       | Х           | Х          | Х                   | 26-Jul-09              | N           |
| IR15-SB02              | IR15-SB02D-2-7-09C                            | Х                                     |                              |                     |                               | Х       | Х           | X          | Х                   | 26-Jul-09              | FD          |
| IR15-SB03              | IR15-SB03-2-7-09C                             | Х                                     |                              |                     |                               | Х       | Х           | Х          | Х                   | 29-Jul-09              | N           |
| IR15-SB04              | IR15-SB04-2-7-09C                             | Х                                     |                              |                     |                               | Х       | Х           | X          | X                   | 27-Jul-09              | N           |
| IR15-SB05              | IR15-SB05-2-7-09C                             | X                                     |                              |                     |                               | X       | X           | X          | X                   | 27-Jul-09              | N           |
| IR15-SB05              | IR15-SB05-2-7-09C-MS                          | Х                                     |                              |                     |                               | Х       | X           | Х          | Х                   | 27-Jul-09              | MS          |
| IR15-SB05              | IR15-SB05-2-7-09C-SD                          | X                                     |                              |                     |                               | X       | X           | X          | X                   | 27-Jul-09              | SD          |
| IR15-SB06              | IR15-SB06-2-7-09C                             | X                                     |                              |                     |                               | X       | X           | X          | X                   | 27-Jul-09              | N           |
| IR15-SB07              | IR15-SB07-2-4-09C                             | X                                     |                              |                     |                               | X       | X           | X          | X                   | 27-Jul-09              | N           |
| IR15-SB08              | IR15-SB08-2-4-09C                             | X                                     |                              |                     |                               | X       | X           | X          | X                   | 29-Jul-09              | N           |
| IR15-SB09              | IR15-SB09-2-7-09C                             | Х                                     |                              |                     |                               | Х       | Х           | Х          | Х                   | 29-Jul-09              | N           |
| IR15-SB10              | IR15-SB10-2-4-09C                             | Χ                                     |                              |                     |                               | X       | Х           | Χ          | Χ                   | 29-Jul-09              | N           |
| ID45 0004              | ID45 0004 00 04 000                           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | - 1                          | oite 15             | Surta                         | ce Soil |             | · ·        | · ·                 | 40 1 100               | F.1         |
| IR15-SS01              | IR15-SS01-00-01-09C                           | X                                     |                              |                     |                               | X       | X           | X          | X                   | 10-Jul-09              | N           |
| IR15-SS02              | IR15-SS02-00-01-09C                           | X                                     |                              |                     |                               | X       | X           | X          | X                   | 10-Jul-09              | N           |
| IR15-SS03              | IR15-SS03-00-01-09C                           |                                       |                              |                     |                               |         |             |            |                     | 10-Jul-09              | N           |
| IR15-SS03              | IR15-SS03D-00-01-09C                          | X                                     |                              |                     |                               | X       | X           | X          | X                   | 10-Jul-09              | FD<br>N     |
| IR15-SS04              | IR15-SS04-00-01-09C                           |                                       |                              |                     |                               |         | X           | Х          |                     | 10-Jul-09              |             |
| IR15-SS05<br>IR15-SS05 | IR15-SS05-00-01-09C                           | X                                     |                              |                     |                               | X       | X           |            | X                   | 10-Jul-09<br>10-Jul-09 | N<br>MS     |
| IR15-SS05              | IR15-SS05-00-01-09C-MS                        | X                                     |                              |                     |                               | X       | X           |            | X                   | 10-Jul-09<br>10-Jul-09 | MS<br>SD    |
| IR15-SS05<br>IR15-SS06 | IR15-SS05-00-01-09C-SD<br>IR15-SS06-00-01-09C | X                                     |                              |                     |                               | X       | X           | Х          | X                   | 10-Jul-09<br>10-Jul-09 | N N         |
| IR15-SS07              | IR15-SS06-00-01-09C                           | X                                     |                              |                     |                               | X       | X           | X          | X                   | 10-Jul-09<br>10-Jul-09 | N<br>N      |
| IR15-SS08              | IR15-SS07-00-01-09C                           | X                                     |                              |                     |                               | X       | X           | X          | X                   | 10-Jul-09<br>10-Jul-09 | N<br>N      |
| IR15-SS08              | IR15-SS08-00-01-09C                           | X                                     |                              |                     |                               | X       | X           | X          | X                   | 10-Jul-09<br>10-Jul-09 | N<br>N      |
|                        | IR15-SS10-00-01-09C                           | X                                     |                              |                     |                               | X       | X           | X          | X                   | 10-Jul-09              | N<br>N      |
| IR15-SS10              | 11/10-0010-01-09C                             | ^                                     |                              |                     |                               | _ ^     | _ ^         | ^          | ^                   | าบานเาบซ               | IN .        |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

|                        | Sample ID                      | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | pH 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date            | Sample Typ |
|------------------------|--------------------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|------------------------|------------|
|                        |                                |                    | Site 1                       | 5 Qua               | lity Co                       | ntrol B | lanks       |            |                     |                        |            |
| Site15-QC              | IR15-EB071009                  | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | X                   | 10-Jul-09              | EB         |
| Site15-QC              | IR15-FB071009                  | Χ                  |                              |                     |                               | Х       | Χ           | Χ          | Χ                   | 10-Jul-09              | FB         |
| Site15-QC              | IR15-TB01-072609               |                    |                              |                     |                               |         |             | Χ          |                     | 26-Jul-09              | TB         |
| Site15-QC              | IR15-TB01-072709               |                    |                              |                     |                               |         |             | Χ          |                     | 27-Jul-09              | ТВ         |
| Site15-QC              | IR15-TB01-072809               |                    |                              |                     |                               |         |             | Χ          |                     | 28-Jul-09              | ТВ         |
| Site15-QC              | IR15-TB01-072909               |                    |                              |                     |                               |         |             | Χ          |                     | 29-Jul-09              | TB         |
|                        |                                |                    | 5                            | Site 17             | Groun                         | dwate   | r           |            |                     |                        |            |
| IR17-TW01              | IR17-TW01-09C-MS               | Χ                  |                              |                     |                               |         |             |            |                     | 29-Jul-09              | MS         |
| IR17-TW01              | IR17-TW01-09C-SD               | Χ                  |                              |                     |                               |         |             |            |                     | 29-Jul-09              | SD         |
| IR17-TW02              | IR17-TW02-09C                  | Χ                  | Χ                            |                     |                               |         | Χ           | Χ          | Χ                   | 29-Jul-09              | N          |
| IR17-TW02              | IR17-TW02D-09C                 | Χ                  | Χ                            |                     |                               |         | Χ           | Χ          | Χ                   | 29-Jul-09              | FD         |
|                        |                                |                    | Sit                          | te 17 S             | ubsur                         | face So | oil         |            |                     |                        |            |
| IR17-SB01              | IR17-SB01-2-4-09C              | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 27-Jul-09              | N          |
| IR17-SB03              | IR17-SB03-2-7-09C              | Χ                  |                              |                     |                               | Х       |             | Χ          | Х                   | 28-Jul-09              | N          |
| IR17-SB03              | IR17-SB03D-2-7-09C             | Χ                  |                              |                     |                               | Х       | Χ           | Χ          | Х                   | 28-Jul-09              | FD         |
| IR17-SB04              | IR17-SB04-2-7-09C              | Χ                  |                              |                     |                               | Х       | Χ           | Χ          | Χ                   | 28-Jul-09              | N          |
| IR17-SB05              | IR17-SB05-2-7-09C              | Χ                  |                              |                     |                               | Х       | Χ           | Χ          | Х                   | 28-Jul-09              | N          |
|                        |                                |                    | ,                            | Site 17             | Surfa                         | ce Soil |             |            |                     |                        |            |
| IR17-SS01              | IR17-SS01-00-01-09C            | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Х                   | 10-Jul-09              | N          |
| IR17-SS01              | IR17-SS01D-00-01-09C           | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | X                   | 10-Jul-09              | FD         |
| IR17-SS02              | IR17-SS02-00-01-09C            | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 10-Jul-09              | N          |
| IR17-SS03              | IR17-SS03-00-01-09C            | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | X                   | 10-Jul-09              | N          |
| IR17-SS04              | IR17-SS04-00-01-09C            | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Х                   | 10-Jul-09              | N          |
| IR17-SS05              | IR17-SS05-00-01-09C            | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 10-Jul-09              | N          |
| IR17-SS05              | IR17-SS05-00-01-09C-MS         | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Х                   | 10-Jul-09              | MS         |
| IR17-SS05              | IR17-SS05-00-01-09C-SD         | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | X                   | 10-Jul-09              | SD         |
|                        |                                |                    | Site 1                       | 7 Qual              | ity Co                        | ntrol B | lanks       |            |                     |                        |            |
| Site17-QC              | IR17-EB071009                  | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 10-Jul-09              | EB         |
| Site17-QC              | IR17-FB071009                  | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 10-Jul-09              | FB         |
| Site17-QC              | IR17-TB01-072809               |                    |                              |                     |                               |         |             | Χ          |                     | 28-Jul-09              | TB         |
| Site17-QC              | IR17-TB02-072809               |                    |                              |                     |                               |         |             | Χ          |                     | 28-Jul-09              | TB         |
| Site17-QC              | IR17-TB071009                  |                    |                              |                     |                               |         |             | Χ          |                     | 10-Jul-09              | TB         |
|                        |                                |                    | 5                            | Site 85             | Groun                         | dwate   |             |            |                     |                        |            |
| IR85-MW01              | IR85-MW01-09C                  | Χ                  |                              |                     |                               |         | Χ           | Χ          | Χ                   | 23-Jul-09              | N          |
| IR85-MW02              | IR85-MW02-09C                  | Χ                  |                              |                     |                               |         | Χ           | Χ          | Χ                   | 23-Jul-09              | N          |
| IR85-MW04              | IR85-MW04-09C                  | Χ                  |                              |                     |                               |         | Χ           | Χ          | Χ                   | 22-Jul-09              | N          |
| IR85-MW04              | IR85-MW04-09C-MS               | Χ                  |                              |                     |                               |         | Χ           | Χ          | Χ                   | 22-Jul-09              | MS         |
| IR85-MW04              | IR85-MW04-09C-SD               | Χ                  |                              |                     |                               |         | Χ           | Χ          | Χ                   | 22-Jul-09              | SD         |
| IR85-MW05<br>IR85-TW04 | IR85-MW05-09C<br>IR85-TW04-09C | X                  | Х                            |                     |                               |         | X           | X          | X                   | 21-Jul-09<br>27-Jul-09 | N<br>N     |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID | Sample ID            | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рн 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date | Sample Type |
|------------|----------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|-------------|-------------|
| IR85-TW05  | IR85-TW05-09C        | Χ                  | Χ                            |                     |                               |         | Χ           | Χ          | Χ                   | 29-Jul-09   | N           |
| IR85-TW06  | IR85-TW06-09C        | Χ                  | Χ                            |                     |                               |         | Χ           | Χ          | Χ                   | 30-Jul-09   | N           |
| IR85-TW06  | IR85-TW06D-09C       | Х                  | Χ                            |                     |                               |         | Χ           | Χ          | X                   | 30-Jul-09   | FD          |
| IR85-TW06  | IR85-TW06D-09C-MS    |                    | Χ                            |                     |                               |         |             |            |                     | 30-Jul-09   | MS          |
| IR85-TW06  | IR85-TW06D-09C-SD    |                    | Χ                            |                     |                               |         |             |            |                     | 30-Jul-09   | SD          |
| IR85-TW07  | IR85-TW07-09C        | Χ                  | Χ                            |                     |                               |         | Χ           | Χ          | Χ                   | 30-Jul-09   | N           |
| IR85-TW08  | IR85-TW08-09C        | Χ                  | Χ                            |                     |                               |         | Χ           | Χ          | Χ                   | 30-Jul-09   | N           |
|            |                      |                    | Sit                          | te 85 S             | ubsur                         | face So | oil         |            |                     |             |             |
| IR85-SB06  | IR85-SB06-2-7-09C    | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 29-Jul-09   | N           |
| IR85-SB06  | IR85-SB06-2-7-09C-MS | Х                  |                              |                     |                               | Χ       | Χ           | Χ          | Х                   | 29-Jul-09   | MS          |
| IR85-SB06  | IR85-SB06-2-7-09C-SD | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 29-Jul-09   | SD          |
| IR85-SB07  | IR85-SB07-2-4-09C    | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 28-Jul-09   | N           |
| IR85-SB08  | IR85-SB08-2-7-09C    | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 29-Jul-09   | N           |
| IR85-SB09  | IR85-SB09-2-7-09C    | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 27-Jul-09   | N           |
| IR85-SB10  | IR85-SB10-4-7-09C    | Х                  |                              |                     |                               | Χ       | Χ           | Χ          | X                   | 29-Jul-09   | N           |
| IR85-SB11  | IR85-SB11-2-7-09C    | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 29-Jul-09   | N           |
| IR85-SB12  | IR85-SB12-2-7-09C    | Χ                  |                              |                     |                               |         | Χ           | Χ          | Χ                   | 28-Jul-09   | N           |
| IR85-SB13  | IR85-SB13-2-7-09C    | Χ                  |                              |                     |                               | Х       | Χ           | Χ          | Χ                   | 28-Jul-09   | N           |
| IR85-SB14  | IR85-SB14-2-7-09C    | Χ                  |                              |                     |                               | Х       | Χ           | Χ          | Χ                   | 29-Jul-09   | N           |
| IR85-SB17  | IR85-SB17-6-7-09C    | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 28-Jul-09   | N           |
| IR85-SB17  | IR85-SB17D-6-7-09C   | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 28-Jul-09   | FD          |
|            |                      |                    | Si                           | te 85 E             | Battery                       | Samp    | le          |            |                     |             |             |
| IR85-BAT   | IR85-BAT-071009      | Χ                  |                              |                     |                               |         |             |            |                     | 10-Jul-09   | N           |
|            |                      |                    |                              | Site 85             | Surfa                         | ce Soil |             |            |                     |             |             |
| IR85-SS06  | IR85-SS06-00-01-09C  | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 9-Jul-09    | N           |
| IR85-SS07  | IR85-SS07-00-01-09C  | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 9-Jul-09    | N           |
| IR85-SS08  | IR85-SS08-00-01-09C  | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 9-Jul-09    | N           |
| IR85-SS09  | IR85-SS09-00-01-09C  | Χ                  |                              |                     |                               | Х       | Χ           | Х          | Χ                   | 10-Jul-09   | N           |
| IR85-SS09  | IR85-SS09D-00-01-09C | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 10-Jul-09   | FD          |
| IR85-SS10  | IR85-SS10-00-01-09C  | Χ                  |                              |                     |                               | Х       | Χ           | Χ          | Χ                   | 10-Jul-09   | N           |
| IR85-SS11  | IR85-SS11-00-01-09C  | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 10-Jul-09   | N           |
| IR85-SS12  | IR85-SS12-00-01-09C  | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 10-Jul-09   | N           |
| IR85-SS13  | IR85-SS13-00-01-09C  | X                  |                              |                     |                               | Х       | X           | Х          | Х                   | 10-Jul-09   | N           |
| IR85-SS14  | IR85-SS14-00-01-09C  | X                  |                              |                     |                               | Х       | Х           | X          | Х                   | 10-Jul-09   | N           |
| IR85-SS14  | IR85-SS14D-00-01-09C | X                  |                              |                     |                               | Х       | Х           | X          | Х                   | 10-Jul-09   | FD          |
| IR85-SS15  | IR85-SS15-00-01-09C  | X                  |                              |                     |                               | Х       | Х           | X          | Х                   | 10-Jul-09   | N           |
| IR85-SS16  | IR85-SS16-00-01-09C  | X                  |                              |                     |                               | X       | X           | X          | X                   | 10-Jul-09   | N           |
| IR85-SS17  | IR85-SS17-00-01-09C  | X                  |                              |                     |                               | X       | X           | X          | X                   | 10-Jul-09   | N           |
| IR85-SS18  | IR85-SS18-00-01-09C  | Χ                  |                              |                     |                               | Х       | Χ           | Χ          | Χ                   | 10-Jul-09   | N           |

TABLE 4-1 Master Sampling Table Camp Johnson Construction Area Focused PA/SI Report MCB CampLej, North Carolina

| Station ID | Sample ID              | Total Metals 6010B | Total Dissolved Metals 6010B | Select Metals 6010B | Select Dissolved Metals 6010B | рН 9045 | SVOCs 8270C | VOCs 8260B | Pest/PCBs 8081/8082 | Sample Date | Sample Type |
|------------|------------------------|--------------------|------------------------------|---------------------|-------------------------------|---------|-------------|------------|---------------------|-------------|-------------|
| IR85-SS18  | IR85-SS18-00-01-09C-MS | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 10-Jul-09   | MS          |
| IR85-SS18  | IR85-SS18-00-01-09C-SD | Χ                  |                              |                     |                               | Χ       | Χ           | Χ          | Χ                   | 10-Jul-09   | SD          |
|            |                        |                    | Site 8                       | 5 Qual              | ity Co                        | ntrol B | lanks       |            |                     |             |             |
| Site85-QC  | IR85-EB01-073009       | Χ                  |                              |                     |                               |         | Χ           | Χ          | Χ                   | 30-Jul-09   | EB          |
| Site85-QC  | IR85-EB070909          | Χ                  |                              |                     |                               |         | Χ           | Χ          | Χ                   | 9-Jul-09    | EB          |
| Site85-QC  | IR85-EB071009          | Χ                  |                              |                     |                               |         | Χ           | Χ          | Χ                   | 10-Jul-09   | EB          |
| Site85-QC  | IR85-FB070909          | Χ                  |                              |                     |                               |         | Χ           | Χ          | Χ                   | 9-Jul-09    | FB          |
| Site85-QC  | IR85-TB01-072109       |                    |                              |                     |                               |         |             | Χ          |                     | 21-Jul-09   | TB          |
| Site85-QC  | IR85-TB01-072209       |                    |                              |                     |                               |         |             | Χ          |                     | 22-Jul-09   | TB          |
| Site85-QC  | IR85-TB01-072309       |                    |                              |                     |                               |         |             | Χ          |                     | 23-Jul-09   | TB          |
| Site85-QC  | IR85-TB01-072809       |                    |                              |                     |                               |         |             | Χ          |                     | 28-Jul-09   | TB          |
| Site85-QC  | IR85-TB070909          |                    |                              |                     |                               |         |             | Χ          |                     | 9-Jul-09    | TB          |
| Site85-QC  | IR85-TB071009          |                    |                              |                     |                               |         |             | Χ          |                     | 10-Jul-09   | TB          |
| Site85-QC  | IR85-TB073009          |                    |                              |                     |                               |         |             | Χ          |                     | 30-Jul-09   | TB          |

TABLE 4-2 Summary of Water Quality Data Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Well ID       | Date      | Sample Time | Temp. (°C) | Cond. (mS/cm) | DO (mg/L) | pH (SU) | ORP (mV) | Turbidity (NTU) |
|---------------|-----------|-------------|------------|---------------|-----------|---------|----------|-----------------|
| CJCA - TW01   | 7/28/2009 | 10:55       | 18.50      | 0.066         | 0.32      | 4.73    | -66      | Out of range    |
| CJCA - TW02   | 7/28/2009 | 10:20       | 19.00      | 0.481*        | 0.00      | 7.89    | -30      | 3.4             |
| CJCA - TW03   | 7/28/2009 | 12:10       | 17.81      | 0.072*        | 1.28      | 6.63    | 114      | 390.0           |
| CJCA - TW04   | 7/29/2009 | 11:10       | 20.25      | 1.14*         | 3.18      | 6.91    | 49       | 4.1             |
| CJCA - TW05   | 7/28/2009 | 8:55        | 17.80      | 0.509*        | 1.71      | 6.17    | 164      | 1.5             |
| CJCA - TW06   | 7/28/2009 | 9:00        | 18.24      | 0.063         | 3.58      | 4.88    | 87       | 26.0            |
| CJCA - TW08   | 7/27/2009 | 10:20       | 20.15      | 1.28          | 0.00      | 7.99    | -59      | 3.9             |
| CJCA - TW09   | 7/26/2009 | 15:40       | 19.57      | 56.9          | 0.45      | 6.28    | 46       | 1.2             |
| CJCA - TW10   | 7/27/2009 | 12:15       | 21.03      | 0.108         | 0.15      | 7.59    | -108     | 13.0            |
| CJCA - TW11   | 7/27/2009 | 15:40       | 19.97      | 0.095         | 1.00      | 6.58    | 24       | 1.8             |
| CJCA - TW12   | 7/26/2009 | 13:50       | 18.85      | 2.96          | 0.54      | 6.29    | 66       | 1.1             |
| CJCA - TW13   | 7/26/2009 | 14:35       | 19.44      | 0.062         | 1.73      | 5.59    | -65      | 10.0            |
| CJCA - TW14   | 7/26/2009 | 14:00       | 19.28      | 0.063         | 4.01      | 5.32    | -66      | 3.3             |
| CJCA - TW15   | 7/26/2009 | 13:15       | 19.90      | 0.080         | 4.30      | 4.33    | 199      | 4.3             |
| CJCA - TW16   | 7/25/2009 | 17:05       | 20.04      | 0.064         | 3.66      | 4.10    | 157      | 3.2             |
| CJCA - TW17   | 7/24/2009 | 8:35        | 19.46      | 0.103         | 6.21      | 6.05    | 93       | 220.0           |
| CJCA - TW18   | 7/26/2009 | 11:05       | 18.33      | 0.061         | 0.91      | 5.38    | -80      | 7.0             |
| CJCA - TW19   | 7/26/2009 | 11:00       | 19.15      | 3.09          | 0.92      | 6.90    | 16       | 2.8             |
| CJCA - TW20   | 7/26/2009 | 10:15       | 18.69      | 0.070         | 2.37      | 4.57    | 141      | 4.2             |
| CJCA - TW21   | 7/26/2009 | 9:20        | 19.99      | 0.128         | 6.05      | 6.55    | 49       | 5.2             |
| CJCA - TW22   | 7/24/2009 | 11:50       | 18.98      | 0.068         | 0.00      | 7.64    | -51      | 11.0            |
| CJCA - TW23   | 7/23/2009 | 14:30       | 19.97      | 1.18          | 0.90      | 4.51    | 215      | 7.2             |
| CJCA - TW24   | 7/27/2009 | 9:25        | 18.72      | 0.068         | 3.90      | 5.10    | -12      | 2.8             |
| CJCA - TW25   | 7/27/2009 | 10:25       | 18.39      | 0.074         | 3.21      | 5.06    | -2       | 4.0             |
| CJCA - TW26   | 7/27/2009 | 12:05       | 19.43      | 0.060         | 2.99      | 5.58    | -7       | 85.0            |
| CJCA - TW27   | 7/23/2009 | 16:20       | 19.48      | 0.349         | 1.89      | 5.85    | 147      | 350.0           |
| CJCA - TW28   | 7/23/2009 | 16:50       | 20.97      | 0.820         | 2.99      | 4.39    | 90       | 10.6            |
| CJCA - TW29   | 7/25/2009 | 16:45       | 20.04      | 0.109         | 5.09      | 6.99    | 45       | 10.0            |
| CJCA - TW30   | 7/25/2009 | 18:10       | 19.91      | 8.04          | 0.18      | 7.24    | 3        | 27.0            |
| CJCA - TW31   | 7/23/2009 | 15:20       | 20.31      | 0.527         | 2.26      | 5.58    | -18      | 80.0            |
| CJCA - TW32   | 7/25/2009 | 13:30       | 19.20      | 0.018         | 4.80      | 4.27    | 72       | 110.0           |
| CJCA - TW33   | 7/25/2009 | 17:20       | 18.48      | 0.061         | 4.74      | 4.95    | -8       | 35.0            |
| CJCA - TW34   | 7/25/2009 | 13:20       | 19.29      | 0.091         | 2.24      | 6.02    | 198      | 210.0           |
| CJCA - TW35   | 7/22/2009 | 16:00       | 19.18      | 0.136         | 6.40      | 3.92    | 218      | 10.0            |
| CJCA - TW36   | 7/22/2009 | 9:30        | 18.25      | 0.230         | 0.29      | 7.08    | -97      | 6.1             |
| CJCA - TW37   | 7/22/2009 | 16:40       | 19.56      | 0.999         | 5.56      | 5.31    | 103      | 31.0            |
| CJCA - TW38   | 7/23/2009 | 13:15       | 19.07      | 0.055         | 0.40      | 4.59    | -8       | 10.0            |
| IR15 - TW01   | 7/28/2009 | 8:25        | 20.14      | 1.04*         | 1.13      | 7.91    | -21      | 1.7             |
| IR15 - TW02   | 7/29/2009 | 10:25       | 18.10      | 0.058         | 4.82      | 4.56    | 124      | 9.5             |
| IR15 - TW03   | 7/28/2009 | 14:05       | 19.28      | 0.149*        | 4.17      | 6.79    | 99       | 2.5             |
| IR15 - TW04   | 7/29/2009 | 8:45        | 18.71      | 0.193         | 1.76      | 6.13    | -88      | 15.0            |
| IR15 - TW05   | 7/28/2009 | 16:20       | 21.62      | 0.151         | 6.54      | 6.05    | 128      | 35.0            |
| IR17 - TW01   | 7/29/2009 | 14:20       | 18.90      | 0.059         | 2.28      | 4.94    | 110      | 16.0            |
| IR17 - TW02   | 7/29/2009 | 15:05       | 18.79      | 0.678*        | 3.88      | 6.27    | 151      | 90.0            |
| IR85 - MW01   | 7/23/2009 |             | 18.07      | 0.219         |           | 4.25    | 240      | 2.1             |
| IR85 - MW02   | 7/23/2009 | 9:40        | 18.74      | 0.053         | 2.74      | 4.18    | 349      | 9.8             |
| IR85 - MW04   | 7/22/2009 | 11:00       | 18.37      | 0.90          | 0.25      | 4.16    | 144      | 4.0             |
| IR85 - MW05   | 7/21/2009 | 17:20       | 17.54      | 1.49          | 7.15      | 3.90    | 203      | 5.5             |
| IR85 - TW04   | 7/27/2009 | 16:30       | 18.73      | 0.038         | 1.26      | 4.95    | 166      | 21.0            |
| IR85 - TW05   | 7/29/2009 | 12:30       | 19.14      | 0.038         | 2.20      | 4.99    | 90       | 4.2             |
| IR85 - TW06   | 7/30/2009 | 9:43        | 19.14      | 0.061         | 3.04      | 5.81    | -36      | 370.0           |
| IR85 - TW07   | 7/30/2009 | 9:43        | 19.60      | 0.713         | 4.16      | 5.68    | 208      | 3.0             |
| IR85 - TW07   | 7/30/2009 | 12:00       | 19.49      | 4.25          | 0.17      | 6.63    | 119      | 450.0           |
| 11100 - 17700 | 1730/2009 | 12.00       | 13.10      | 4.20          | 0.17      | 0.03    | 119      | 450.0           |

Notes:

°C=degrees celcius

mS/cm=microsiemens per centimeter

DO=dissolved oxygen

mg/L=milligrams per liter

ORP=oxidation-reduction potential

mV=millivolts

NTU=nepheometric turbidity units

<sup>\*</sup>water quality meter calibrated out of range.















# Results

The following subsections present and summarize the findings of the field investigation discussed in Section 4. The laboratory analytical test results for surface soil, subsurface soil, and groundwater for the CJCA are presented in this section. Laboratory analytical reports and COC records are provided in **Appendix D**.

## 5.1 UXO 20

#### 5.1.1 Surface Soil

The analytical data for the 214 surface soil samples collected from UXO-20 are presented in **Tables 5-1a** and **5-1b** (due to the size of the data set). **Figure 5-1** illustrates the distribution of the sample locations where target analytes exceeded the North Carolina Soil Screening Limits (NCSSLs), EPA Adjusted Residential Regional Screening Levels (RSLs), and/or EPA Adjusted Industrial RSLs and twice the mean Base background. The EPA Residential/Industrial RSLs are adjusted for non-cancer causing compounds to account for exposure to multiple constituents.

- Arsenic was detected in 201 surface soil samples at concentrations ranging from
  0.22 mg/kg (CJCA-SS22) to 6.9 mg/kg (CJCA-SS136). The concentration of arsenic
  detected in 136 of the surface soil samples exceeded the EPA Adjusted Residential RSL
  and twice the mean Base background. Arsenic was also reported to exceed the EPA
  Adjusted Industrial RSL and twice the mean Base background in 25 surface soil samples.
  Arsenic was detected at concentrations exceeding the NCSSL and twice the mean Base
  background in surface soil samples collected from CJCA-SS72 and CJCA-SS136.
- No other metals were detected at concentrations exceeding regulatory screening criteria and twice the Base background.

#### 5.1.2 Subsurface Soil

The analytical data for the 77 subsurface soil samples collected from UXO-20 are presented in **Table 5-2**. **Figure 5-2** illustrates the distribution of the sample locations where target analytes exceeded the North Carolina Soil Screening Limits (NCSSLs), EPA Adjusted RSLs, and/or EPA Adjusted Industrial RSLs and twice the mean Base background.

- Arsenic was detected in 68 subsurface soil samples at concentrations ranging from 0.17 mg/kg (CJCA-SB014) to 46.5 mg/kg (CJCA-SB71). The concentrations of arsenic detected in 15 samples exceeded the EPA Adjusted RSLs and twice the mean Base background. Arsenic concentrations detected in 15 subsurface soil samples exceeded the NCSSL and twice the mean Base background concentration.
- No other metals were detected at concentrations exceeding regulatory screening criteria and twice the mean Base background.

ES080210002430WDC 5-1

### 5.1.3 Groundwater

Analytical data for the 37 groundwater samples collected from UXO-20 are presented in **Table 5-3**. **Figure 5-2** illustrates the distribution of the sample locations where target analytes exceeded the lower of the NCGWQS and maximum contaminant levels (MCLs) and/or EPA Adjusted tap water RSLs, and twice the mean Base background..

- Arsenic was detected in 12 groundwater samples at concentrations ranging from 2.2J micrograms per liter ( $\mu g/L$ ) (CJCA-TW08) to 9.4J  $\mu g/L$  (CJCA-TW27). The concentration of arsenic detected in the groundwater samples collected from CJCA-TW27 and CJCA-TW30 exceeded the EPA Adjusted Tap Water RSL and twice the mean Base background.
- Lead was detected in 12 groundwater samples at concentrations ranging from 2  $\mu$ g/L (CJCA-TW26 and CJCA-TW36) to 19.1  $\mu$ g/L (CJCA-TW01). The concentration of lead detected in the groundwater sample collected from CJCA-TW01 exceeded the NCGWQS and twice the mean Base background concentration.

## 5.2 IR Site 15

#### 5.2.1 Surface Soil

Analytical data for the 10 surface soil samples collected from Site 15 are presented in **Table 5-4**. **Figure 5-3** illustrates the distribution of the sample locations where target analytes exceeded the NCSSLs, EPA Adjusted RSLs, and/or EPA Adjusted Industrial RSLs and twice the mean Base background.

- VOCs and SVOCs were not detected at concentrations exceeding NCSSLs or EPA RSLs in surface soil samples collected at Site 15.
- One PCB, aroclor-1254, was detected at a concentration exceeding the EPA Adjusted Industrial RSL in the surface soil sample collected at IR15-SS01.
- Concentrations of dieldrin were detected above the NCSSL at surface soil sample locations IR15-SS09 and IR15-SS10. However, the detected concentrations did not exceed the EPA Adjusted RSLs.
- Aluminum was detected in the 10 surface soil samples at concentrations ranging from 1,150 mg/kg (IR15-SS05) to 12,500 mg/kg (IR15-SS03). The concentration of aluminum was detected above the EPA Adjusted Residential RSL and twice the mean Base background in the surface soil sample collected from IR15-SS03.
- Arsenic was detected in the 10 surface soil samples at concentrations ranging from 0.24 mg/kg (IR15-SS05) to 4.7 mg/kg (IR15-SS03). Concentrations of arsenic exceeding EPA Adjusted Residential RSL and twice the mean Base background were reported at surface soil sample locations IR15-SS02 and IR15-SS04. The concentration of arsenic reported in surface soil samples collected from IR15-SS01, IR15-SS03, IR15-SS08, IR15-SS09, and IR15-SS10 exceeded the EPA Adjusted Industrial RSL and twice the mean Base background concentration.

5-2 ES080210002430WDC

- Chromium was detected in the 10 surface soil samples at concentrations ranging from 1.7 mg/kg (IR15-SS05) to 17.2 mg/kg (IR15-SS03), and exceeded the EPA Adjusted RSLs, the NCSSL, and twice the mean Base background, at surface soil sample locations IR15-SS01, IR15-SS03, IR15-SS08, IR15-SS09, and IR15-SS10.
- Iron was detected in the 10 surface soil samples at concentrations ranging from 903 mg/kg (IR15-SS06) to 10,200 mg/kg (IR15-SS03). Concentrations of iron detected at surface soil sample locations IR15-SS01, IR15-SS03, IR15-SS08, IR15-SS09, and IR15-SS10 exceeded the NCSSL and twice the mean Base background. Iron was reported at concentrations exceeding the EPA Adjusted Residential RSL and twice the mean Base background at surface soil sample locations IR15-SS03 and IR15-SS09.
- No other metals were detected at concentrations exceeding regulatory screening criteria and twice the mean Base background.

# 5.2.2 Subsurface Soil

Analytical data from the 10 subsurface soil samples collected from IR15 are presented in **Table 5-5**. **Figure 5-3** illustrates the distribution of the sample locations where target analytes exceeded the NCSSLs, EPA Adjusted RSLs, and/or EPA Adjusted Industrial RSLs and twice the mean Base background.

- VOCs, SVOCs, or PCBs were not detected in subsurface soil samples at concentrations exceeding regulatory screening criteria.
- One pesticide, dieldrin, was detected above the NCSSL in subsurface soil sample IR15-SB05 at a concentration of 2.3 micrograms per kilogram ( $\mu g/kg$ ).
- Arsenic was detected in nine subsurface soil samples at concentrations ranging from 0.38 mg/kg (IR15-SB06) to 16.6 mg/kg (IR15-SB09). The arsenic concentration detected in subsurface soil sample IR15-SB09 exceeded the NCSSL, the EPA Adjusted RSLs, and twice the mean Base background.
- Chromium was detected in the 10 subsurface soil samples at concentrations ranging from 1.1 mg/kg (IR15-SB08) to 52.4 mg/kg (IR15-SB09). The concentration of chromium detected in subsurface soil sample IR15-SB09 exceeded the NCSSL, the EPA Adjusted Industrial RSL, and twice the mean Base background.
- Iron was detected in the 10 subsurface soil samples at concentrations ranging from 153 mg/kg (IR15-SB08) to 179,000 mg/kg (IR15-SB09). Concentrations of iron reported in subsurface soil samples collected at IR15-SB01 and IR15-SB09 exceeded the NCSSL, the EPA Adjusted Residential RSL, and twice the mean Base background. Additionally, the iron concentration detected at IR15-SB09 exceeded the EPA Adjusted Industrial RSL.
- Lead was detected in the 10 subsurface soil samples at concentrations ranging from 2.7 mg/kg (IR15-SB06) to 483 mg/kg (IR15-SB01). The concentration of lead detected in subsurface soil sample IR15-SB01 exceeded the NCSSL, the EPA Adjusted Residential RSL, and twice the mean Base background.
- Manganese was detected in the 10 subsurface soil samples at concentrations ranging from 1.5 mg/kg (IR15-SB08) to 626 mg/kg (IR15-SB09), and exceeded the NCSSL and

ES080210002430WDC 5-3

twice the mean Base background at subsurface soil sample locations IR15-SB01 and IR15-SB09.

# 5.2.3 Groundwater

- Analytical data for the five groundwater samples collected at Site 15 are presented in Table 5-6. Figure 5-3 illustrates the distribution of the sample locations where target analytes exceeded the lower of the NCGWQS and maximum contaminant levels (MCLs) and/or EPA Adjusted tap water RSLs, and twice the mean Base background. VOCs, SVOCs, organochlorine pesticides (OCPs), and PCBs were not detected in the groundwater samples above the regulatory screening criteria.
- Chromium was detected in two groundwater samples at concentrations of 1.7J  $\mu$ g/L (IR15-TW03) and 5J  $\mu$ g/L (IR15-TW05). The sample collected from IR15-TW05 exceeded the EPA Adjusted Tap Water RSL and twice the Base background.
- Iron was detected in the five groundwater samples at concentrations ranging from 1,040  $\mu$ g/L (IR15-TW05) to 25,800  $\mu$ g/L (IR15-TW01), and exceeded, the NCGWQS, the EPA Adjusted Tap Water, and twice the mean Base background in the groundwater samples collected from IR15-TW01, IR15-TW03, and IR15-TW04.
- Manganese was detected in the five groundwater samples at concentrations ranging from 5.2  $\mu$ g/L (IR15-TW05) to 439  $\mu$ g/L (IR15-TW01). The sample collected from IR15-TW01 exceeded the NCGWQS, the EPA Adjusted Tap Water RSL, and twice the mean Base background.

# 5.3 IR Site 17

## 5.3.1 Surface Soil

Analytical data for the five surface soil samples collected from Site 17 are presented in **Table 5-7. Figure 5-4** illustrates the distribution of the sample locations where target analytes exceeded the NCSSLs, EPA Adjusted RSLs, and/or EPA Adjusted Industrial RSLs and twice the mean Base background.

- VOCs, SVOCs, OCPs, and PCBs were not detected at concentrations exceeding NCSSLs or EPA RSLs.
- Arsenic was detected in the five surface soil samples at concentrations ranging from 1.1 mg/kg (IR17-SS05) to 4.9 mg/kg (IR17-SS01), and exceeded the EPA Adjusted Residential RSL and twice the mean Base background. Arsenic was also detected at concentrations exceeding the EPA Adjusted Industrial RSL and twice the Base background at soil sample locations IR17-SS01, IR17-SS03, and IR17-SS04.
- Chromium was detected in five surface soil samples at concentrations ranging from 2.7 mg/kg (IR17-SS05) to 8.5 mg/kg (IR17-SS01). The chromium concentration detected in surface soil sample IR17-SS01 exceeded the NCSSL, EPA Adjusted RSLs, and twice the mean Base background.
- Iron was detected in the five surface soil samples at concentrations ranging from 1,670 mg/kg (IR17-SS04) to 7,640 mg/kg (IR17-SS01), but exceeded the EPA Adjusted

5-4 ES080210002430WDC

Residential RSL, the NCSSL, and twice the mean Base background in the surface soil sample collected from IR17-SS01.

• No other metals concentrations exceeded the regulatory criteria and twice the mean Base background.

## 5.3.2 Subsurface Soil

Analytical data for the five subsurface soil samples collected at Site 17 are presented in **Table 5-8. Figure 5-4** illustrates the distribution of the sample locations where target analytes exceeded the NCSSLs, EPA Adjusted RSLs, and/or EPA Adjusted Industrial RSLs and twice the mean Base background.

- SVOCs, OCPs, and PCBs were not detected at concentrations exceeding regulatory criteria.
- One VOC (1,2-dibromo-3-chloropropane) was detected at a concentration of 1.6  $\mu$ g/kg in the soil sample collected from IR17-SB01, which exceeded the NCSSL.
- Aluminum was detected in the five subsurface soil samples at concentrations ranging from 4,270 mg/kg (IR17-SB02) to 20,000 mg/kg (IR17-SB03), and exceeded the EPA Adjusted Residential RSL and twice the mean Base background in the subsurface soil samples collected from IR17-SB01 and IR17-SB03.
- Arsenic was detected in the five subsurface soil samples at concentrations ranging from 0.95 mg/kg (IR17-SB04) to 14.4 mg/kg (IR17-SB03). The concentrations of arsenic detected in subsurface soil samples collected at IR17-SB01, IR17-SB03, and IR17-SB04 exceeded the EPA Adjusted Industrial RSL and twice the mean Base background. Arsenic was also detected at concentrations above the NCSSL in the subsurface soil samples collected from IR17-SB01 and IR17-SB03.
- Chromium was detected in the five subsurface soil samples at concentrations ranging from 4.7 mg/kg (IR17-SB02) to 35.8 mg/kg (IR17-SB03) and exceeded the EPA Adjusted RSLs, the NCSSL, and twice the mean Base background at subsurface soil sample locations IR17-SB01 and IR17-SB03.
- Iron was detected in the five subsurface soil samples at concentrations ranging from 2,240 mg/kg (IR17-SB02) to 28,400 mg/kg (IR17-SB03). The concentrations of iron were reported to exceed the EPA Adjusted Residential RSL, the NCSSL, and twice mean Base background at subsurface soil sample locations IR17-SB01, IR17-SB03, and IR17-SB05.

## 5.3.3 Groundwater

The analytical data for the two groundwater samples collected at Site 17 are presented in **Table 5-9. Figure 5-4** illustrates the distribution of the sample locations where target analytes exceeded the lower of the NCGWQS and maximum contaminant levels (MCLs) and/or EPA Adjusted tap water RSLs, and twice the mean Base background.

• One VOC, methylene chloride, was detected in the groundwater sample collected from IR17-TW01 at a concentration of  $4.4 \,\mu\text{g/L}$ , exceeding the EPA Adjusted Tap water RSL.

ES080210002430WDC 5-5

- SVOCs, OCPs, or PCBs were not detected in the groundwater samples at concentrations exceeding regulatory screening criteria.
- Metals were not detected in the groundwater samples at concentrations exceeding both twice the Base background and regulatory screening criteria.

# 5.4 IR Site 85

# 5.4.1 Surface Soil

Analytical data for the 13 surface soil samples collected at Site 85 are presented in **Table 5-10. Figure 5-5** illustrates the distribution of the sample locations where target analytes exceeded the NCSSLs, EPA Adjusted RSLs, and/or EPA Adjusted Industrial RSLs and twice the mean Base background.

- VOCs, SVOCs, or PCBs were not detected at concentrations exceeding NCSSLs or EPA Adjusted RSLs.
- One OCP, dieldrin, was detected at a concentration above the NCSSL in the surface soil sample collected from IR85-SS17 (1.9  $\mu$ g/kg).
- Antimony was detected in one surface soil sample (IR85-SS18) at a concentration of 5.9 mg/kg, exceeding twice the Base background and the EPA Adjusted Residential RSL.
- Arsenic was detected in 13 surface soil samples at concentrations ranging from 0.57 mg/kg (IR85-SS13) to 9.9 mg/kg (IR85-SS17). The concentration of arsenic was detected at concentrations exceeding the EPA Adjusted Residential RSL and twice the mean Base background in surface soil samples collected from IR85-SS06, IR85-SS07, IR85-SS08, IR85-SS09, IR85-SS10, IR85-SS11, IR85-SS12, IR85-SS14, and IR85-SS15. Arsenic was also reported at concentrations exceeding the EPA Adjusted Industrial RSL and twice the mean Base background in two surface soil samples, IR85-SS16 and IR85-SS18. The concentration of arsenic detected in the surface soil sample collected from IR85-SS17 exceeded the NCSSL and twice the mean Base background.
- Cadmium was detected in three surface soil samples at concentrations ranging from 0.59 mg/kg (IR85-SS15) to 3.5 mg/kg (IR85-SS18), and exceeded the NCSSL and twice the mean Base background surface soil sample collected from IR85-SS18.
- Chromium was detected in 12 surface soil samples at concentrations ranging from 2.7 mg/kg (IR85-SS09) to 8.5 mg/kg (IR85-SS18), and exceeded the NCSSL and twice the mean Base background in surface soil sample IR85-SS18.
- Iron was detected in 13 surface soil samples at concentrations ranging from 1,690 mg/kg (IR85-SS07) to 11,500 mg/kg (IR85-SS18). The concentrations of iron exceeded NCSSL and twice the mean Base background in surface soil samples collected from IR85-SS14, IR85-SS16, IR85-SS17, and IR85-SS18. Iron was also reported above the EPA Adjusted Residential RSL in surface soil sample IR85-SS18.
- Lead was detected in 13 surface soil samples at concentrations ranging from 4.8 mg/kg (IR85-SS06) to 614 mg/kg (IR85-SS18), and exceeded the EPA Adjusted Residential RSL,

5-6 ES080210002430WDC

NCSSL, and twice the mean Base background in the surface soil sample collected from IR85-SS18.

- Manganese was detected in the 13 surface soil samples at concentrations ranging from 5.9 mg/kg (IR85-SS11) to 10, 700 mg/kg (IR85-SS17). Detected concentrations of manganese exceeded the EPA Adjusted Residential RSL, NCSSL, and twice the mean Base background in surface soil samples collected from IR85-SS15, IR85-SS16, IR85-SS17, and IR85-SS18. The concentration of manganese detected in the surface soil sample collected from IR85-SS17 also exceeded the EPA Adjusted Industrial RSL.
- Mercury was detected in 11 surface soil samples at concentrations ranging from 0.037 (IR85-SS09) to 8.8 mg/kg (IR85-SS18). Concentrations of mercury detected in surface soil samples IR85-SS15, IR85-SS17, and IR85-SS18 exceeded the NCSSL and twice the mean Base background. Mercury concentrations detected in surface soil samples IR85-SS17 and IR85-SS18 also exceeded the EPA Adjusted Residential RSL.
- Thallium was detected in two surface soil samples, IR85-SS16 (0.44 J mg/kg) and IR85-SS17 (18.7J mg/kg), and exceeded the EPA Adjusted Industrial RSL and twice the mean Base background in surface soil sample IR85-IS17.
- Zinc was detected in 11 surface soil samples at concentrations ranging from 4.2 mg/kg (IR85-SS11) to 5,600 mg/kg (IR85-SS17). Concentrations of zinc exceeded the NCSSL and twice the mean Base background in two surface soil samples, IR85-SS17 and IR85-SS18. The concentration of zinc detected in surface soil sample IR85-SS17 also exceeded the EPA Adjusted Residential RSL.

## 5.4.2 Subsurface Soil

Analytical data for the 12 subsurface soil samples collected at Site 85 are presented in **Table 5-11. Figure 5-5** illustrates the distribution of the sample locations where target analytes exceeded the NCSSLs, EPA Adjusted RSLs, and/or EPA Adjusted Industrial RSLs and twice the mean Base background.

- SVOCs, OCPs, or PCBs were not detected at concentrations exceeding regulatory criteria.
- One VOC (1,2-dibromo-3-chloropropane) was detected at a concentration of  $2.4 \,\mu g/kg$  in the subsurface soil sample collected from IR85-SB11, exceeding the NCSSL.
- Aluminum was detected in 10 subsurface soil samples at concentrations ranging from 2,560 mg/kg (IR85-SB17) to 12,000 mg/kg (IR85-SB09). The concentration of aluminum detected in sample IR85-SB09 exceeded the EPA Adjusted Residential RSL and twice the mean Base background.
- Arsenic was detected in 10 subsurface soil samples at concentrations ranging from 0.68J mg/kg (IR85-SB10) to 2.3 mg/kg (IR85-SB07). The concentration of arsenic detected in sample IR85-SB07 exceeded the EPA Adjusted Industrial RSL and twice the mean Base background.

ES080210002430WDC 5-7

# 5.4.3 Groundwater

Analytical data for the nine groundwater samples collected at Site 85 are presented in **Table 5-12. Figure 5-5** illustrates the distribution of the sample locations where target analytes exceeded the lower of the NCGWQS and maximum contaminant levels (MCLs) and/or EPA Adjusted tap water RSLs, and twice the mean Base background.

- SVOCs, OCPs, or PCBs were not detected in the groundwater samples at concentrations exceeding regulatory screening criteria.
- Methylene chloride, was detected in two groundwater samples at concentrations of  $14 \,\mu g/L$  (IR85-TW06) and  $190 \,\mu g/L$  (IR85-TW08), exceeding the NCGWQS and the EPA Adjusted Tap Water RSL.
- Aluminum was detected in nine groundwater samples at concentrations ranging from 110J  $\mu$ g/L (IR85-TW05) to 15,100  $\mu$ g/L (IR85-TW06), and exceeded the EPA Adjusted Tap water RSL and twice the mean Base background in the groundwater sample collected from IR85-TW06.
- Chromium was detected in two groundwater samples at concentrations ranging from  $1.8J\mu g/L$  (IR85-TW08) to  $18.9J\mu g/L$  (IR85-TW06). The chromium concentration detected in the groundwater sample collected from IR85-TW06 exceeded the EPA Adjusted Tap Water RSL and twice the mean Base background.
- Iron was detected in nine groundwater samples at concentrations ranging from 106  $\mu$ g/L (IR85-MW05) to 6,900  $\mu$ g/L (IR85-TW06). The iron concentration detected in the groundwater samples collected from IR85-TW05 and IR85-TW06 exceeded the EPA Adjusted Tap water RSL and twice the mean Base background.

# 5.4.4 Batteries

The analytical data for the waste characterization testing conducted on the battery sample collected at Site 85 are presented in **Table 5-13**. The TCLP analyses detected 11 metals in the battery sample. Only lead and mercury were detected at concentrations exceeding TCLP criteria.

5-8 ES080210002430WDC

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID<br>Sample ID<br>Sample Date | Camp Lejeune<br>Background SS<br>2X Mean | NCSSLs<br>(January,<br>2010) | Adjusted<br>Industrial Soil<br>RSLs | Adjusted<br>Residential<br>Soil RSLs | CJCA-SS001<br>CJCA-SS001-09C<br>07/07/09 | CJCA-SS002<br>CJCA-SS002-09C<br>07/07/09 | CJCA-SS003<br>CJCA-SS003-09C<br>07/07/09 | CJCA-SS004<br>CJCA-SS004-09C<br>07/07/09 | CJCA-SS005<br>CJCA-SS005-09C<br>07/07/09 | CJCA-SS006<br>CJCA-SS006-09C<br>07/07/09 | CJCA-SS007<br>CJCA-SS007-09C<br>07/07/09 | CJCA-SS008<br>CJCA-SS008-09C<br>07/07/09 | CJCA-SS009<br>CJCA-SS009-09C<br>07/07/09 |
|----------------------------------------|------------------------------------------|------------------------------|-------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Chemical Name                          |                                          |                              |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Total Metals (mg/kg)                   |                                          |                              |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Antimony                               | 0.447                                    |                              | 41                                  | 3.1                                  | 1.6 U                                    | 1.8 U                                    | 16.4 U                                   | 1.6 U                                    | 16.4 U                                   | 17.5 U                                   | 17.8 UJ                                  | 17 UJ                                    | 1.7 U                                    |
| Arsenic                                | 0.626                                    | 5.8                          | 1.6                                 | 0.39                                 | <u>0.64</u> <u>J</u>                     | 1.8 U                                    | 16.4 U                                   | <u>0.6</u> <u>J</u>                      | 16.4 U                                   | 17.5 U                                   | 17.8 U                                   | 17 U                                     | 0.25 J                                   |
| Copper                                 | 4.83                                     | 700                          | 4,100                               | 310                                  | 0.31 J                                   | 0.89 U                                   | 8.2 U                                    | 0.69 J                                   | 8.2 U                                    | 8.7 U                                    | 8.9 U                                    | 8.5 U                                    | 1.8                                      |
| Lead                                   | 12.3                                     | 270                          | 800                                 | 400                                  | 5.5                                      | 0.96                                     | 4.2 J                                    | 6                                        | 3 J                                      | 5.4 J                                    | 7.5 J                                    | 6 J                                      | 5.4                                      |
| Zinc                                   | 10.8                                     | 1,200                        | 31,000                              | 2,400                                | 2.1                                      | 1.8 U                                    | 16.4 U                                   | 2.7                                      | 16.4 U                                   | 8.2 J                                    | 7 J                                      | 17 U                                     | 3.4                                      |
| Wet Chemistry                          |                                          |                              |                                     |                                      | 4.3                                      | NA                                       | NA                                       | 41                                       | NA                                       | NA                                       | NA                                       | 3.8                                      | NA                                       |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID<br>Sample ID<br>Sample Date | Camp Lejeune<br>Background SS<br>2X Mean | NCSSLs<br>(January,<br>2010) | Adjusted<br>Industrial Soil<br>RSLs | Adjusted<br>Residential<br>Soil RSLs | CJCA-SS010<br>CJCA-SS010-09C<br>07/07/09 | CJCA-SS011<br>CJCA-SS011-09C<br>07/07/09 | CJCA-SS012<br>CJCA-SS012-09C<br>07/07/09 | CJCA-SS013<br>CJCA-SS013-09C<br>07/07/09 | CJCA-SS014<br>CJCA-SS014-09C<br>07/07/09 | CJCA-SS015<br>CJCA-SS015-09C<br>07/07/09 | CJCA-SS016<br>CJCA-SS016-09C<br>07/07/09 | CJCA-SS017<br>CJCA-SS017-09C<br>07/07/09 | CJCA-SS018<br>CJCA-SS018-09C<br>07/07/09 | CJCA-SS019<br>CJCA-SS019-09C<br>07/07/09 |
|----------------------------------------|------------------------------------------|------------------------------|-------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Chemical Name                          |                                          |                              |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Total Metals (mg/kg)                   |                                          |                              |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Antimony                               | 0.447                                    |                              | 41                                  | 3.1                                  | 1.7 U                                    | 1.9 UJ                                   | 1.7 U                                    | 17.1 U                                   | 1.7 U                                    | 1.6 U                                    | 1.6 U                                    | 1.6 UJ                                   | 1.6 UJ                                   | 1.6 UJ                                   |
| Arsenic                                | 0.626                                    | 5.8                          | 1.6                                 | 0.39                                 | 1.7 U                                    | <u>0.44</u> <u>J</u>                     | <u>0.45</u> <u>J</u>                     | 17.1 U                                   | 0.34 J                                   | 1.6 U                                    | <u>0.4</u> <u>J</u>                      | <u>0.62</u> <u>J</u>                     | <u>0.67</u> <u>J</u>                     | 0.26 J                                   |
| Copper                                 | 4.83                                     | 700                          | 4,100                               | 310                                  | 0.83 U                                   | 0.99 J                                   | 0.5 J                                    | 8.5 U                                    | 0.26 J                                   | 1.8                                      | 1.3                                      | 0.79 J                                   | 0.94 J                                   | 0.95 J                                   |
| Lead                                   | 12.3                                     | 270                          | 800                                 | 400                                  | 0.54 J                                   | 9.5                                      | 3.9                                      | 6 J                                      | 3.8                                      | 4.1                                      | 6.4                                      | 4.7                                      | 3.2                                      | 5.9                                      |
| Zinc                                   | 10.8                                     | 1,200                        | 31,000                              | 2,400                                | 1.7 U                                    | 3.4 J                                    | 2.9                                      | 17.1 U                                   | 4.9                                      | 4.1                                      | 2.8                                      | 1.9 J                                    | 3.7 J                                    | 2.6 J                                    |
| Wet Chemistry                          |                                          |                              |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| рН                                     |                                          |                              |                                     |                                      | NA                                       | 4.9                                      | NA                                       | NA                                       | NA                                       | 4.4                                      | NA                                       | NA                                       | NA                                       | 6.9                                      |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs    | Adjusted        | Adjusted    | CJCA-SS020           | CJC/           | A-SS021         | CJCA-SS022           | CJCA-SS023     | CJCA-SS024     | CJCA-SS025          | CJCA-SS026           | CJCA-SS027           |
|----------------------|---------------|-----------|-----------------|-------------|----------------------|----------------|-----------------|----------------------|----------------|----------------|---------------------|----------------------|----------------------|
| Sample ID            | Background SS | (January, | Industrial Soil | Residential | CJCA-SS020-09C       | CJCA-SS021-09C | CJCA-SS021D-09C | CJCA-SS022-09C       | CJCA-SS023-09C | CJCA-SS024-09C | CJCA-SS025-09C      | CJCA-SS026-09C       | CJCA-SS027-09C       |
| Sample Date          | 2X Mean       | 2010)     | RSLs            | Soil RSLs   | 07/07/09             | 07/07/09       | 07/07/09        | 07/07/09             | 07/07/09       | 07/08/09       | 07/07/09            | 07/07/09             | 07/08/09             |
| Chemical Name        |               |           |                 |             |                      |                |                 |                      |                |                |                     |                      |                      |
|                      |               |           |                 |             |                      |                |                 |                      |                |                |                     |                      |                      |
| Total Metals (mg/kg) |               |           |                 |             |                      |                |                 |                      |                |                |                     |                      |                      |
| Antimony             | 0.447         |           | 41              | 3.1         | 1.6 UJ               | 1.6 UJ         | 1.6 U           | 1.6 U                | 16.9 U         | 1.6 U          | 1.6 U               | 1.6 U                | 1.6 U                |
| Arsenic              | 0.626         | 5.8       | 1.6             | 0.39        | <u>0.53</u> <u>J</u> | 0.22 J         | 0.29 J          | <u>0.68</u> <u>J</u> | 16.9 U         | 0.29 J         | <u>0.5</u> <u>J</u> | <u>0.42</u> <u>J</u> | <u>0.64</u> <u>J</u> |
| Copper               | 4.83          | 700       | 4,100           | 310         | 1.2 J                | 1.2 J          | 1.2 J           | 0.83 J               | 8.5 U          | 1.4 J          | 2.7                 | 0.83 J               | 0.51 J               |
| Lead                 | 12.3          | 270       | 800             | 400         | 5.4                  | 11.1           | 11.8            | 6.4                  | 3.8 J          | 3.9            | 8.3                 | 5.4                  | 5.2                  |
| Zinc                 | 10.8          | 1,200     | 31,000          | 2,400       | 5.7                  | 7.7            | 7               | 2.4 J                | 16.9 U         | 5.6            | 17.6                | 4.3                  | 8.6                  |
|                      |               |           |                 |             |                      |                |                 |                      |                |                |                     |                      |                      |
| Wet Chemistry        |               |           |                 |             |                      |                |                 |                      |                |                |                     | ·                    |                      |
| рН                   |               |           |                 |             | NA                   | NA             | NA              | NA                   | NA             | 5.4            | NA                  | NA                   | NA                   |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID<br>Sample ID<br>Sample Date | Camp Lejeune<br>Background SS<br>2X Mean | NCSSLs<br>(January,<br>2010) | Adjusted<br>Industrial Soil<br>RSLs | Adjusted<br>Residential<br>Soil RSLs | CJCA-SS028<br>CJCA-SS028-09C<br>07/07/09 | CJCA-SS029<br>CJCA-SS029-09C<br>07/07/09 | CJCA-SS030<br>CJCA-SS030-09C<br>07/07/09 | CJCA-SS031<br>CJCA-SS031-09C<br>07/07/09 | CJCA-SS032<br>CJCA-SS032-09C<br>07/08/09 | CJCA-SS033<br>CJCA-SS033-09C<br>07/08/09 | CJCA-SS034<br>CJCA-SS034-09C<br>07/08/09 | CJCA-SS035<br>CJCA-SS035-09C<br>07/08/09 |
|----------------------------------------|------------------------------------------|------------------------------|-------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Chemical Name                          |                                          |                              |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Total Metals (mg/kg)                   |                                          |                              |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Antimony                               | 0.447                                    |                              | 41                                  | 3.1                                  | 1.7 U                                    | 1.6 UJ                                   | 1.6 U                                    | 1.5 U                                    | 1.6 U                                    | 1.8 U                                    | 1.6 U                                    | 1.5 U                                    |
| Arsenic                                | 0.626                                    | 5.8                          | 1.6                                 | 0.39                                 | 0.33 J                                   | 1.6 U                                    | <u>0.43</u> <u>J</u>                     | 0.38 J                                   | 0.39 J                                   | <u>2.8</u>                               | <u>0.7</u> <u>J</u>                      | 0.36 J                                   |
| Copper                                 | 4.83                                     | 700                          | 4,100                               | 310                                  | 1.5 J                                    | 0.69 J                                   | 2.2                                      | 2.3                                      | 1.6 J                                    | 26.1                                     | 1.2 J                                    | 2.8                                      |
| Lead                                   | 12.3                                     | 270                          | 800                                 | 400                                  | 9.7                                      | 5.3                                      | 10.1                                     | 10.2                                     | 18.1                                     | 115                                      | 5.8                                      | 41                                       |
| Zinc                                   | 10.8                                     | 1,200                        | 31,000                              | 2,400                                | 10.2                                     | 1.9 J                                    | 33                                       | 6.8                                      | 14.9                                     | 42.8                                     | 4.6                                      | 3.2 J                                    |
|                                        |                                          |                              |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Wet Chemistry                          |                                          |                              |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| рН                                     |                                          |                              |                                     |                                      | 7.8                                      | NA                                       | NA                                       | NA                                       | 7                                        | NA                                       | NA                                       | NA                                       |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID<br>Sample ID | Camp Lejeune<br>Background SS | NCSSLs<br>(January, | Adjusted<br>Industrial Soil | Adjusted<br>Residential | CJCA-SS036<br>CJCA-SS036-09C | CJCA-SS037<br>CJCA-SS037-09C | CJCA-SS038<br>CJCA-SS038-09C | CJCA-SS039<br>CJCA-SS039-09C | CJCA-SS040<br>CJCA-SS040-09C | CJCA<br>CJCA-SS041-09C | A-SS041<br>CJCA-SS041D-09C | CJCA-SS042<br>CJCA-SS042-09C | CJCA-SS043<br>CJCA-SS043-09C | CJCA-SS044<br>CJCA-SS044-09C |
|-------------------------|-------------------------------|---------------------|-----------------------------|-------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------|----------------------------|------------------------------|------------------------------|------------------------------|
| Sample Date             | 2X Mean                       | 2010)               | RSLs                        | Soil RSLs               | 07/08/09                     | 07/08/09                     | 07/08/09                     | 07/08/09                     | 07/08/09                     | 07/08/09               | 07/08/09                   | 07/08/09                     | 07/08/09                     | 07/08/09                     |
| Chemical Name           |                               |                     |                             |                         |                              |                              |                              |                              |                              |                        |                            |                              |                              |                              |
| Total Metals (mg/kg)    |                               |                     |                             |                         |                              |                              |                              |                              |                              |                        |                            |                              |                              |                              |
| Antimony                | 0.447                         |                     | 41                          | 3.1                     | 1.5 U                        | 1.7 U                        | 1.8 U                        | 1.6 U                        | 1.6 U                        | 1.6 UJ                 | 1.6 UJ                     | 1.7 UJ                       | 1.7 U                        | 1.6 U                        |
| Arsenic                 | 0.626                         | 5.8                 | 1.6                         | 0.39                    | <u>0.56</u> <u>J</u>         | <u>1.4</u> <u>J</u>          | <u>2.4</u>                   | <u>0.78</u> <u>J</u>         | <u>1.1</u> <u>J</u>          | <u>0.63</u> <u>J</u>   | <u>0.62</u> <u>J</u>       | <u>1.2</u> <u>J</u>          | <u>1.9</u>                   | <u>1.4</u> <u>J</u>          |
| Copper                  | 4.83                          | 700                 | 4,100                       | 310                     | 0.62 J                       | 8.4                          | 7.2                          | 1.6 J                        | 1.5 J                        | 4.1                    | 4.7                        | 4.7                          | 4.8                          | 2.6                          |
| Lead                    | 12.3                          | 270                 | 800                         | 400                     | 4.4                          | 6.4                          | 18.3                         | 5.3                          | 10.5                         | 8.1                    | 10.5                       | 13                           | 16.2                         | 10.2                         |
| Zinc                    | 10.8                          | 1,200               | 31,000                      | 2,400                   | 2.1 J                        | 17                           | 20.3                         | 4.7                          | 16.3                         | 117                    | 108                        | 19.1                         | 31.4                         | 15.3                         |
| Wet Chemistry           |                               |                     |                             |                         |                              |                              |                              |                              |                              |                        |                            |                              |                              |                              |
| рН                      |                               |                     |                             |                         | NA                           | NA                           | 5.9                          | NA                           | NA                           | NA                     | NA                         | NA                           | NA                           | 7.9                          |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs    | Adjusted        | Adjusted    | CJCA-SS045            | CJCA                | -SS046              | CJCA-SS047           | CJCA-SS048     | CJCA-SS049          | CJCA-SS050           | CJCA-SS051     | CJCA-SS052          |
|----------------------|---------------|-----------|-----------------|-------------|-----------------------|---------------------|---------------------|----------------------|----------------|---------------------|----------------------|----------------|---------------------|
| Sample ID            | Background SS | (January, | Industrial Soil | Residential | CJCA-SS045-09C        | CJCA-SS046-09C      | CJCA-SS046D-09C     | CJCA-SS047-09C       | CJCA-SS048-09C | CJCA-SS049-09C      | CJCA-SS050-09C       | CJCA-SS051-09C | CJCA-SS052-09C      |
| Sample Date          | 2X Mean       | 2010)     | RSLs            | Soil RSLs   | 07/09/09              | 07/08/09            | 07/08/09            | 07/08/09             | 07/08/09       | 07/08/09            | 07/08/09             | 07/08/09       | 07/08/09            |
| Chemical Name        |               |           |                 |             |                       |                     |                     |                      |                |                     |                      |                |                     |
|                      |               |           |                 |             |                       |                     |                     |                      |                |                     |                      |                |                     |
| Total Metals (mg/kg) |               |           |                 |             |                       |                     |                     |                      |                |                     |                      |                |                     |
| Antimony             | 0.447         |           | 41              | 3.1         | 1.6 U                 | 0.26 J              | 0.4 J               | 1.6 U                | 1.6 UJ         | 1.6 U               | 1.7 UJ               | 1.7 U          | 1.8 U               |
| Arsenic              | 0.626         | 5.8       | 1.6             | 0.39        | <u>0.94</u> <u>J+</u> | <u>1.2</u> <u>J</u> | <u>1.2</u> <u>J</u> | <u>0.98</u> <u>J</u> | 0.33 J         | <u>1.1</u> <u>J</u> | <u>0.74</u> <u>J</u> | 1.7 U          | <u>1.8</u> <u>J</u> |
| Copper               | 4.83          | 700       | 4,100           | 310         | 0.86 J                | 2.5                 | 2.3                 | 0.81 J               | 2.2            | 0.66 J              | 1 J                  | 1.7 U          | 0.6 J               |
| Lead                 | 12.3          | 270       | 800             | 400         | 8.5                   | 4.5                 | 4.4                 | 5                    | 13             | 7.7                 | 7.4                  | 0.74 J         | 6.5                 |
| Zinc                 | 10.8          | 1,200     | 31,000          | 2,400       | 5.1                   | 8.2                 | 10.4                | 3.3 J                | 49             | 2.3 J               | 6.7                  | 0.86 J         | 3.1 J               |
|                      |               |           |                 |             |                       |                     |                     |                      |                |                     |                      |                |                     |
| Wet Chemistry        |               |           |                 |             |                       |                     |                     |                      |                |                     |                      |                |                     |
| рН                   |               |           |                 |             | NA                    | NA                  | NA                  | NA                   | 5              | NA                  | NA                   | NA             | 5.1                 |

## Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs    | Adjusted        | Adjusted    | CJCA                | -SS053              | CJCA           | -SS054          | CJCA-SS055           | CJCA                | N-SS056         | CJCA-SS057          | CJCA-SS058          |
|----------------------|---------------|-----------|-----------------|-------------|---------------------|---------------------|----------------|-----------------|----------------------|---------------------|-----------------|---------------------|---------------------|
| Sample ID            | Background SS | (January, | Industrial Soil | Residential | CJCA-SS053-09C      | CJCA-SS053D-09C     | CJCA-SS054-09C | CJCA-SS054D-09C | CJCA-SS055-09C       | CJCA-SS056-09C      | CJCA-SS056D-09C | CJCA-SS057-09C      | CJCA-SS058-09C      |
| Sample Date          | 2X Mean       | 2010)     | RSLs            | Soil RSLs   | 07/08/09            | 07/08/09            | 07/08/09       | 07/08/09        | 07/07/09             | 07/07/09            | 07/07/09        | 07/07/09            | 07/07/09            |
| Chemical Name        |               |           |                 |             |                     |                     |                |                 |                      |                     |                 |                     |                     |
| Total Metals (mg/kg) |               |           |                 |             |                     |                     |                |                 |                      |                     |                 |                     |                     |
| Antimony             | 0.447         |           | 41              | 3.1         | 1.8 U               | 1.8 U               | 1.6 U          | 1.6 U           | 1.7 U                | 1.7 UJ              | 1.7 UJ          | 1.7 U               | 1.7 UJ              |
| Arsenic              | 0.626         | 5.8       | 1.6             | 0.39        | <u>1.1</u> <u>J</u> | <u>1.3</u> <u>J</u> | <u>2.7</u>     | <u>1.8</u>      | <u>0.48</u> <u>J</u> | <u>1.4</u> <u>J</u> | <u>1.8</u>      | <u>1.2</u> <u>J</u> | <u>1.1</u> <u>J</u> |
| Copper               | 4.83          | 700       | 4,100           | 310         | 0.84 J              | 1.1 J               | 1.3 J          | 1.2 J           | 0.52 J               | 1.4 J               | 1.4 J           | 1.7                 | 1.7 J               |
| Lead                 | 12.3          | 270       | 800             | 400         | 6.6                 | 7.6                 | 5.3            | 5               | 4.3                  | 11.6                | 12.2            | 14.4                | 12.1                |
| Zinc                 | 10.8          | 1,200     | 31,000          | 2,400       | 3.5 J               | 4.3 J               | 3.3 J          | 3.3 J           | 1.3 J                | 4.6                 | 4.5             | 7.7                 | 4.5                 |
| Wet Chemistry        |               |           |                 |             |                     |                     |                |                 |                      |                     |                 |                     |                     |
| рН                   |               |           |                 |             | NA                  | NA                  | NA             | NA              | NA                   | NA                  | NA              | NA                  | 4.6                 |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

ph - pH units

Created by: B. Propst/CLT Checked by: K. Howell/CLT

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID<br>Sample ID | Camp Lejeune<br>Background SS | NCSSLs<br>(January, | Adjusted<br>Industrial Soil | Adjusted<br>Residential | CJCA-SS059<br>CJCA-SS059-09C | CJCA-SS060<br>CJCA-SS060-09C | CJCA-SS061<br>CJCA-SS061-09C | CJCA-SS062<br>CJCA-SS062-09C | CJCA-SS063<br>CJCA-SS063-09C | CJCA-SS064<br>CJCA-SS064-09C | CJCA-SS065<br>CJCA-SS065-09C | CJCA-SS066<br>CJCA-SS066-09C | CJCA-SS067<br>CJCA-SS067-09C | CJCA-SS068<br>CJCA-SS068-09C |
|-------------------------|-------------------------------|---------------------|-----------------------------|-------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Sample Date             | 2X Mean                       | 2010)               | RSLs                        | Soil RSLs               | 07/07/09                     | 07/07/09                     | 07/08/09                     | 07/09/09                     | 07/09/09                     | 07/09/09                     | 07/09/09                     | 07/09/09                     | 07/09/09                     | 07/09/09                     |
| Chemical Name           |                               |                     |                             |                         |                              |                              |                              |                              |                              |                              |                              |                              |                              |                              |
| Total Metals (mg/kg)    |                               |                     |                             |                         |                              |                              |                              |                              |                              |                              |                              |                              |                              |                              |
| Antimony                | 0.447                         |                     | 41                          | 3.1                     | 1.6 UJ                       | 1.6 UJ                       | 0.21 J-                      | 0.22 J-                      | 1.7 UJ                       | 1.8 U                        | 1.7 UJ                       | 1.6 U                        | 1.7 U                        | 1.6 U                        |
| Arsenic                 | 0.626                         | 5.8                 | 1.6                         | 0.39                    | <u>1.7</u>                   | <u>1.1</u> <u>J</u>          | <u>1.3</u> <u>J</u>          | <u>1.1</u> <u>J+</u>         | <u>1.3</u> <u>J+</u>         | <u>0.7</u> <u>J+</u>         | <u>1.1</u> <u>J+</u>         | <u>1.5</u> <u>J+</u>         | <u>2.6</u> <u>J+</u>         | <u>1.8</u> <u>J+</u>         |
| Copper                  | 4.83                          | 700                 | 4,100                       | 310                     | 2                            | 0.76 J                       | 1.3 J                        | 1.2 J                        | 1.7 J                        | 0.6 J                        | 1.4 J                        | 0.67 J                       | 0.62 J                       | 1.2 J                        |
| Lead                    | 12.3                          | 270                 | 800                         | 400                     | 10.9                         | 5.8                          | 4.2                          | 3.9                          | 6.4                          | 4.8                          | 11.5                         | 6.7                          | 5.5                          | 6.6                          |
| Zinc                    | 10.8                          | 1,200               | 31,000                      | 2,400                   | 6.2                          | 1.5 J                        | 25.2                         | 4.9                          | 5.2                          | 9.3                          | 5.6                          | 2.2 J                        | 2.7 J                        | 3.6 J                        |
| Wet Chemistry           |                               |                     |                             |                         |                              |                              |                              |                              |                              |                              |                              |                              |                              |                              |
| <b> </b> pH             |                               |                     |                             |                         | NA                           | NA                           | NA                           | NA                           | 4.4                          | NA                           | NA                           | 4.6                          | NA                           | 4.6                          |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs    | Adjusted        | Adjusted    | CJCA-SS069            | CJCA              | A-SS070              | CJCA-SS071     | CJCA-SS072     | CJCA-SS073           | CJCA-SS074     | CJCA-SS075           | CJCA-SS076           | CJCA-SS077     |
|----------------------|---------------|-----------|-----------------|-------------|-----------------------|-------------------|----------------------|----------------|----------------|----------------------|----------------|----------------------|----------------------|----------------|
| Sample ID            | Background SS | (January, | Industrial Soil | Residential | CJCA-SS069-09C        | CJCA-SS070-09C    | CJCA-SS070D-09C      | CJCA-SS071-09C | CJCA-SS072-09C | CJCA-SS073-09C       | CJCA-SS074-09C | CJCA-SS075-09C       | CJCA-SS076-09C       | CJCA-SS077-09C |
| Sample Date          | 2X Mean       | 2010)     | RSLs            | Soil RSLs   | 07/09/09              | 07/08/09          | 07/08/09             | 07/08/09       | 07/08/09       | 07/08/09             | 07/09/09       | 07/09/09             | 07/08/09             | 07/09/09       |
| Chemical Name        |               |           |                 |             |                       |                   |                      |                |                |                      |                |                      |                      |                |
| Total Metals (mg/kg) |               |           |                 |             |                       |                   |                      |                |                |                      |                |                      |                      |                |
| Antimony             | 0.447         |           | 41              | 3.1         | 1.6 U                 | 1.7 UJ            | 1.7 UJ               | 1.7 UJ         | 1.7 UJ         | 1.8 U                | 0.24 J-        | 0.18 J-              | 1.7 U                | 1.6 UJ         |
| Arsenic              | 0.626         | 5.8       | 1.6             | 0.39        | <u>0.76</u> <u>J+</u> | <u>1</u> <u>J</u> | <u>0.98</u> <u>J</u> | <u>1.7 J</u>   | <u>6.7</u>     | <u>0.88</u> <u>J</u> | 0.94 J+        | <u>0.5</u> <u>J+</u> | <u>0.42</u> <u>J</u> | 0.39 J+        |
| Copper               | 4.83          | 700       | 4,100           | 310         | 0.44 J                | 0.54 J            | 0.62 J               | 0.79 J         | 2              | 0.61 J               | 0.76 J         | 0.62 J               | 0.37 J               | 0.26 J         |
| Lead                 | 12.3          | 270       | 800             | 400         | 5.6                   | 6.3               | 7.3                  | 7.3            | 9              | 5.1                  | 6.2            | 3.8                  | 2.5                  | 3.9            |
| Zinc                 | 10.8          | 1,200     | 31,000          | 2,400       | 6.7                   | 4.2 U             | 4.2 U                | 4.2 U          | 5.6            | 1.8 J                | 3.2 J          | 2 J                  | 2.4 J                | 1.1 J          |
| Wet Chemistry        |               |           |                 |             |                       |                   |                      |                |                |                      |                |                      |                      |                |
| <b>I</b> pH          |               |           |                 |             | NA                    | NA                | NA                   | NA             | NA             | NA                   | 4.9            | NA                   | NA                   | NA             |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs    | Adjusted        | Adjusted    | CJCA-SS078           | CJCA-SS079           | CJCA                 | -SS080                | CJCA-SS081           | CJCA-SS082        | CJCA-SS083           | CJCA-SS084         | CJCA-SS085           | CJCA-SS086           |
|----------------------|---------------|-----------|-----------------|-------------|----------------------|----------------------|----------------------|-----------------------|----------------------|-------------------|----------------------|--------------------|----------------------|----------------------|
| Sample ID            | Background SS | (January, | Industrial Soil | Residential | CJCA-SS078-09C       | CJCA-SS079-09C       | CJCA-SS080-09C       | CJCA-SS080D-09C       | CJCA-SS081-09C       | CJCA-SS082-09C    | CJCA-SS083-09C       | CJCA-SS084-09C     | CJCA-SS085-09C       | CJCA-SS086-09C       |
| Sample Date          | 2X Mean       | 2010)     | RSLs            | Soil RSLs   | 07/09/09             | 07/08/09             | 07/09/09             | 07/09/09              | 07/09/09             | 07/08/09          | 07/09/09             | 07/09/09           | 07/07/09             | 07/07/09             |
| Chemical Name        |               |           |                 |             |                      |                      |                      |                       |                      |                   |                      |                    |                      |                      |
|                      |               |           |                 |             |                      |                      |                      |                       |                      |                   |                      |                    |                      |                      |
| Total Metals (mg/kg) |               |           |                 |             |                      |                      |                      |                       |                      |                   |                      |                    |                      |                      |
| Antimony             | 0.447         |           | 41              | 3.1         | 1.7 UJ               | 1.8 UJ               | 1.7 UJ               | 1.6 UJ                | 1.8 UJ               | 1.6 UJ            | 1.6 UJ               | 0.22 J-            | 1.7 U                | 1.7 UJ               |
| Arsenic              | 0.626         | 5.8       | 1.6             | 0.39        | <u>1.6</u> <u>J+</u> | <u>0.76</u> <u>J</u> | <u>1.1</u> <u>J+</u> | <u>0.93</u> <u>J+</u> | <u>1.3</u> <u>J+</u> | <u>1</u> <u>J</u> | <u>1.1</u> <u>J+</u> | <u>1</u> <u>J+</u> | <u>0.95</u> <u>J</u> | <u>0.86</u> <u>J</u> |
| Copper               | 4.83          | 700       | 4,100           | 310         | 0.98 J               | 0.51 J               | 0.72 J               | 0.69 J                | 1.6 J                | 0.56 J            | 0.73 J               | 0.71 J             | 0.36 J               | 0.57 J               |
| Lead                 | 12.3          | 270       | 800             | 400         | 7.7                  | 4.6                  | 5.8                  | 5.9                   | 10.3                 | 5.7               | 7.7                  | 7.5                | 7.1                  | 6.1                  |
| Zinc                 | 10.8          | 1,200     | 31,000          | 2,400       | 2.6 J                | 4.5 U                | 1.9 J                | 1.6 J                 | 4.8                  | 3.9 U             | 2.6 J                | 1.5 J              | 1.6 J                | 1.5 J                |
| Wet Chemistry        |               |           |                 |             |                      |                      |                      |                       |                      |                   |                      |                    |                      |                      |
| рН                   |               | -         |                 |             | NA                   | NA                   | NA                   | NA                    | NA                   | NA                | 4.5                  | NA                 | NA                   | 4.1                  |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs    | Adjusted        | Adjusted    | CJCA-SS087           | CJCA-SS088           | CJCA-SS089          | CJCA-SS090          | CJCA-SS091           | CJCA-                | SS092                | CJCA-SS093     | CJCA-SS094           | CJCA-SS095        |
|----------------------|---------------|-----------|-----------------|-------------|----------------------|----------------------|---------------------|---------------------|----------------------|----------------------|----------------------|----------------|----------------------|-------------------|
| Sample ID            | Background SS | (January, | Industrial Soil | Residential | CJCA-SS087-09C       | CJCA-SS088-09C       | CJCA-SS089-09C      | CJCA-SS090-09C      | CJCA-SS091-09C       | CJCA-SS092-09C       | CJCA-SS092D-09C      | CJCA-SS093-09C | CJCA-SS094-09C       | CJCA-SS095-09C    |
| Sample Date          | 2X Mean       | 2010)     | RSLs            | Soil RSLs   | 07/07/09             | 07/07/09             | 07/07/09            | 07/07/09            | 07/07/09             | 07/07/09             | 07/07/09             | 07/07/09       | 07/07/09             | 07/07/09          |
| Chemical Name        |               |           |                 |             |                      |                      |                     |                     |                      |                      |                      |                |                      |                   |
| Total Metals (mg/kg) |               |           |                 |             |                      |                      |                     |                     |                      |                      |                      |                |                      |                   |
| Antimony             | 0.447         |           | 41              | 3.1         | 1.6 UJ               | 1.7 U                | 1.7 UJ              | 1.8 UJ              | 1.6 UJ               | 1.6 U                | 1.7 UJ               | 1.7 UJ         | 1.7 UJ               | 1.7 U             |
| Arsenic              | 0.626         | 5.8       | 1.6             | 0.39        | <u>0.97</u> <u>J</u> | <u>0.89</u> <u>J</u> | <u>1.1</u> <u>J</u> | <u>1.5</u> <u>J</u> | <u>0.91</u> <u>J</u> | <u>0.83</u> <u>J</u> | <u>0.84</u> <u>J</u> | <u>2.1</u>     | <u>0.95</u> <u>J</u> | <u>1</u> <u>J</u> |
| Copper               | 4.83          | 700       | 4,100           | 310         | 1 J                  | 1.4 J                | 0.83 J              | 0.93 J              | 0.38 J               | 0.57 J               | 0.63 J               | 3.2            | 1.1                  | 0.6 J             |
| Lead                 | 12.3          | 270       | 800             | 400         | 7                    | 6.3                  | 6.8                 | 7.2                 | 5                    | 9.8                  | 8.1                  | 9.6            | 6.6                  | 6.6               |
| Zinc                 | 10.8          | 1,200     | 31,000          | 2,400       | 1.2 J                | 3.1 J                | 2.1 J               | 2.4 J               | 1.9                  | 1.8 J                | 1.8 J                | 21.2           | 2.6                  | 2                 |
| Wet Chemistry        |               |           |                 |             |                      |                      |                     |                     |                      |                      |                      |                |                      |                   |
| pН                   |               |           |                 |             | NA                   | NA                   | NA                  | NA                  | NA                   | 4.3                  | 4.3                  | NA             | NA                   | NA                |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID<br>Sample ID<br>Sample Date | Camp Lejeune<br>Background SS<br>2X Mean | NCSSLs<br>(January,<br>2010) | Adjusted<br>Industrial Soil<br>RSLs | Adjusted<br>Residential<br>Soil RSLs | CJCA-SS096<br>CJCA-SS096-09C<br>07/07/09 | CJCA-SS097<br>CJCA-SS097-09C<br>07/07/09 | CJCA-SS098<br>CJCA-SS098-09C<br>07/07/09 | CJCA-SS099<br>CJCA-SS099-09C<br>07/07/09 | CJCA-SS100<br>CJCA-SS100-09C<br>07/09/09 | CJCA-SS101<br>CJCA-SS101-09C<br>07/09/09 | CJCA-SS102<br>CJCA-SS102-09C<br>07/09/09 | CJCA-SS103<br>CJCA-SS103-09C<br>07/09/09 | CJCA-SS104<br>CJCA-SS104-09C<br>07/09/09 |
|----------------------------------------|------------------------------------------|------------------------------|-------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Chemical Name                          |                                          |                              |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Total Metals (mg/kg)                   |                                          |                              |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Antimony                               | 0.447                                    |                              | 41                                  | 3.1                                  | 1.7 UJ                                   | 1.7 UJ                                   | 1.6 UJ                                   | 1.6 UJ                                   | 1.6 UJ                                   | 1.6 U                                    | 1.6 U                                    | 1.7 UJ                                   | 1.6 U                                    |
| Arsenic                                | 0.626                                    | 5.8                          | 1.6                                 | 0.39                                 | <u>0.9</u> <u>J</u>                      | <u>2</u>                                 | <u>0.67</u> <u>J</u>                     | <u>1.5</u> <u>J</u>                      | <u>1.1</u> <u>J+</u>                     | <u>1</u> <u>J</u>                        | <u>1.1</u> <u>J</u>                      | <u>1.3</u> <u>J+</u>                     | <u>1.6</u> <u>J</u>                      |
| Copper                                 | 4.83                                     | 700                          | 4,100                               | 310                                  | 0.82 J                                   | 5.6                                      | 0.67 J                                   | 0.71 J                                   | 0.47 J                                   | 0.55 J                                   | 0.55 J                                   | 0.93 J                                   | 1.3 J                                    |
| Lead                                   | 12.3                                     | 270                          | 800                                 | 400                                  | 5.7                                      | 18                                       | 4.4                                      | 8                                        | 6.7                                      | 9.1                                      | 6.2                                      | 9.8                                      | 10.6                                     |
| Zinc                                   | 10.8                                     | 1,200                        | 31,000                              | 2,400                                | 2.4                                      | 6.1                                      | 1.7 J                                    | 2.6 J                                    | 1.9 J                                    | 2.5 J                                    | 2.2 J                                    | 2.4 J                                    | 4.4                                      |
| Wet Chemistry                          |                                          |                              |                                     |                                      | NA                                       |                                          | NA                                       | NA                                       | 4.4                                      | NA                                       | NA                                       | 4                                        | NA                                       |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs    | Adjusted        | Adjusted    | CJCA                 | -SS105               | CJCA-SS106           | CJCA-SS107           | CJCA-SS108           | CJCA-SS109     |
|----------------------|---------------|-----------|-----------------|-------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------|
| Sample ID            | Background SS | (January, | Industrial Soil | Residential | CJCA-SS105-09C       | CJCA-SS105D-09C      | CJCA-SS106-09C       | CJCA-SS107-09C       | CJCA-SS108-09C       | CJCA-SS109-09C |
| Sample Date          | 2X Mean       | 2010)     | RSLs            | Soil RSLs   | 07/09/09             | 07/09/09             | 07/09/09             | 07/09/09             | 07/09/09             | 07/09/09       |
| Chemical Name        |               |           |                 |             |                      |                      |                      |                      |                      |                |
|                      |               |           |                 |             |                      |                      |                      |                      |                      |                |
| Total Metals (mg/kg) |               |           |                 |             |                      |                      |                      |                      |                      |                |
| Antimony             | 0.447         |           | 41              | 3.1         | 1.7 UJ               | 1.7 UJ               | 1.6 U                | 1.7 U                | 1.6 U                | 1.6 U          |
| Arsenic              | 0.626         | 5.8       | 1.6             | 0.39        | <u>1.8</u> <u>J+</u> | <u>1.5</u> <u>J+</u> | <u>1.7</u> <u>J+</u> | <u>1.2</u> <u>J+</u> | <u>1.3</u> <u>J+</u> | 0.35 J+        |
| Copper               | 4.83          | 700       | 4,100           | 310         | 7.8                  | 4.8                  | 0.95 J               | 0.96 J               | 0.8 J                | 0.43 J         |
| Lead                 | 12.3          | 270       | 800             | 400         | 6.6                  | 6.4                  | 7.1                  | 8.2                  | 5.6                  | 2.9            |
| Zinc                 | 10.8          | 1,200     | 31,000          | 2,400       | 17.8                 | 10.8                 | 2.5 J                | 2 J                  | 2.7 J                | 1.6 J          |
|                      |               |           |                 |             |                      |                      |                      |                      |                      |                |
| Wet Chemistry        |               |           |                 |             |                      |                      |                      |                      |                      |                |
| рН                   |               | -         |                 |             | NA                   | NA                   | 4.4                  | NA                   | NA                   | NA             |

Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

# Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs          | Adjusted   | Adjusted    | CJCA-SS110           | CJCA-SS111           | CJCA-SS112     | CJCA-SS113           | CJCA-SS114          | CJCA-SS115           | CJCA-SS116          | CJCA-SS117          | CJCA-SS118            | CJCA-SS119     | CJCA-SS120     | CJCA-SS121          |
|----------------------|---------------|-----------------|------------|-------------|----------------------|----------------------|----------------|----------------------|---------------------|----------------------|---------------------|---------------------|-----------------------|----------------|----------------|---------------------|
| Sample ID            | Background SS | (January, 2010) | Industrial | Residential | CJCA-SS110-09C       | CJCA-SS111-09C       | CJCA-SS112-09C | CJCA-SS113-09C       | CJCA-SS114-09C      | CJCA-SS115-09C       | CJCA-SS116-09C      | CJCA-SS117-09C      | CJCA-SS118-09C        | CJCA-SS119-09C | CJCA-SS120-09C | CJCA-SS121-09C      |
| Sample Date          | 2X Mean       | (bandary, 2010) | Soil RSLs  | Soil RSLs   | 07/08/09             | 07/08/09             | 07/09/09       | 07/08/09             | 07/08/09            | 07/09/09             | 07/08/09            | 07/08/09            | 07/09/09              | 07/08/09       | 07/08/09       | 07/08/09            |
| Chemical Name        |               |                 |            |             |                      |                      |                |                      |                     |                      |                     |                     |                       |                |                |                     |
| Total Metals (mg/kg) |               |                 |            |             |                      |                      |                |                      |                     |                      |                     |                     |                       |                |                |                     |
| Antimony             | 0.447         |                 | 41         | 3.1         | 1.6 UJ               | 1.6 UJ               | 1.7 U          | 1.7 UJ               | 1.7 UJ              | 0.2 J-               | 1.6 U               | 1.8 U               | 1.6 UJ                | 1.8 U          | 1.6 U          | 1.6 U               |
| Arsenic              | 0.626         | 5.8             | 1.6        | 0.39        | <u>0.53</u> <u>J</u> | <u>0.41</u> <u>J</u> | 0.86 J+        | <u>0.54</u> <u>J</u> | <u>1.5</u> <u>J</u> | <u>1.1</u> <u>J+</u> | <u>1.6</u> <u>J</u> | <u>1.4</u> <u>J</u> | <u>0.96</u> <u>J+</u> | <u>1.9</u>     | <u>3.7</u>     | <u>0.9</u> <u>J</u> |
| Copper               | 4.83          | 700             | 4,100      | 310         | 0.74 J               | 0.57 J               | 0.64 J         | 0.48 J               | 0.76 J              | 1.5 J                | 1.1 J               | 0.37 J              | 0.45 J                | 0.69 J         | 0.6 J          | 0.54 J              |
| Lead                 | 12.3          | 270             | 800        | 400         | 3.8                  | 4                    | 4.5            | 4.5                  | 7.9                 | 19.2                 | 8.7                 | 6.6                 | 5.3                   | 6              | 6              | 4.8                 |
| Zinc                 | 10.8          | 1,200           | 31,000     | 2,300       | 4 U                  | 4.1 U                | 2 J            | 4.2 U                | 4.1 U               | 3.7 J                | 2.6 J               | 1.9 J               | 2.1 J                 | 2.5 J          | 1.5 J          | 4.1 U               |
| Wet Chemistry        |               |                 |            |             |                      |                      |                |                      |                     |                      |                     |                     |                       |                |                |                     |
| pH (ph)              |               |                 |            |             | NA                   | NA                   | NA             | NA                   | NA                  | NA                   | NA                  | NA                  | NA                    | NA             | NA             | NA                  |

#### Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs          | Adjusted   | Adjusted    | CJCA-SS122           | CJCA-SS123     | CJCA-SS124           | CJCA-SS125           | CJCA-SS126           | CJCA-SS127          | CJCA-SS128     | CJCA-SS129           | CJCA           | A-SS130             | CJCA-SS131          | CJCA-SS132          |
|----------------------|---------------|-----------------|------------|-------------|----------------------|----------------|----------------------|----------------------|----------------------|---------------------|----------------|----------------------|----------------|---------------------|---------------------|---------------------|
| Sample ID            | Background SS | (January, 2010) | Industrial | Residential | CJCA-SS122-09C       | CJCA-SS123-09C | CJCA-SS124-09C       | CJCA-SS125-09C       | CJCA-SS126-09C       | CJCA-SS127-09C      | CJCA-SS128-09C | CJCA-SS129-09C       | CJCA-SS130-09C | CJCA-SS130D-09C     | CJCA-SS131-09C      | CJCA-SS132-09C      |
| Sample Date          | 2X Mean       | (January, 2010) | Soil RSLs  | Soil RSLs   | 07/08/09             | 07/08/09       | 07/08/09             | 07/08/09             | 07/08/09             | 07/09/09            | 07/08/09       | 07/09/09             | 07/08/09       | 07/08/09            | 07/08/09            | 07/08/09            |
| Chemical Name        |               |                 |            |             |                      |                |                      |                      |                      |                     |                |                      |                |                     |                     |                     |
| Total Metals (mg/kg) |               |                 |            |             |                      |                |                      |                      |                      |                     |                |                      |                |                     |                     |                     |
| Antimony             | 0.447         | -               | 41         | 3.1         | 1.7 U                | 1.7 U          | 1.7 U                | 1.6 UJ               | 1.7 UJ               | 1.6 UJ              | 1.7 U          | 1.7 UJ               | 1.6 U          | 1.7 U               | 1.7 U               | 1.7 UJ              |
| Arsenic              | 0.626         | 5.8             | 1.6        | 0.39        | <u>0.91</u> <u>J</u> | <u>2.5</u>     | <u>0.97</u> <u>J</u> | <u>0.68</u> <u>J</u> | <u>0.83</u> <u>J</u> | <u>1.2</u> <u>J</u> | <u>1.8</u>     | <u>0.89</u> <u>J</u> | <u>1.1</u> J   | <u>1.2</u> <u>J</u> | <u>1.2</u> <u>J</u> | <u>1.1</u> <u>J</u> |
| Copper               | 4.83          | 700             | 4,100      | 310         | 0.43 J               | 0.83 J         | 0.75 J               | 0.88                 | 0.77 J               | 2.6                 | 4.8            | 2.5                  | 0.91 J         | 1.2 J               | 4.9                 | 1.7                 |
| Lead                 | 12.3          | 270             | 800        | 400         | 5.9                  | 6.6            | 5.5                  | 4.8                  | 6                    | 7.8                 | 7.8            | 5.9                  | 11.4           | 12.3                | 5.2                 | 6.2                 |
| Zinc                 | 10.8          | 1,200           | 31,000     | 2,300       | 1.6 J                | 2.1 J          | 4.2 U                | 1.9                  | 2.3                  | 7.3                 | 6.4            | 7.4                  | 4.1 U          | 4.4 U               | 11.2                | 7.1                 |
|                      |               |                 |            |             |                      |                |                      |                      |                      |                     |                |                      |                |                     |                     |                     |
| Wet Chemistry        |               |                 |            |             |                      |                |                      |                      |                      |                     |                |                      |                |                     |                     |                     |
| pH (ph)              |               | -               |            |             | NA                   | NA             | NA                   | NA                   | NA                   | NA                  | NA             | NA                   | NA             | NA                  | NA                  | NA                  |

#### Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs          | Adjusted   | Adjusted    | CJCA-SS133          | CJCA-SS134          | CJCA-SS135     | CJCA-SS136     | CJCA-SS137     | CJCA                 | A-SS138              | CJCA-SS139     | CJCA                | A-SS140         | CJCA-SS141     | CJCA-SS142           |
|----------------------|---------------|-----------------|------------|-------------|---------------------|---------------------|----------------|----------------|----------------|----------------------|----------------------|----------------|---------------------|-----------------|----------------|----------------------|
| Sample ID            | Background SS | (January, 2010) | Industrial | Residential | CJCA-SS133-09C      | CJCA-SS134-09C      | CJCA-SS135-09C | CJCA-SS136-09C | CJCA-SS137-09C | CJCA-SS138-09C       | CJCA-SS138D-09C      | CJCA-SS139-09C | CJCA-SS140-09C      | CJCA-SS140D-09C | CJCA-SS141-09C | CJCA-SS142-09C       |
| Sample Date          | 2X Mean       | (January, 2010) | Soil RSLs  | Soil RSLs   | 07/08/09            | 07/08/09            | 07/09/09       | 07/09/09       | 07/09/09       | 07/09/09             | 07/09/09             | 07/09/09       | 07/09/09            | 07/09/09        | 07/08/09       | 07/09/09             |
| Chemical Name        |               |                 |            |             |                     |                     |                |                |                |                      |                      |                |                     |                 |                |                      |
|                      |               |                 |            |             |                     |                     |                |                |                |                      |                      |                |                     |                 |                |                      |
| Total Metals (mg/kg) |               |                 |            |             |                     |                     |                |                |                |                      |                      |                |                     |                 |                |                      |
| Antimony             | 0.447         |                 | 41         | 3.1         | 1.5 U               | 2.1 U               | 1.8 UJ         | 1.9 UJ         | 1.7 UJ         | 1.7 U                | 1.7 U                | 1.7 U          | 1.7 U               | 1.7 U           | 1.7 U          | 1.7 UJ               |
| Arsenic              | 0.626         | 5.8             | 1.6        | 0.39        | <u>1.3</u> <u>J</u> | <u>1.8</u> <u>J</u> | <u>2.1</u>     | <u>6.9</u>     | <u>2.1</u>     | <u>1.3</u> <u>J+</u> | <u>1.2</u> <u>J+</u> | <u>1.1 J</u>   | <u>1.5</u> <u>J</u> | <u>1.7</u>      | 1.7 U          | <u>0.93</u> <u>J</u> |
| Copper               | 4.83          | 700             | 4,100      | 310         | 1.1 J               | 1.8 J               | 1.1 J          | 1.2 J          | 1.1 J          | 0.77 J               | 0.81 J               | 0.6 J          | 2.9                 | 2.5             | 1.7 U          | 0.8 J                |
| Lead                 | 12.3          | 270             | 800        | 400         | 6.9                 | 9.2                 | 7.5            | 11.4           | 6.7            | 5.8                  | 6.3                  | 6.2            | 12.8                | 14.1            | 0.71 J         | 6.1                  |
| Zinc                 | 10.8          | 1,200           | 31,000     | 2,300       | 2.1 J               | 2.9 J               | 4.4 U          | 4.7 U          | 4.3 U          | 2.1 J                | 2.5 J                | 1.7 J          | 6.3                 | 5.4             | 4.1 U          | 4.2 U                |
| Wet Chemistry        |               |                 |            |             |                     |                     |                |                |                |                      |                      |                |                     |                 |                |                      |
| pH (ph)              |               |                 |            |             | NA                  | NA                  | NA             | 4.6            | NA             | NA                   | NA                   | NA             | NA                  | NA              | NA             | NA                   |

#### Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI MCB CamLej, North Carolina

| Station ID<br>Sample ID | Camp Lejeune<br>Background SS | NCSSLs          | Adjusted<br>Industrial | Adjusted<br>Residential | CJCA-SS143<br>CJCA-SS143-09C | CJCA-SS144<br>CJCA-SS144-09C | CJCA-SS145<br>CJCA-SS145-09C | CJCA-SS146<br>CJCA-SS146-09C | CJCA-SS147<br>CJCA-SS147-09C |                     | -SS148<br>CJCA-SS148D-09C | CJCA-SS149<br>CJCA-SS149-09C | CJCA-SS150<br>CJCA-SS150-09C | CJCA-SS151<br>CJCA-SS151-09C | CJCA-SS152<br>CJCA-SS152-09C | CJCA-SS153<br>CJCA-SS153-09C |
|-------------------------|-------------------------------|-----------------|------------------------|-------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------|---------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Sample Date             | 2X Mean                       | (January, 2010) | Soil RSLs              | Soil RSLs               | 07/09/09                     | 07/08/09                     | 07/09/09                     | 07/09/09                     | 07/09/09                     | 07/09/09            | 07/09/09                  | 07/09/09                     | 07/09/09                     | 07/09/09                     | 07/10/09                     | 07/09/09                     |
| Chemical Name           |                               |                 |                        |                         |                              |                              |                              |                              |                              |                     |                           |                              |                              |                              |                              |                              |
| Total Metals (mg/kg)    |                               |                 |                        |                         |                              |                              |                              |                              |                              |                     |                           |                              |                              |                              |                              |                              |
| Antimony                | 0.447                         |                 | 41                     | 3.1                     | 1.7 U                        | 1.6 U                        | 0.22 J                       | 1.6 U                        | 1.7 UJ                       | 1.7 UJ              | 1.7 UJ                    | 0.19 J-                      | 1.9 U                        | 1.6 UJ                       | 1.9 U                        | 0.24 J-                      |
| Arsenic                 | 0.626                         | 5.8             | 1.6                    | 0.39                    | <u>0.82</u> <u>J</u>         | <u>0.97</u> <u>J</u>         | <u>0.62</u> <u>J</u>         | <u>1.1 J</u>                 | <u>1.3</u> <u>J+</u>         | <u>1.1</u> <u>J</u> | <u>1.1</u> <u>J</u>       | <u>0.89</u> <u>J</u>         | <u>1.3 J</u>                 | <u>1</u> <u>J</u>            | <u>1.5</u> <u>J</u>          | <u>1.1</u> <u>J+</u>         |
| Copper                  | 4.83                          | 700             | 4,100                  | 310                     | 0.54 J                       | 0.78 J                       | 0.85 J                       | 1 J                          | 0.84 J                       | 0.79 J              | 1.3 J                     | 0.85 J                       | 0.93 J                       | 1.1 J                        | 1.3 J                        | 0.92 J                       |
| Lead                    | 12.3                          | 270             | 800                    | 400                     | 5.1                          | 8.3                          | 5.1                          | 5.4                          | 5.2                          | 6                   | 6.3                       | 9                            | 11.5                         | 5.9                          | 14.3                         | 28.3                         |
| Zinc                    | 10.8                          | 1,200           | 31,000                 | 2,300                   | 2.1 J                        | 4.1 U                        | 1.6 J                        | 2 J                          | 2.3 J                        | 4.4 U               | 4.2 U                     | 4.3 U                        | 1.8 J                        | 4.1 U                        | 4.8 U                        | 3.4 J                        |
| Wet Chemistry           |                               |                 |                        |                         |                              |                              |                              |                              |                              |                     |                           |                              |                              |                              |                              |                              |
| pH (ph)                 |                               |                 |                        |                         | NA                           | 4.2                          | NA                           | NA                           | NA                           | NA                  | NA                        | NA                           | NA                           | NA                           | NA                           | NA                           |

#### Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs          | Adjusted   | Adjusted    | CJCA-SS154          | CJCA-SS155     | CJCA-SS156        | CJCA-SS157           | CJCA-SS158          | CJCA-SS159     | CJCA-SS160     | CJCA-SS161          | CJCA-SS162          | CJCA                | A-SS163             |
|----------------------|---------------|-----------------|------------|-------------|---------------------|----------------|-------------------|----------------------|---------------------|----------------|----------------|---------------------|---------------------|---------------------|---------------------|
| Sample ID            | Background SS | (January, 2010) | Industrial | Residential | CJCA-SS154-09C      | CJCA-SS155-09C | CJCA-SS156-09C    | CJCA-SS157-09C       | CJCA-SS158-09C      | CJCA-SS159-09C | CJCA-SS160-09C | CJCA-SS161-09C      | CJCA-SS162-09C      | CJCA-SS163-09C      | CJCA-SS163D-09C     |
| Sample Date          | 2X Mean       | (January, 2010) | Soil RSLs  | Soil RSLs   | 07/10/09            | 07/09/09       | 07/09/09          | 07/09/09             | 07/09/09            | 07/08/09       | 07/08/09       | 07/09/09            | 07/08/09            | 07/08/09            | 07/08/09            |
| Chemical Name        |               |                 |            |             |                     |                |                   |                      |                     |                |                |                     |                     |                     |                     |
| Total Metals (mg/kg) |               |                 |            |             |                     |                |                   |                      |                     |                |                |                     |                     |                     |                     |
| Antimony             | 0.447         |                 | 41         | 3.1         | 1.5 UJ              | 1.9 UJ         | 1.6 U             | 0.22 J-              | 1.6 UJ              | 1.7 U          | 1.7 U          | 1.6 UJ              | 1.7 UJ              | 0.47 J-             | 0.49 J-             |
| Arsenic              | 0.626         | 5.8             | 1.6        | 0.39        | <u>0.7</u> <u>J</u> | <u>2.1</u>     | <u>1</u> <u>J</u> | <u>0.98</u> <u>J</u> | <u>1.1</u> <u>J</u> | <u>1.8</u>     | <u>3</u>       | <u>1.4</u> <u>J</u> | <u>1.1</u> <u>J</u> | <u>1.3</u> <u>J</u> | <u>1.2</u> <u>J</u> |
| Copper               | 4.83          | 700             | 4,100      | 310         | 0.52 J              | 1.5 J          | 0.62 J            | 0.85 J               | 2.2                 | 3.4            | 1.1 J          | 1 J                 | 0.51 J              | 1.2                 | 1.2                 |
| Lead                 | 12.3          | 270             | 800        | 400         | 5.1                 | 8.2            | 8.1               | 23.2                 | 6                   | 12.5           | 8.6            | 6.7                 | 7.2                 | 6.1                 | 5.9                 |
| Zinc                 | 10.8          | 1,200           | 31,000     | 2,300       | 3.8 U               | 4.7 U          | 2 J               | 4.1 U                | 10.8                | 17             | 4.1 J          | 4.1 U               | 2.1                 | 2.3                 | 2.1                 |
| Wet Chemistry        |               |                 |            |             | NA                  | NIA.           | NIA               | NA                   | 7.5                 | NIA            | NIA            | N/A                 | NA                  | NA.                 | NA.                 |
| pH (ph)              |               |                 |            |             | NA                  | NA             | NA                | NA                   | 7.5                 | NA             | NA             | NA                  | NA                  | NA                  | NA                  |

## Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs          | Adjusted   | Adjusted    | CJCA                 | A-SS164             | CJCA-SS165           | CJCA-SS166           | CJCA                 | A-SS167              | CJCA-SS168          | CJCA-SS169           | CJCA-SS170          | CJCA-SS171           | CJCA-SS172           | CJCA-SS173           |
|----------------------|---------------|-----------------|------------|-------------|----------------------|---------------------|----------------------|----------------------|----------------------|----------------------|---------------------|----------------------|---------------------|----------------------|----------------------|----------------------|
| Sample ID            | Background SS | (January, 2010) | Industrial | Residential | CJCA-SS164-09C       | CJCA-SS164D-09C     | CJCA-SS165-09C       | CJCA-SS166-09C       | CJCA-SS167-09C       | CJCA-SS167D-09C      | CJCA-SS168-09C      | CJCA-SS169-09C       | CJCA-SS170-09C      | CJCA-SS171-09C       | CJCA-SS172-09C       | CJCA-SS173-09C       |
| Sample Date          | 2X Mean       | (January, 2010) | Soil RSLs  | Soil RSLs   | 07/09/09             | 07/09/09            | 07/09/09             | 07/09/09             | 07/09/09             | 07/09/09             | 07/08/09            | 07/08/09             | 07/09/09            | 07/08/09             | 07/08/09             | 07/09/09             |
| Chemical Name        |               |                 |            |             |                      |                     |                      |                      |                      |                      |                     |                      |                     |                      |                      |                      |
| Total Metals (mg/kg) |               |                 |            |             |                      |                     |                      |                      |                      |                      |                     |                      |                     |                      |                      |                      |
| Antimony             | 0.447         |                 | 41         | 3.1         | 1.6 UJ               | 0.18 J-             | 1.6 UJ               | 0.22 J-              | 1.6 UJ               | 1.6 UJ               | 1.6 U               | 1.7 U                | 1.7 UJ              | 1.6 UJ               | 1.6 UJ               | 1.7 UJ               |
| Arsenic              | 0.626         | 5.8             | 1.6        | 0.39        | <u>0.69</u> <u>J</u> | <u>0.4</u> <u>J</u> | <u>0.42</u> <u>J</u> | <u>0.86</u> <u>J</u> | <u>0.65</u> <u>J</u> | <u>0.57</u> <u>J</u> | <u>0.7</u> <u>J</u> | <u>0.77</u> <u>J</u> | <u>1.1</u> <u>J</u> | <u>0.76</u> <u>J</u> | <u>0.83</u> <u>J</u> | <u>0.97</u> <u>J</u> |
| Copper               | 4.83          | 700             | 4,100      | 310         | 0.78 J               | 0.85 J              | 0.57 J               | 1 J                  | 0.96 J               | 0.85 J               | 0.86 J              | 0.61 J               | 0.62 J              | 0.69 J               | 0.5 J                | 0.58 J               |
| Lead                 | 12.3          | 270             | 800        | 400         | 4.8                  | 4.7                 | 5                    | 5.5                  | 6.4                  | 6.5                  | 5.1                 | 6.1                  | 4.9                 | 5.9                  | 4.9                  | 4.1                  |
| Zinc                 | 10.8          | 1,200           | 31,000     | 2,300       | 4 U                  | 4.4 U               | 4 U                  | 4 U                  | 4.1 U                | 4 U                  | 4.1 U               | 4.2 U                | 4.3 U               | 4 U                  | 4.1 U                | 4.1 U                |
| Wet Chemistry        |               |                 |            |             |                      |                     |                      |                      |                      |                      |                     |                      |                     |                      |                      |                      |
| pH (ph)              |               |                 |            |             | NA                   | NA                  | 4.1                  | 4.4                  | NA                   | NA                   | NA                  | NA                   | NA                  | NA                   | 4.8                  | NA                   |

#### Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs          | Adjusted   | Adjusted    | CJCA-SS174           | CJCA                | A-SS175         | CJCA              | -SS176              | CJCA-SS177           | CJCA-SS178     | CJCA-SS179          | CJCA-SS180           | CJCA-SS181           | CJCA-SS182     | CJCA-SS183          |
|----------------------|---------------|-----------------|------------|-------------|----------------------|---------------------|-----------------|-------------------|---------------------|----------------------|----------------|---------------------|----------------------|----------------------|----------------|---------------------|
| Sample ID            | Background SS | (January, 2010) | Industrial | Residential | CJCA-SS174-09C       | CJCA-SS175-09C      | CJCA-SS175D-09C | CJCA-SS176-09C    | CJCA-SS176D-09C     | CJCA-SS177-09C       | CJCA-SS178-09C | CJCA-SS179-09C      | CJCA-SS180-09C       | CJCA-SS181-09C       | CJCA-SS182-09C | CJCA-SS183-09C      |
| Sample Date          | 2X Mean       | (January, 2010) | Soil RSLs  | Soil RSLs   | 07/08/09             | 07/08/09            | 07/08/09        | 07/09/09          | 07/09/09            | 07/08/09             | 07/08/09       | 07/08/09            | 07/08/09             | 07/08/09             | 07/08/09       | 07/08/09            |
| Chemical Name        |               |                 |            |             |                      |                     |                 |                   |                     |                      |                |                     |                      |                      |                |                     |
| Total Metals (mg/kg) |               |                 |            |             |                      |                     |                 |                   |                     |                      |                |                     |                      |                      |                |                     |
| Antimony             | 0.447         |                 | 41         | 3.1         | 1.7 UJ               | 1.8 UJ              | 1.7 UJ          | 1.7 UJ            | 1.8 UJ              | 1.7 UJ               | 1.7 UJ         | 1.8 U               | 1.6 U                | 1.7 U                | 1.6 U          | 1.7 U               |
| Arsenic              | 0.626         | 5.8             | 1.6        | 0.39        | <u>0.96</u> <u>J</u> | <u>1.6</u> <u>J</u> | <u>2.1</u>      | <u>1</u> <u>J</u> | <u>1.6</u> <u>J</u> | <u>0.71</u> <u>J</u> | 3.3            | <u>1.1</u> <u>J</u> | <u>0.93</u> <u>J</u> | <u>0.99</u> <u>J</u> | <u>1.8</u>     | <u>1.1</u> <u>J</u> |
| Copper               | 4.83          | 700             | 4,100      | 310         | 1 J                  | 1.2 J               | 1.2 J           | 0.64 J            | 0.91 J              | 1.2 J                | 1.9            | 0.85 J              | 0.35 J               | 0.84 J               | 0.98 J         | 1.1 J               |
| Lead                 | 12.3          | 270             | 800        | 400         | 6.2                  | 5.5                 | 5.7             | 4.4               | 4.7                 | 6.8                  | 10.7           | 6.1                 | 5.1                  | 6.5                  | 7.9            | 7.4                 |
| Zinc                 | 10.8          | 1,200           | 31,000     | 2,300       | 4.3 U                | 4.4 U               | 4.2 U           | 4.4 U             | 4.5 U               | 4.2 U                | 4.5            | 2.6 J               | 2.4 J                | 1.5 J                | 2.3 J          | 1.9 J               |
| Wet Chemistry        |               |                 |            |             |                      |                     |                 |                   |                     |                      |                |                     |                      |                      |                |                     |
| pH (ph)              |               |                 |            |             | NA                   | NA                  | NA              | NA                | NA                  | NA                   | NA             | NA                  | NA                   | NA                   | NA             | NA                  |

## Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI

MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs          | Adjusted   | Adjusted    | CJCA-SS184          | CJCA-SS185          | CJCA                | -SS186              | CJCA-SS187           | CJCA-SS188           | CJCA-SS189        | CJCA-SS190           | CJCA-SS191           | CJCA-SS192           | CJCA                 | A-SS193             |
|----------------------|---------------|-----------------|------------|-------------|---------------------|---------------------|---------------------|---------------------|----------------------|----------------------|-------------------|----------------------|----------------------|----------------------|----------------------|---------------------|
| Sample ID            | Background SS | (January, 2010) | Industrial | Residential | CJCA-SS184-09C      | CJCA-SS185-09C      | CJCA-SS186-09C      | CJCA-SS186D-09C     | CJCA-SS187-09C       | CJCA-SS188-09C       | CJCA-SS189-09C    | CJCA-SS190-09C       | CJCA-SS191-09C       | CJCA-SS192-09C       | CJCA-SS193-09C       | CJCA-SS193D-09C     |
| Sample Date          | 2X Mean       | (January, 2010) | Soil RSLs  | Soil RSLs   | 07/08/09            | 07/09/09            | 07/08/09            | 07/08/09            | 07/08/09             | 07/09/09             | 07/08/09          | 07/08/09             | 07/09/09             | 07/08/09             | 07/08/09             | 07/08/09            |
| Chemical Name        |               |                 |            |             |                     |                     |                     |                     |                      |                      |                   |                      |                      |                      |                      |                     |
|                      |               |                 |            |             |                     |                     |                     |                     |                      |                      |                   |                      |                      |                      |                      |                     |
| Total Metals (mg/kg) |               |                 |            |             |                     |                     |                     |                     |                      |                      |                   |                      |                      |                      |                      |                     |
| Antimony             | 0.447         |                 | 41         | 3.1         | 1.6 U               | 1.7 UJ              | 1.7 U               | 1.7 U               | 1.8 U                | 1.5 UJ               | 1.6 U             | 1.6 U                | 1.5 UJ               | 1.7 U                | 0.32 J               | 1.6 U               |
| Arsenic              | 0.626         | 5.8             | 1.6        | 0.39        | <u>1.3</u> <u>J</u> | <u>1.2</u> <u>J</u> | <u>1.4</u> <u>J</u> | <u>1.2</u> <u>J</u> | <u>0.81</u> <u>J</u> | <u>0.43</u> <u>J</u> | <u>1</u> <u>J</u> | <u>0.52</u> <u>J</u> | <u>0.79</u> <u>J</u> | <u>0.63</u> <u>J</u> | <u>0.78</u> <u>J</u> | <u>1.1</u> <u>J</u> |
| Copper               | 4.83          | 700             | 4,100      | 310         | 1.5 J               | 0.93 J              | 0.83 J              | 0.84 J              | 0.86 J               | 0.39 J               | 0.45 J            | 0.41 J               | 0.57 J               | 0.57 J               | 14.8                 | 14.5                |
| Lead                 | 12.3          | 270             | 800        | 400         | 8.6                 | 5.8                 | 5.9                 | 6.2                 | 5                    | 5.5                  | 5.4               | 4.3                  | 4.8                  | 5.1                  | 5.1                  | 5.4                 |
| Zinc                 | 10.8          | 1,200           | 31,000     | 2,300       | 3.7 J               | 4.2 U               | 4.2 U               | 4.2 U               | 4.3 U                | 4.1                  | 2.5 J             | 1.6 J                | 3.8 U                | 2.4 J                | 52.3                 | 47.7                |
|                      |               |                 |            |             |                     |                     |                     |                     |                      |                      |                   |                      |                      |                      |                      |                     |
| Wet Chemistry        |               |                 |            |             |                     |                     |                     |                     |                      |                      |                   |                      |                      |                      |                      |                     |
| pH (ph)              |               | -               |            |             | NA                  | 4.2                 | NA                  | NA                  | NA                   | 4.6                  | NA                | NA                   | 4.8                  | NA                   | NA                   | NA                  |

#### Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI MCB CamLej, North Carolina

| Station ID           | Camp Lejeune  | NCSSLs          | Adjusted   | Adjusted    | CJCA-SS194           | CJCA-SS195     | CJCA-SS196           | CJCA-SS197           | CJCA-SS198          | CJCA-SS199          | CJCA-SS200           | CJCA-SS201           | CJCA-SS202          | CJCA                 | A-SS203              | CJCA-SS204          |
|----------------------|---------------|-----------------|------------|-------------|----------------------|----------------|----------------------|----------------------|---------------------|---------------------|----------------------|----------------------|---------------------|----------------------|----------------------|---------------------|
| Sample ID            | Background SS | (January, 2010) | Industrial | Residential | CJCA-SS194-09C       | CJCA-SS195-09C | CJCA-SS196-09C       | CJCA-SS197-09C       | CJCA-SS198-09C      | CJCA-SS199-09C      | CJCA-SS200-09C       | CJCA-SS201-09C       | CJCA-SS202-09C      | CJCA-SS203-09C       | CJCA-SS203D-09C      | CJCA-SS204-09C      |
| Sample Date          | 2X Mean       | (January, 2010) | Soil RSLs  | Soil RSLs   | 07/09/09             | 07/09/09       | 07/09/09             | 07/09/09             | 07/09/09            | 07/09/09            | 07/07/09             | 07/07/09             | 07/07/09            | 07/07/09             | 07/07/09             | 07/07/09            |
| Chemical Name        |               |                 |            |             |                      |                |                      |                      |                     |                     |                      |                      |                     |                      |                      |                     |
| Total Metals (mg/kg) |               |                 |            |             |                      |                |                      |                      |                     |                     |                      |                      |                     |                      |                      |                     |
| Antimony             | 0.447         |                 | 41         | 3.1         | 0.19 J-              | 1.6 UJ         | 1.6 U                | 1.6 UJ               | 1.7 UJ              | 1.7 UJ              | 1.6 UJ               | 1.6 UJ               | 1.8 U               | 1.6 UJ               | 1.7 UJ               | 1.6 UJ              |
| Arsenic              | 0.626         | 5.8             | 1.6        | 0.39        | <u>0.86</u> <u>J</u> | <u>1.6</u>     | <u>0.98</u> <u>J</u> | <u>0.99</u> <u>J</u> | <u>1.1</u> <u>J</u> | <u>1.2</u> <u>J</u> | <u>0.92</u> <u>J</u> | <u>0.95</u> <u>J</u> | <u>1.4</u> <u>J</u> | <u>0.77</u> <u>J</u> | <u>0.57</u> <u>J</u> | <u>0.8</u> <u>J</u> |
| Copper               | 4.83          | 700             | 4,100      | 310         | 0.76 J               | 4.2            | 0.83 J               | 1.1 J                | 1.2 J               | 0.87 J              | 0.63 J               | 0.46 J               | 1.2                 | 0.73 J               | 0.75 J               | 1.1 J               |
| Lead                 | 12.3          | 270             | 800        | 400         | 7.6                  | 8.3            | 10.1                 | 6.6                  | 5.2                 | 5.9                 | 5.6                  | 5.5                  | 9.3                 | 3.9                  | 4.9                  | 5.8                 |
| Zinc                 | 10.8          | 1,200           | 31,000     | 2,300       | 4.1 U                | 11.2           | 4.1 U                | 4 U                  | 4.2 U               | 4.2 U               | 1.9                  | 3.1                  | 2.6                 | 1.1 J                | 1.3 J                | 2.2 J               |
|                      |               |                 |            |             |                      |                |                      |                      |                     |                     |                      |                      |                     |                      |                      |                     |
| Wet Chemistry        |               |                 |            |             |                      |                |                      |                      |                     |                     |                      |                      |                     |                      |                      |                     |
| pH (ph)              |               |                 |            |             | 4.2                  | 7.8            | NA                   | 4.6                  | 4.1                 | 4.5                 | NA                   | NA                   | NA                  | NA                   | NA                   | NA                  |

## Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI MCB CamLej, North Carolina

| Station ID<br>Sample ID<br>Sample Date | Camp Lejeune<br>Background SS<br>2X Mean | NCSSLs<br>(January, 2010) | Adjusted<br>Industrial<br>Soil RSLs | Adjusted<br>Residential<br>Soil RSLs | CJCA-SS205<br>CJCA-SS205-09C<br>07/07/09 | CJCA-SS206<br>CJCA-SS206-09C<br>07/07/09 | CJCA-SS207<br>CJCA-SS207-09C<br>07/07/09 | CJCA-SS208<br>CJCA-SS208-09C<br>07/07/09 | CJCA-SS209<br>CJCA-SS209-09C<br>07/07/09 | CJCA-SS210<br>CJCA-SS210-09C<br>07/07/09 | CJCA-SS211<br>CJCA-SS211-09C<br>07/07/09 | CJCA-SS212<br>CJCA-SS212-09C<br>07/09/09 | CJCA-SS213<br>CJCA-SS213-09C<br>07/07/09 | CJCA-SS214<br>CJCA-SS214-09C<br>07/07/09 |
|----------------------------------------|------------------------------------------|---------------------------|-------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Chemical Name                          |                                          |                           |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Total Metals (mg/kg)                   |                                          |                           |                                     |                                      |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Antimony                               | 0.447                                    |                           | 41                                  | 3.1                                  | 1.7 UJ                                   | 1.7 U                                    | 1.7 U                                    | 1.6 UJ                                   | 1.6 UJ                                   | 1.6 UJ                                   | 1.7 UJ                                   | 1.6 UJ                                   | 1.6 UJ                                   | 1.6 UJ                                   |
| Arsenic                                | 0.626                                    | 5.8                       | 1.6                                 | 0.39                                 | <u>1.8</u>                               | <u>1.4</u> <u>J</u>                      | <u>0.82</u> <u>J</u>                     | <u>0.89</u> <u>J</u>                     | <u>0.98</u> <u>J</u>                     | <u>0.55</u> <u>J</u>                     | <u>0.78</u> <u>J</u>                     | <u>0.89</u> <u>J</u>                     | <u>0.74</u> <u>J</u>                     | <u>0.96</u> <u>J</u>                     |
| Copper                                 | 4.83                                     | 700                       | 4,100                               | 310                                  | 1 J                                      | 0.98                                     | 4.3                                      | 1.3 J                                    | 3.4                                      | 2.9                                      | 1.5 J                                    | 0.67 J                                   | 4.6                                      | 1.7                                      |
| Lead                                   | 12.3                                     | 270                       | 800                                 | 400                                  | 5.8                                      | 5.4                                      | 6.6                                      | 6                                        | 14.1                                     | 12.9                                     | 7.2                                      | 6                                        | 16.6                                     | 10.1                                     |
| Zinc                                   | 10.8                                     | 1,200                     | 31,000                              | 2,300                                | 2.6 J                                    | 2.4                                      | 4.5                                      | 7.3                                      | 12.2                                     | 28.3                                     | 3.8 J                                    | 4 U                                      | 15.2                                     | 5.5                                      |
| Wet Chemistry<br>pH (ph)               |                                          |                           |                                     |                                      | NA                                       | NA                                       | NA                                       | NA                                       | NA                                       | 8.1                                      | NA                                       | 4.7                                      | NA                                       | NA                                       |

## Notes:

Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID<br>Sample ID | Camp Lejeune<br>Background SB 2X | NCSSLs (January, 2010) | Adjusted<br>Industrial Soil | Adjusted<br>Residential Soil | CJCA-SB01<br>CJCA-SB01-2-7-09C | CJCA-SB02<br>CJCA-SB02-2-6-09C | CJCA-SB03<br>CJCA-SB03-2-7-09C | CJCA-SB04<br>CJCA-SB04-4-7-09C | CJCA-SB05<br>CJCA-SB05-2-7-09C | CJCA-SB06<br>CJCA-SB06-2-7-09C | CJCA-SB07<br>CJCA-SB07-4-7-09C | CJCA-SB08<br>CJCA-SB08-2-7-09C |
|-------------------------|----------------------------------|------------------------|-----------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Sample Date             | Mean                             | 2010)                  | RSLs                        | RSLs                         | 07/26/09                       | 07/29/09                       | 07/26/09                       | 07/29/09                       | 07/26/09                       | 07/29/09                       | 07/26/09                       | 07/29/09                       |
| Chemical Name           |                                  |                        |                             |                              |                                |                                |                                |                                |                                |                                |                                |                                |
|                         |                                  |                        |                             |                              |                                |                                |                                |                                |                                |                                |                                |                                |
| Total Metals (mg/kg)    |                                  |                        |                             |                              |                                |                                |                                |                                |                                |                                |                                |                                |
| Antimony                | 0.36                             |                        | 41                          | 3.1                          | 1.7 U                          | 0.21 J-                        | 1.9 U                          | 1.6 UJ                         | 1.7 U                          | 1.5 UJ                         | 1.5 U                          | 1.6 UJ                         |
| Arsenic                 | 2.12                             | 5.8                    | 1.6                         | 0.39                         | <u>0.61</u> J                  | 1.8 U                          | <u>0.57</u> <u>J</u>           | <u>0.48</u> <u>J</u>           | <u>0.67</u> <u>J</u>           | <u>0.72</u> <u>J</u>           | <u>0.51</u> <u>J</u>           | <u>4.4</u>                     |
| Copper                  | 2.56                             | 700                    | 4,100                       | 310                          | 0.28 J                         | 1.4 J                          | 0.55 J                         | 0.48 J                         | 0.77 J                         | 0.47 J                         | 0.51 J                         | 0.72 J                         |
| Lead                    | 8.49                             | 270                    | 800                         | 400                          | 3.4                            | 4.2                            | 4.3                            | 2.6                            | 3.3                            | 1.9                            | 1.8                            | 4                              |
| Zinc                    | 6.59                             | 1,200                  | 31,000                      | 2,400                        | 4.2 U                          | 4.6 U                          | 4.8 U                          | 4.1 U                          | 4.1 U                          | 3.7 U                          | 3.8 U                          | 3.9 U                          |
|                         |                                  |                        |                             |                              |                                |                                |                                |                                |                                |                                |                                |                                |
| Wet Chemistry           |                                  |                        |                             |                              |                                |                                |                                |                                |                                |                                |                                |                                |
| рН                      |                                  |                        |                             |                              | NA                             | NA                             | 3.6                            | NA                             | NA                             | NA                             | NA                             | NA                             |

Shading indicates exceedance of two times the mean base background concentration for subsurface soil

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune     | NCSSLs (January, | Adjusted        | Adjusted         | CJC                 | A-SB09               | CJCA-SB10         | CJCA-SB11           | CJCA-SB12           | CJCA-SB13           | CJCA-SB14         | CJCA-SB15         | CJCA-SB16         |
|----------------------|------------------|------------------|-----------------|------------------|---------------------|----------------------|-------------------|---------------------|---------------------|---------------------|-------------------|-------------------|-------------------|
| Sample ID            | Background SB 2X | 2010)            | Industrial Soil | Residential Soil | CJCA-SB09-2-4-09C   | CJCA-SB09D-2-4-09C   | CJCA-SB10-2-6-09C | CJCA-SB11-2-7-09C   | CJCA-SB12-2-7-09C   | CJCA-SB13-2-7-09C   | CJCA-SB14-2-7-09C | CJCA-SB15-6-7-09C | CJCA-SB16-2-7-09C |
| Sample Date          | Mean             | 2010)            | RSLs            | RSLs             | 07/26/09            | 07/26/09             | 07/28/09          | 07/26/09            | 07/29/09            | 07/26/09            | 07/28/09          | 07/25/09          | 07/25/09          |
| Chemical Name        |                  |                  |                 |                  |                     |                      |                   |                     |                     |                     |                   |                   |                   |
| Total Metals (mg/kg) |                  |                  |                 |                  |                     |                      |                   |                     |                     |                     |                   |                   |                   |
| Antimony             | 0.36             |                  | 41              | 3.1              | 1.6 U               | 1.7 U                | 1.6 UJ            | 1.5 U               | 1.5 UJ              | 1.8 U               | 1.5 UJ            | 1.6 U             | 1.5 U             |
| Arsenic              | 2.12             | 5.8              | 1.6             | 0.39             | <u>1.3</u> <u>J</u> | <u>0.81</u> <u>J</u> | 0.25 J            | <u>1.3</u> <u>J</u> | <u>1.1</u> <u>J</u> | <u>1.2</u> <u>J</u> | 0.17 J            | 3.8 U             | 1.5 U             |
| Copper               | 2.56             | 700              | 4,100           | 310              | 3                   | 6.9                  | 0.64 J            | 0.55 J              | 0.58 J              | 0.51 J              | 0.27 J            | 1.3 J             | 0.77 J            |
| Lead                 | 8.49             | 270              | 800             | 400              | 4.7                 | 4.5                  | 2.5               | 2.5                 | 2                   | 2.6                 | 1.6               | 6.2               | 3.1               |
| Zinc                 | 6.59             | 1,200            | 31,000          | 2,400            | 16                  | 49                   | 4 U               | 3.8 U               | 3.8 U               | 4.6 U               | 3.8 U             | 4.4               | 3.7 U             |
| Wet Chemistry        |                  |                  |                 |                  | NA                  |                      | NA                | 47                  | 114                 |                     | NA NA             | NA                | NIA .             |
| рн                   |                  |                  |                 |                  | NA                  | NA                   | NA                | 4.7                 | NA                  | NA                  | NA                | NA                | NA                |

Notes:
Shading indicates exceedance of two times the mean base background concentration for subsurface soil
Bold box indicates exceedance of NCSSLs
Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune     | NCSSLs (January, | Adjusted        | Adjusted         | CJCA-SB18         | CJCA-SB19            | CJC               | A-SB20             | CJCA-SB21             | CJCA-SB22         | CJCA-SB23             | CJCA-SB24         | CJCA-SB25             |
|----------------------|------------------|------------------|-----------------|------------------|-------------------|----------------------|-------------------|--------------------|-----------------------|-------------------|-----------------------|-------------------|-----------------------|
| Sample ID            | Background SB 2X | 2010)            | Industrial Soil | Residential Soil | CJCA-SB18-2-5-09C | CJCA-SB19-2-7-09C    | CJCA-SB20-2-7-09C | CJCA-SB20D-2-7-09C | CJCA-SB21-2-7-09C     | CJCA-SB22-4-7-09C | CJCA-SB23-2-3-09C     | CJCA-SB24-2-4-09C | CJCA-SB25-6-7-09C     |
| Sample Date          | Mean             | 2010)            | RSLs            | RSLs             | 07/25/09          | 07/28/09             | 07/25/09          | 07/25/09           | 07/28/09              | 07/25/09          | 07/28/09              | 07/24/09          | 07/28/09              |
| Chemical Name        |                  |                  |                 |                  |                   |                      |                   |                    |                       |                   |                       |                   |                       |
| Total Metals (mg/kg) |                  |                  |                 |                  |                   |                      |                   |                    |                       |                   |                       |                   |                       |
| Antimony             | 0.36             |                  | 41              | 3.1              | 1.7 U             | 1.6 UJ               | 1.7 U             | 1.8 U              | 1.5 UJ                | 1.5 U             | 1.6 UJ                | 1.6 U             | 1.9 UJ                |
| Arsenic              | 2.12             | 5.8              | 1.6             | 0.39             | 1.7 U             | <u>0.62</u> <u>J</u> | 1.7 U             | 2.6 U              | <u>0.45</u> <u>J+</u> | 1.5 U             | <u>0.79</u> <u>J+</u> | 1.6 U             | <u>13.2</u> <u>J+</u> |
| Copper               | 2.56             | 700              | 4,100           | 310              | 0.55 J            | 0.35 J               | 1.7 U             | 1.9                | 0.53 J                | 1.5 U             | 0.34 J                | 0.54 J            | 4.3                   |
| Lead                 | 8.49             | 270              | 800             | 400              | 3.2               | 2.2                  | 1.5 J             | 7                  | 2.7                   | 1.5               | 5                     | 6.8               | 12.1                  |
| Zinc                 | 6.59             | 1,200            | 31,000          | 2,400            | 2.1 J             | 3.9 U                | 4.1 U             | 4.1 U              | 3.8 U                 | 3.7 U             | 3.9 U                 | 6.5               | 9.6                   |
| Wet Chemistry        |                  |                  |                 |                  |                   |                      |                   |                    |                       |                   |                       |                   |                       |
| рН                   |                  |                  |                 |                  | 4.4               | NA                   | NA                | NA                 | NA                    | NA                | NA                    | NA                | NA                    |

Notes:
Shading indicates exceedance of two times the mean base background concentration for subsurface soil
Bold box indicates exceedance of NCSSLs
Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID                 | Camp Lejeune     | NCSSLs (January, | Adjusted         | Adjusted         | CJCA-SB26         | CJCA-SB27            | CJCA-SB28         | CJCA-SB29         | CJCA-SB30            |                       | A-SB31                | CJCA-SB32             | CJCA-SB33            |
|----------------------------|------------------|------------------|------------------|------------------|-------------------|----------------------|-------------------|-------------------|----------------------|-----------------------|-----------------------|-----------------------|----------------------|
| Sample ID                  | Background SB 2X | 2010)            | ilidustriai 3011 | Residential Soil | CJCA-SB26-4-7-09C | CJCA-SB27-4-7-09C    | CJCA-SB28-2-4-09C | CJCA-SB29-2-7-09C | CJCA-SB30-2-7-09C    | CJCA-SB31-4-7-09C     | CJCA-SB31D-4-7-09C    | CJCA-SB32-2-7-09C     | CJCA-SB33-4-6-09C    |
| Sample Date                | Mean             | 2010)            | RSLs             | RSLs             | 07/23/09          | 07/28/09             | 07/23/09          | 07/28/09          | 07/23/09             | 07/23/09              | 07/23/09              | 07/22/09              | 07/23/09             |
| Chemical Name              |                  |                  |                  |                  |                   |                      |                   |                   |                      |                       |                       |                       |                      |
| Total Martala (over the co |                  |                  |                  |                  |                   |                      |                   |                   |                      |                       |                       |                       |                      |
| Total Metals (mg/kg)       |                  |                  |                  |                  |                   |                      |                   |                   |                      |                       |                       |                       |                      |
| Antimony                   | 0.36             |                  | 41               | 3.1              | 1.9 UJ            | 1.9 UJ               | 1.7 UJ            | 1.9 UJ            | 1.8 U                | 1.9 U                 | 2 U                   | 1.9 U                 | 1.8 U                |
| Arsenic                    | 2.12             | 5.8              | 1.6              | 0.39             | <u>6.9</u>        | <u>8.9</u> <u>J+</u> | <u>2.6</u>        | <u>11</u>         | <u>4.5</u> <u>J-</u> | <u>13.7</u> <u>J-</u> | <u>14.5</u> <u>J-</u> | <u>15.8</u> <u>J-</u> | <u>3.7</u> <u>J-</u> |
| Copper                     | 2.56             | 700              | 4,100            | 310              | 2.7 U             | 3.6                  | 1.7 U             | 4.1               | 3.1                  | 4                     | 4.1                   | 3.9                   | 2.7                  |
| Lead                       | 8.49             | 270              | 800              | 400              | 8.6               | 12.9                 | 7.8               | 13.7              | 12.5                 | 14.9                  | 16.4                  | 13.1                  | 12                   |
| Zinc                       | 6.59             | 1,200            | 31,000           | 2,400            | 6.9               | 8.3                  | 4.3 U             | 7.6               | 5                    | 7.8                   | 7.2                   | 8.3                   | 7.4                  |
|                            |                  |                  |                  |                  |                   |                      |                   |                   |                      |                       |                       |                       |                      |
| Wet Chemistry              |                  |                  |                  |                  |                   |                      |                   |                   |                      |                       |                       |                       |                      |
| рН                         |                  |                  |                  |                  | NA                | NA                   | NA                | 4.2               | NA                   | NA                    | NA                    | NA                    | NA                   |

Notes:
Shading indicates exceedance of two times the mean base background concentration for subsurface soil
Bold box indicates exceedance of NCSSLs
Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID<br>Sample ID<br>Sample Date | Camp Lejeune<br>Background SB 2X<br>Mean | NCSSLs (January,<br>2010) | Adjusted<br>Industrial Soil<br>RSLs | Adjusted<br>Residential Soil<br>RSLs | CJCA-SB34<br>CJCA-SB34-2-4-09C<br>07/28/09 | CJCA-SB35<br>CJCA-SB35-2-4-09C<br>07/25/09 | CJCA-SB36<br>CJCA-SB36-4-7-09C<br>07/28/09 | CJCA-SB37<br>CJCA-SB37-6-7-09C<br>07/24/09 | CJCA-SB38<br>CJCA-SB38-2-4-09C<br>07/24/09 | CJCA-SB39<br>CJCA-SB39-2-4-09C<br>07/23/09 | CJCA-SB40<br>CJCA-SB40-4-7-09C<br>07/28/09 | CJCA-SB41<br>CJCA-SB41-4-6-09C<br>07/23/09 | CJCA-SB42<br>CJCA-SB42-2-7-09C<br>07/28/09 |
|----------------------------------------|------------------------------------------|---------------------------|-------------------------------------|--------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| Chemical Name                          |                                          |                           |                                     |                                      |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |
| Total Metals (mg/kg)                   |                                          |                           |                                     |                                      |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |
| Antimony                               | 0.36                                     |                           | 41                                  | 3.1                                  | 1.7 UJ                                     | 1.7 U                                      | 1.9 UJ                                     | 1.9 UJ                                     | 1.7 UJ                                     | 1.9 UJ                                     | 2 UJ                                       | 1.7 U                                      | 2 UJ                                       |
| Arsenic                                | 2.12                                     | 5.8                       | 1.6                                 | 0.39                                 | <u>20.8</u> <u>J+</u>                      | 1.7 U                                      | 3.3 J+                                     | <u>4.2</u>                                 | <u>2.6</u>                                 | <u>13.1</u>                                | <u>7.4</u> <u>J+</u>                       | <u>2.6</u> <u>J-</u>                       | <u>17.7</u> <u>J+</u>                      |
| Copper                                 | 2.56                                     | 700                       | 4,100                               | 310                                  | 3.6                                        | 0.99 J                                     | 2.2                                        | 3.5                                        | 1.8 U                                      | 2.6 U                                      | 4.1                                        | 1.3 J                                      | 4.2                                        |
| Lead                                   | 8.49                                     | 270                       | 800                                 | 400                                  | 9.7                                        | 13.6                                       | 11.2                                       | 10.4                                       | 7.5                                        | 11.9                                       | 14.6                                       | 8.2                                        | 14.2                                       |
| Zinc                                   | 6.59                                     | 1,200                     | 31,000                              | 2,400                                | 5.2                                        | 4.3 U                                      | 6.8                                        | 8.9                                        | 4.2 U                                      | 6.4                                        | 7.9                                        | 3.3 J                                      | 8.2                                        |
|                                        |                                          |                           |                                     |                                      |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |
| Wet Chemistry                          |                                          |                           |                                     |                                      |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |
| рН                                     |                                          |                           |                                     |                                      | NA                                         | NA                                         | NA                                         | NA                                         | NA                                         | NA                                         | 4.4                                        | NA                                         | NA                                         |

Notes:
Shading indicates exceedance of two times the mean base background concentration for subsurface soil
Bold box indicates exceedance of NCSSLs
Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune     | NCSSLs (January, | Adjusted        | Adjusted         | CJCA-SB43            | CJCA-SB44             | CJCA                  | A-SB45               | CJCA-SB46             | CJCA-SB47         | CJCA-SB48            | CJCA-SB49         |
|----------------------|------------------|------------------|-----------------|------------------|----------------------|-----------------------|-----------------------|----------------------|-----------------------|-------------------|----------------------|-------------------|
| Sample ID            | Background SB 2X | 2010)            | Industrial Soil | Residential Soil | CJCA-SB43-6-7-09C    | CJCA-SB44-6-7-09C     | CJCA-SB45-2-5-09C     | CJCA-SB45D-2-5-09C   | CJCA-SB46-4-7-09C     | CJCA-SB47-6-7-09C | CJCA-SB48-4-6-09C    | CJCA-SB49-2-4-09C |
| Sample Date          | Mean             | 2010)            | RSLs            | RSLs             | 07/22/09             | 07/23/09              | 07/22/09              | 07/22/09             | 07/27/09              | 07/25/09          | 07/27/09             | 07/25/09          |
| Chemical Name        |                  |                  |                 |                  |                      |                       |                       |                      |                       |                   |                      |                   |
|                      |                  |                  |                 |                  |                      |                       |                       |                      |                       |                   |                      |                   |
| Total Metals (mg/kg) |                  |                  |                 |                  |                      |                       |                       |                      |                       |                   |                      |                   |
| Antimony             | 0.36             |                  | 41              | 3.1              | 1.9 U                | 2 U                   | 1.8 U                 | 1.8 U                | 2 UJ                  | 1.9 U             | 1.8 UJ               | 1.6 U             |
| Arsenic              | 2.12             | 5.8              | 1.6             | 0.39             | <u>5.3</u> <u>J-</u> | <u>17.8</u> <u>J-</u> | <u>11.6</u> <u>J-</u> | <u>2.9</u> <u>J-</u> | <u>14.4</u> <u>J+</u> | <u>6.5</u>        | <u>5.7</u> <u>J+</u> | 3 U               |
| Copper               | 2.56             | 700              | 4,100           | 310              | 3.2                  | 4.7                   | 4.4                   | 2.1                  | 2.5                   | 2.5               | 2.2                  | 1.3 J             |
| Lead                 | 8.49             | 270              | 800             | 400              | 12                   | 14.5                  | 16.1                  | 11.1                 | 11                    | 11.9              | 8.7                  | 7.6               |
| Zinc                 | 6.59             | 1,200            | 31,000          | 2,400            | 7.9                  | 7.9                   | 5                     | 5.3                  | 6.5                   | 7.6               | 6.9                  | 4.2               |
|                      |                  |                  |                 |                  |                      |                       |                       |                      |                       |                   |                      |                   |
| Wet Chemistry        |                  |                  |                 |                  |                      |                       |                       |                      |                       |                   |                      |                   |
| рН                   |                  |                  |                 |                  | NA                   | NA                    | NA                    | NA                   | NA                    | NA                | 4.6                  | NA                |

Shading indicates exceedance of two times the mean base background concentration for subsurface soil

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune     | NCSSLs (January, | Adjusted        | Adjusted         | CJC                | A-SB50             | CJCA-SB51         | CJCA-SB52             | CJCA-SB53         | CJCA-SB54             | CJCA-SB55         | CJCA-SB56         | CJCA-SB57         | CJCA-SB58            |
|----------------------|------------------|------------------|-----------------|------------------|--------------------|--------------------|-------------------|-----------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|----------------------|
| Sample ID            | Background SB 2X | 2010)            | Industrial Soil | Residential Soil | CJCA-SB50-4-6-09C  | CJCA-SB50D-4-6-09C | CJCA-SB51-2-7-09C | CJCA-SB52-4-6-09C     | CJCA-SB53-2-7-09C | CJCA-SB54-6-7-09C     | CJCA-SB55-4-6-09C | CJCA-SB56-2-7-09C | CJCA-SB57-2-4-09C | CJCA-SB58-2-6-09C    |
| Sample Date          | Mean             | 2010)            | RSLs            | RSLs             | 07/27/09           | 07/27/09           | 07/25/09          | 07/27/09              | 07/22/09          | 07/22/09              | 07/22/09          | 07/27/09          | 07/23/09          | 07/27/09             |
| Chemical Name        |                  |                  |                 |                  |                    |                    |                   |                       |                   |                       |                   |                   |                   |                      |
| Total Metals (mg/kg) |                  |                  |                 |                  |                    |                    |                   |                       |                   |                       |                   |                   |                   |                      |
| Antimony             | 0.36             |                  | 41              | 3.1              | 1.7 UJ             | 1.7 UJ             | 1.8 U             | 1.7 UJ                | 1.8 U             | 1.8 U                 | 1.9 U             | 1.7 UJ            | 1.7 U             | 1.8 UJ               |
| Arsenic              | 2.12             | 5.8              | 1.6             | 0.39             | <u>6</u> <u>J+</u> | 4.6 J+             | <u>2.4</u>        | <u>0.98</u> <u>J+</u> | 21.1 J+           | <u>14.3</u> <u>J+</u> | 9.2 J+            | 4.5 J+            | 2.3 <u>J-</u>     | <u>1.9</u> <u>J+</u> |
| Copper               | 2.56             | 700              | 4,100           | 310              | 1.8                | 1.7                | 1.3 J             | 0.49 J                | 3.5               | 3.6                   | 3                 | 1.9               | 0.75 J            | 2                    |
| Lead                 | 8.49             | 270              | 800             | 400              | 8.7                | 8.8                | 7.5               | 6.1                   | 11.6              | 14                    | 12.1              | 8.5               | 5.9               | 9                    |
| Zinc                 | 6.59             | 1,200            | 31,000          | 2,400            | 5                  | 5.5                | 4.4 U             | 4.2 U                 | 7.7               | 6.3                   | 5.7               | 4.4 U             | 3.3 J             | 5.3                  |
| Wet Chemistry        |                  |                  |                 |                  |                    |                    |                   |                       |                   |                       |                   |                   |                   |                      |
| рН                   |                  |                  |                 |                  | NA                 | NA                 | NA                | NA                    | 4.3               | NA                    | NA                | NA                | NA                | 4.4                  |

Shading indicates exceedance of two times the mean base background concentration for subsurface soil

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UXO-20 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune     | NCSSLs (January, | Adjusted        | Adjusted         | CJC               | A-SB59             | CJCA-SB60             | CJCA-SB61         | CJCA-SB62         | CJCA-SB63            | CJC                 | A-SB64              | CJCA-SB65            | CJCA-SB66             |
|----------------------|------------------|------------------|-----------------|------------------|-------------------|--------------------|-----------------------|-------------------|-------------------|----------------------|---------------------|---------------------|----------------------|-----------------------|
| Sample ID            | Background SB 2X | 2010)            | Industrial Soil | Residential Soil | CJCA-SB59-2-4-09C | CJCA-SB59D-2-4-09C | CJCA-SB60-4-6-09C     | CJCA-SB61-2-4-09C | CJCA-SB62-2-4-09C | CJCA-SB63-2-4-09C    | CJCA-SB64-4-7-09C   | CJCA-SB64D-4-7-09C  | CJCA-SB65-2-4-09C    | CJCA-SB66-4-6-09C     |
| Sample Date          | Mean             | 2010)            | RSLs            | RSLs             | 07/23/09          | 07/23/09           | 07/22/09              | 07/22/09          | 07/22/09          | 07/23/09             | 07/27/09            | 07/27/09            | 07/22/09             | 07/22/09              |
| Chemical Name        |                  |                  |                 |                  |                   |                    |                       |                   |                   |                      |                     |                     |                      |                       |
| Total Metals (mg/kg) |                  |                  |                 |                  |                   |                    |                       |                   |                   |                      |                     |                     |                      |                       |
| Antimony             | 0.36             |                  | 41              | 3.1              | 1.8 U             | 1.8 U              | 1.8 U                 | 1.6 U             | 1.8 U             | 1.6 U                | 1.9 UJ              | 2 UJ                | 1.7 U                | 2 U                   |
| Arsenic              | 2.12             | 5.8              | 1.6             | 0.39             | 3.9 <u>J-</u>     | 3.5 J-             | <u>14.8</u> <u>J+</u> | <u>1.1</u> J+     | 4.7 J+            | <u>2.6</u> <u>J-</u> | <u>12</u> <u>J+</u> | <u>15</u> <u>J+</u> | <u>5.6</u> <u>J-</u> | <u>12.3</u> <u>J-</u> |
| Copper               | 2.56             | 700              | 4,100           | 310              | 3                 | 2.3                | 4.6                   | 1 J               | 3.2               | 0.65 J               | 4.6                 | 4.2                 | 0.84 J               | 2.9                   |
| Lead                 | 8.49             | 270              | 800             | 400              | 11.5              | 10.1               | 17.3                  | 4.9               | 10.8              | 5                    | 14.4                | 13.3                | 7.2                  | 9.7                   |
| Zinc                 | 6.59             | 1,200            | 31,000          | 2,400            | 6.7               | 6.3                | 7.7                   | 3.9 U             | 6.6               | 2 J                  | 8.7                 | 9                   | 3.2 J                | 8.7                   |
| Wet Chemistry        |                  |                  |                 |                  |                   |                    |                       |                   |                   |                      |                     |                     |                      |                       |
| рН                   |                  |                  |                 |                  | NA                | NA                 | NA                    | NA                | NA                | NA                   | NA                  | NA                  | NA                   | NA                    |

Shading indicates exceedance of two times the mean base background concentration for subsurface soil

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| ckground SB 2X | NCSSLs (January,             | Adjusted<br>Industrial Soil                | Adjusted<br>Residential Soil                                                                                                    | CJCA-SB67<br>CJCA-SB67-6-7-09C                                                                                                                                             | CJCA-SB68<br>CJCA-SB68-4-6-09C                                                                                                                                                                                                                                          | CJCA-SB69<br>CJCA-SB69-6-7-09C                                                                                                                                                                                                                                                                                                   | CJCA-<br>CJCA-SB70-4-6-09C                                                                                                                                                                                                                                                                                                                                                              | A-SB70<br>CJCA-SB70D-4-6-09C                                                                                                                                                                                                                                                                                                                                   | CJCA-SB71<br>CJCA-SB71-6-7-09C                                                                                                                                                                                                                                                                                                                                                                                      | CJCA-SB72<br>CJCA-SB72-4-6-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CJCA-SB73<br>CJCA-SB73-4-6-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CJCA-SB74<br>CJCA-SB74-2-7-09C |
|----------------|------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Mean           | 2010)                        | RSLs                                       | RSLs                                                                                                                            | 07/22/09                                                                                                                                                                   | 07/22/09                                                                                                                                                                                                                                                                | 07/21/09                                                                                                                                                                                                                                                                                                                         | 07/22/09                                                                                                                                                                                                                                                                                                                                                                                | 07/22/09                                                                                                                                                                                                                                                                                                                                                       | 07/21/09                                                                                                                                                                                                                                                                                                                                                                                                            | 07/21/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07/21/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07/21/09                       |
|                |                              |                                            |                                                                                                                                 |                                                                                                                                                                            |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
|                |                              |                                            |                                                                                                                                 |                                                                                                                                                                            |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| 0.36           |                              | 41                                         | 3.1                                                                                                                             | 1.9 U                                                                                                                                                                      | 1.8 U                                                                                                                                                                                                                                                                   | 2.1 U                                                                                                                                                                                                                                                                                                                            | 2 U                                                                                                                                                                                                                                                                                                                                                                                     | 1.9 U                                                                                                                                                                                                                                                                                                                                                          | 3.7 U                                                                                                                                                                                                                                                                                                                                                                                                               | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7 U                          |
| 2.12           | 5.8                          | 1.6                                        | 0.39                                                                                                                            | <u>11.6</u> <u>J-</u>                                                                                                                                                      | <u>11.6</u> <u>J+</u>                                                                                                                                                                                                                                                   | <u>10.1</u> <u>J-</u>                                                                                                                                                                                                                                                                                                            | <u>14.2</u> <u>J+</u>                                                                                                                                                                                                                                                                                                                                                                   | <u>4.7</u> <u>J+</u>                                                                                                                                                                                                                                                                                                                                           | <u>46.5</u> <u>J-</u>                                                                                                                                                                                                                                                                                                                                                                                               | <u>21.3</u> <u>J-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>14.1</u> <u>J-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>1.1</u> <u>J-</u>           |
| 2.56           | 700                          | 4,100                                      | 310                                                                                                                             | 4.5                                                                                                                                                                        | 3.7                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                       | 3.7                                                                                                                                                                                                                                                                                                                                                            | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.66 J                         |
| 8.49           | 270                          | 800                                        | 400                                                                                                                             | 15.6                                                                                                                                                                       | 13.7                                                                                                                                                                                                                                                                    | 15.4                                                                                                                                                                                                                                                                                                                             | 15.4                                                                                                                                                                                                                                                                                                                                                                                    | 14.4                                                                                                                                                                                                                                                                                                                                                           | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                              |
| 6.59           | 1,200                        | 31,000                                     | 2,400                                                                                                                           | 8.2                                                                                                                                                                        | 7.4                                                                                                                                                                                                                                                                     | 7.9                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                              | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.2 U                          |
|                |                              |                                            |                                                                                                                                 | 4.6                                                                                                                                                                        | NIA                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                               | NIA                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                             | NIA                                                                                                                                                                                                                                                                                                                                                                                                                 | NIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                             |
|                | 0.36<br>2.12<br>2.56<br>8.49 | 0.36 2.12 5.8 2.56 700 8.49 270 6.59 1,200 | 0.36      41       2.12     5.8     1.6       2.56     700     4,100       8.49     270     800       6.59     1,200     31,000 | 0.36      41     3.1       2.12     5.8     1.6     0.39       2.56     700     4,100     310       8.49     270     800     400       6.59     1,200     31,000     2,400 | 0.36        41       3.1       1.9 U         2.12       5.8       1.6       0.39       11.6 J-         2.56       700       4,100       310       4.5         8.49       270       800       400       15.6         6.59       1,200       31,000       2,400       8.2 | 0.36        41       3.1       1.9 U       1.8 U         2.12       5.8       1.6       0.39       11.6 J-       11.6 J+         2.56       700       4,100       310       4.5       3.7         8.49       270       800       400       15.6       13.7         6.59       1,200       31,000       2,400       8.2       7.4 | 0.36        41       3.1       1.9 U       1.8 U       2.1 U         2.12       5.8       1.6       0.39       11.6 J-       11.6 J+       10.1 J-         2.56       700       4,100       310       4.5       3.7       4         8.49       270       800       400       15.6       13.7       15.4         6.59       1,200       31,000       2,400       8.2       7.4       7.9 | 0.36      41     3.1     1.9 U     1.8 U     2.1 U     2 U       2.12     5.8     1.6     0.39     11.6 J-     11.6 J+     10.1 J-     14.2 J+       2.56     700     4,100     310     4.5     3.7     4     4       8.49     270     800     400     15.6     13.7     15.4     15.4       6.59     1,200     31,000     2,400     8.2     7.4     7.9     8 | 0.36      41     3.1     1.9 U     1.8 U     2.1 U     2 U     1.9 U       2.12     5.8     1.6     0.39     11.6 J-     11.6 J+     10.1 J-     14.2 J+     4.7 J+       2.56     700     4,100     310     4.5     3.7     4     4     3.7       8.49     270     800     400     15.6     13.7     15.4     15.4     15.4     14.4       6.59     1,200     31,000     2,400     8.2     7.4     7.9     8     8 | 0.36      41     3.1     1.9 U     1.8 U     2.1 U     2 U     1.9 U     3.7 U       2.12     5.8     1.6     0.39     11.6 J- 11.6 J+ 10.1 J- 14.2 J+ 4.7 J+ 46.5 J- 15.4     4.7 J+ 46.5 J- 15.4     4.5 J- 15.4     4.7 J- 15.4 | 0.36          41         3.1         1.9 U         1.8 U         2.1 U         2 U         1.9 U         3.7 U         1.9 U           2.12         5.8         1.6         0.39         11.6 J-         11.6 J+         10.1 J-         14.2 J+         4.7 J+         46.5 J-         21.3 J-           2.56         700         4,100         310         4.5         3.7         4         4         3.7         6.8         5.4           8.49         270         800         400         15.6         13.7         15.4         15.4         14.4         17.6         13.8           6.59         1,200         31,000         2,400         8.2         7.4         7.9         8         8         9.7         8.4 | 0.36                           |

Notes:
Shading indicates exceedance of two times the mean base background concentration for subsurface soil
Bold box indicates exceedance of NCSSLs
Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | Camp Lejeune     | NCCCI a / January         | Adjusted        | Adjusted         | CJCA-SB75          | CJCA-SB76            | CJCA-SB77             | CJCA-SB78             |
|----------------------|------------------|---------------------------|-----------------|------------------|--------------------|----------------------|-----------------------|-----------------------|
| Sample ID            | Background SB 2X | NCSSLs (January,<br>2010) | Industrial Soil | Residential Soil | CJCA-SB75-4-6-09C  | CJCA-SB76-4-6-09C    | CJCA-SB77-2-4-09C     | CJCA-SB78-4-6-09C     |
| Sample Date          | Mean             | 2010)                     | RSLs            | RSLs             | 07/21/09           | 07/21/09             | 07/21/09              | 07/21/09              |
| Chemical Name        |                  |                           |                 |                  |                    |                      |                       |                       |
|                      |                  |                           |                 |                  |                    |                      |                       |                       |
| Total Metals (mg/kg) |                  |                           |                 |                  |                    |                      |                       |                       |
| Antimony             | 0.36             |                           | 41              | 3.1              | 1.9 U              | 1.8 U                | 1.5 U                 | 3.5 U                 |
| Arsenic              | 2.12             | 5.8                       | 1.6             | 0.39             | <u>7</u> <u>J-</u> | <u>4.9</u> <u>J-</u> | <u>0.92</u> <u>J-</u> | <u>24.8</u> <u>J-</u> |
| Copper               | 2.56             | 700                       | 4,100           | 310              | 4.1                | 3.5                  | 0.5 J                 | 6.3                   |
| Lead                 | 8.49             | 270                       | 800             | 400              | 14.2               | 10.4                 | 4.1                   | 14.8                  |
| Zinc                 | 6.59             | 1,200                     | 31,000          | 2,400            | 8.1                | 5.4                  | 3.8 U                 | 10.2                  |
|                      |                  |                           |                 |                  |                    |                      |                       |                       |
| Wet Chemistry        |                  |                           |                 |                  |                    |                      |                       |                       |
| рН                   |                  |                           |                 |                  | NA                 | NA                   | NA                    | NA                    |

Shading indicates exceedance of two times the mean base background concentration for subsurface soil

Bold box indicates exceedance of NCSSLs

Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

UXO-20 Groundwater Analyical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID              | Camp Lejeune     | NC2GWQS         | Adjusted Tap | CJCA-TW01     | CJCA-TW02     | CJCA-TW03     | CJCA-TW04     | CJCA-TW05     | CJCA-TW06     | CJCA-TW08     | CJCA-TW09     | CJCA-TW10     | CJCA-TW11     | CJCA-TW12     | CJCA-TW13     | CJCA-TW14     | CJCA          | A-TW15         |
|-------------------------|------------------|-----------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|
| Sample ID               | Background GW 2X |                 | Water RSLs   | CJCA-TW01-09C | CJCA-TW02-09C | CJCA-TW03-09C | CJCA-TW04-09C | CJCA-TW05-09C | CJCA-TW06-09C | CJCA-TW08-09C | CJCA-TW09-09C | CJCA-TW10-09C | CJCA-TW11-09C | CJCA-TW12-09C | CJCA-TW13-09C | CJCA-TW14-09C | CJCA-TW15-09C | CJCA-TW15D-09C |
| Sample Date             | Mean             | (January, 2010) | Water NOLS   | 07/28/09      | 07/28/09      | 07/28/09      | 07/29/09      | 07/28/09      | 07/28/09      | 07/27/09      | 07/26/09      | 07/27/09      | 07/27/09      | 07/26/09      | 07/26/09      | 07/26/09      | 07/26/09      | 07/26/09       |
| Chemical Name           |                  |                 |              |               |               |               |               |               |               |               |               |               |               |               |               |               |               |                |
| Total Metals (µg/l)     |                  |                 |              |               |               |               |               |               |               |               |               |               |               |               |               |               |               |                |
| Arsenic                 | 5.77             | 10              | 0.045        | 20 U          | 20 U          | 20 U          | 3 J           | 20 U          | 20 U          | 2.2 J         | 20 U          | 2.6 J         | 20 U          | 20 U          | 20 U          | 2.9 J         | 20 U          | 20 U           |
| Copper                  | 2.76             | 1,000           | 150          | 100 U         | 20 U          | 7.4 J         | 20 U          | 20 U          | 3.2 J         | 20 U          | 4.4 J         | 20 U          | 20 U          | 20 U          | 3.9 J         | 20 U          | 20 U          | 3.5 J          |
| Lead                    | 2.8              | 15              |              | 19.1 J        | 20 U          | 14.1 J        | 20 U           |
| Zinc                    | 42.1             | 1,000           | 1,100        | 250 U         | 18 J          | 18.5 J        | 4.5 J         | 18.2 J        | 8.4 J         | 6.9 J         | 14.3 J        | 10.4 J        | 18.6 J        | 6.5 J         | 17.4 J        | 36.8 J        | 6.9 J         | 14.2 J         |
| Dissolved Metals (µg/l) |                  |                 |              |               |               |               |               |               |               |               |               |               |               |               |               |               |               |                |
| Arsenic                 | 5.77             | 10              | 0.045        | 20 U          | NA            | 20 U          | NA             |
| Copper                  | 2.76             | 1,000           | 150          | 20 U          | NA            | 20 U          | NA             |
| Lead                    | 2.8              | 15              |              | 2 J           | NA            | 20 U          | NA             |
| Zinc                    | 42.1             | 1,000           | 1,100        | 50 U          | NA            | 10.1 J        | NA             |

Notes:
Shading indicates exceedance of two times the mean base background concentration
Bold box indicates exceedance of NCGWQS
Bold text indicates exceedance of Adjusted Tap Water RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

J - Analyte present, value may or may not be accurate or precise

U - The material was analyzed for, but not detected

µg/l - micrograms per liter

UXO-20 Groundwater Analyical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID              | Camp Lejeune     | NC2GWQS         | Adjusted Tap | CJCA-TW16     | CJCA-TW17     | CJCA-TW18     | CJCA-TW19     | CJCA-TW20     | CJCA-TW21     | CJCA-TW22     | CJCA-TW23     | CJCA          | A-TW24         | CJCA-TW25     | CJCA-TW26     | CJCA-TW27     | CJCA-TW28     | CJCA-TW29     |
|-------------------------|------------------|-----------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|
| Sample ID               | Background GW 2X | (January, 2010) |              | CJCA-TW16-09C | CJCA-TW17-09C | CJCA-TW18-09C | CJCA-TW19-09C | CJCA-TW20-09C | CJCA-TW21-09C | CJCA-TW22-09C | CJCA-TW23-09C | CJCA-TW24-09C | CJCA-TW24D-09C | CJCA-TW25-09C | CJCA-TW26-09C | CJCA-TW27-09C | CJCA-TW28-09C | CJCA-TW29-09C |
| Sample Date             | Mean             | (January, 2010) | Water NOLS   | 07/25/09      | 07/24/09      | 07/26/09      | 07/26/09      | 07/26/09      | 07/26/09      | 07/24/09      | 07/23/09      | 07/27/09      | 07/27/09       | 07/27/09      | 07/27/09      | 07/23/09      | 07/23/09      | 07/25/09      |
| Chemical Name           |                  |                 |              |               |               |               |               |               |               |               |               |               |                |               |               |               |               |               |
|                         |                  |                 |              |               |               |               |               |               |               |               |               |               |                |               |               |               |               |               |
| Total Metals (µg/l)     |                  |                 |              |               |               |               |               |               |               |               |               |               |                |               |               |               |               |               |
| Arsenic                 | 5.77             | 10              | 0.045        | 20 U          | 3.1 J         | 20 U          | 20 U          | 20 U          | 20 U           | 20 U          | 20 U          | 9.4 J         | 2.9 J         | 20 U          |
| Copper                  | 2.76             | 1,000           | 150          | 20 U          | 10.4 J        | 20 U          | 2.7 J         | 20 U          | 20 U           | 20 U          | 20 U          | 5.5 J         | 10 J          | 20 U          |
| Lead                    | 2.8              | 15              |              | 20 U          | 11.5 J        | 20 U           | 20 U          | 2 J           | 10.3 J        | 2.3 J         | 20 U          |
| Zinc                    | 42.1             | 1,000           | 1,100        | 32 J          | 160           | 112           | 7.5 J         | 81.5          | 21.2 J        | 5.6 J         | 69.8          | 11.6 J        | 14.8 J         | 14.3 J        | 11.9 J        | 63.5          | 56.7          | 15.1 J        |
| Dissolved Metals (µg/l) |                  |                 |              |               |               |               |               |               |               |               |               |               |                |               |               |               |               |               |
| Arsenic                 | 5.77             | 10              | 0.045        | NA            | 20 U          | NA            | NA            | NA            | NA            | 20 U          | 20 U          | NA            | NA             | NA            | NA            | 20 U          | 20 U          | NA            |
| Copper                  | 2.76             | 1,000           | 150          | NA            | 20 U          | NA            | NA            | NA            | NA            | 20 U          | 20 U          | NA            | NA             | NA            | NA            | 20 U          | 3.6 J         | NA            |
| Lead                    | 2.8              | 15              |              | NA            | 20 U          | NA            | NA            | NA            | NA            | 2 J           | 20 U          | NA            | NA             | NA            | NA            | 20 U          | 20 U          | NA            |
| Zinc                    | 42.1             | 1,000           | 1,100        | NA            | 82.3          | NA            | NA            | NA            | NA            | 4.3 J         | 32.4 J        | NA            | NA             | NA            | NA            | 50 U          | 39.6 J        | NA            |

Notes:
Shading indicates exceedance of two times the mean base background concentration
Bold box indicates exceedance of NCGWQS
Bold text indicates exceedance of Adjusted Tap Water RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

J - Analyte present, value may or may not be accurate or precise

U - The material was analyzed for, but not detected

µg/l - micrograms per liter

UXO-20 Groundwater Analyical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID              | Camp Lejeune     |                 |                            | CJCA-TW30     | CJCA-TW31 | CJCA-TW32     | CJCA-TW33     | CJCA-TW34     | CJCA          | N-TW35         | CJCA-TW36     | CJCA-TW37     | CJCA-TW38     |
|-------------------------|------------------|-----------------|----------------------------|---------------|-----------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|
|                         | Background GW 2X | NC2GWQS         | Adjusted Tap<br>Water RSLs | CJCA-TW30-09C |           | CJCA-TW32-09C | CJCA-TW33-09C | CJCA-TW34-09C | CJCA-TW35-09C | CJCA-TW35D-09C | CJCA-TW36-09C | CJCA-TW37-09C | CJCA-TW38-09C |
| Sample Date             | Mean             | (January, 2010) | water RSLS                 | 07/25/09      | 07/23/09  | 07/25/09      | 07/25/09      | 07/25/09      | 07/22/09      | 07/22/09       | 07/22/09      | 07/22/09      | 07/23/09      |
| Chemical Name           |                  |                 |                            |               |           |               |               |               |               |                |               |               |               |
|                         |                  |                 |                            |               |           |               |               |               |               |                |               |               |               |
| Total Metals (µg/l)     |                  |                 |                            |               |           |               |               |               |               |                |               |               |               |
| Arsenic                 | 5.77             | 10              | 0.045                      | 6.1 J         | 4 J       | 2.6 J         | 3.5 J         | 20 U          | 20 U          | 20 U           | 5.5 J         | 20 U          | 20 U          |
| Copper                  | 2.76             | 1,000           | 150                        | 20 U          | 4.2 J     | 20 U          | 20 U          | 6.6 J         | 20 U          | 20 U           | 20 U          | 2.7 J         | 20 U          |
| Lead                    | 2.8              | 15              |                            | 20 U          | 6.6 J     | 3.6 J         | 2.2 J         | 4.5 J         | 20 U          | 20 U           | 2 J           | 20 U          | 2.9 J         |
| Zinc                    | 42.1             | 1,000           | 1,100                      | 16.9 J        | 91.6      | 53.8          | 77.6          | 19.7 J        | 8.3 J         | 10.4 J         | 4.3 J         | 42.6 J        | 30.9 J        |
|                         |                  |                 |                            |               |           |               |               |               |               |                |               |               |               |
| Dissolved Metals (µg/l) |                  |                 |                            |               |           |               |               |               |               |                |               |               |               |
| Arsenic                 | 5.77             | 10              | 0.045                      | NA            | 20 U      | NA            | NA            | NA            | 20 U          | 20 U           | 4.9 J         | 20 U          | 20 U          |
| Copper                  | 2.76             | 1,000           | 150                        | NA            | 20 U      | NA            | NA            | NA            | 20 U          | 20 U           | 20 U          | 3.1 J         | 20 U          |
| Lead                    | 2.8              | 15              |                            | NA            | 20 U      | NA            | NA            | NA            | 20 U          | 20 U           | 20 U          | 20 U          | 20 U          |
| Zinc                    | 42.1             | 1,000           | 1,100                      | NA            | 61.7      | NA            | NA            | NA            | 8 J           | 8.4 J          | 50 U          | 42.5 J        | 27 J          |

Notes:
Shading indicates exceedance of two times the mean base background concentration

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

J - Analyte present, value may or may not be accurate or precise

U - The material was analyzed for, but not detected

µg/l - micrograms per liter

**TABLE 5-4**IR Site 15 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report
MCB CamLej, North Carolina

| Station ID                                  | Camp Lejeune  | NOON.                     | Adjusted        | Adjusted         | IR15-SS01           | IR15-SS02            | IR1                 | 5-SS03               | IR15-SS04           | IR15-SS05           | IR15-SS06           | IR15-SS07            | IR15-SS08           | IR15-SS09           | IR15-SS10           |
|---------------------------------------------|---------------|---------------------------|-----------------|------------------|---------------------|----------------------|---------------------|----------------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|
| Sample ID                                   | Background SS | NCSSLs<br>(January, 2010) | Industrial Soil | Residential Soil | IR15-SS01-00-01-09C | IR15-SS02-00-01-09C  | IR15-SS03-00-01-09C | IR15-SS03D-00-01-09C | IR15-SS04-00-01-09C | IR15-SS05-00-01-09C | IR15-SS06-00-01-09C | IR15-SS07-00-01-09C  | IR15-SS08-00-01-09C | IR15-SS09-00-01-09C | IR15-SS10-00-01-09C |
| Sample Date                                 | 2X Mean       | (January, 2010)           | RSLs            | RSLs             | 07/10/09            | 07/10/09             | 07/10/09            | 07/10/09             | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09             | 07/10/09            | 07/10/09            | 07/10/09            |
| Chemical Name                               |               |                           |                 |                  |                     |                      |                     |                      |                     |                     |                     |                      |                     |                     |                     |
| Volatile Organic Compounds (µg/kg)          |               |                           |                 |                  |                     |                      |                     |                      |                     |                     |                     |                      |                     |                     |                     |
| 2-Butanone                                  |               | 16.000                    | 20.000.000      | 2,800,000        | 22 J                | 9.2 R                | 8.5 UJ              | 11 R                 | 4.4 J               | NA                  | 11 R                | 4.5 J                | 40 J                | 11 UJ               | 9.5 UJ              |
| Acetone                                     |               | 24,000                    | 63,000,000      | 6,100,000        | 240 J               | 9.2 R                | 14 J                | 11 R                 | 52 J                | NA                  | 77 J                | 160 J                | 1.700 J             | 11 UJ               | 150 J               |
| Chloroform                                  |               | 340                       | 1,500           | 300              | 5.2 J               | 4.6 R                | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 U                | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| Methyl acetate                              |               |                           | 29,000,000      | 7,800,000        | 5.8 UJ              | 4.6 R                | 4.2 UJ              | 5.4 R                | 4.5 J               | NA                  | 14 J                | 10 J                 | 2,100               | 5.5 UJ              | 24 J                |
| Toluene                                     |               | 5,500                     | 820,000         | 500,000          | 5.8 UJ              | 4.6 R                | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 U                | 10 J                | 5.5 UJ              | 4.7 UJ              |
| Semivolatile Organic Compounds (µg/kg)      |               |                           |                 |                  |                     |                      |                     |                      |                     |                     |                     |                      |                     |                     |                     |
| Benzo(g,h,i)perylene                        | -             | 360,000                   | 1,700,000       | 170,000          | 190 U               | 180 UJ               | 190 UJ              | 95 J                 | 180 U               | 180 U               | 170 U               | 180 U                | 210 U               | 190 U               | 180 U               |
| bis(2-Ethylhexyl)phthalate                  | -             | 7,200                     | 120,000         | 35,000           | 180 J               | 180 U                | 190 UJ              | 190 U                | 180 U               | 180 U               | 110 J               | 88 J                 | 210 U               | 190 U               | 180 U               |
| Butylbenzylphthalate                        |               | 150,000                   | 910,000         | 260,000          | 190 J               | 180 U                | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U                | 210 U               | 190 U               | 180 U               |
| Dibenz(a,h)anthracene                       |               | 190                       | 210             | 15               | 39 U                | 36 U                 | 38 UJ               | <u>64</u> J          | 37 U                | 36 U                | 35 U                | 36 U                 | 42 U                | 37 U                | 36 U                |
| Di-n-butylphthalate                         |               | 19,000                    | 6,200,000       | 610,000          | 190 U               | 180 U                | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U                | 210 U               | 120 J               | 150 J               |
| Indeno(1,2,3-cd)pyrene                      |               | 2,000                     | 2,100           | 150              | 39 U                | 36 U                 | 38 UJ               | 52 J                 | 37 U                | 36 U                | 35 U                | 36 U                 | 42 U                | 37 U                | 36 U                |
| Pesticide/Polychlorinated Biphenyls (μg/kg) |               |                           |                 |                  |                     |                      |                     |                      |                     |                     |                     |                      |                     |                     |                     |
| 4,4'-DDD                                    |               | 240                       | 7,200           | 2,000            | 7.5 J               | 1.8 U                | 1.9 U               | 1.9 U                | 1.9 U               | 1.8 U               | 1.7 U               | 1.8 U                | 2.1 U               | 2.7                 | 3.7                 |
| 4,4'-DDE                                    |               |                           | 5,100           | 1,400            | 25 J                | 1.8 U                | 0.75 J              | 0.88 J               | 1.9 U               | 1.8 U               | 0.56 J              | 1.1 J                | 2.1 J               | 21 J                | 22 J                |
| 4,4'-DDT                                    |               | 340                       | 7,000           | 1,700            | 16 J                | 1.8 UJ               | 1 J                 | 1.3 J                | 1.9 UJ              | 1.8 UJ              | 0.39 J              | 0.62 J               | 0.99 J              | 1.8 UJ              | 24 J                |
| alpha-Chlordane                             |               | 68                        | 6,500           | 1,600            | 7.4 J               | 1.8 U                | 1.9 U               | 1.9 U                | 1.9 U               | 1.8 U               | 1.7 U               | 1.8 U                | 2.1 U               | 1.1 J               | 1 J                 |
| Aroclor-1254                                |               |                           | 740             | 110              | <u>360</u> <u>J</u> | 18 U                 | 19 U                | 19 U                 | 18 U                | 18 U                | 17 U                | 18 U                 | 21 U                | 17 U                | 17 U                |
| Dieldrin                                    |               | 0.81                      | 110             | 30               | 1.9 U               | 1.8 U                | 1.9 U               | 1.9 U                | 1.9 U               | 1.8 U               | 1.7 U               | 1.8 U                | 2.1 U               | 1.7 J               | 0.91 J              |
| gamma-Chlordane                             |               | 68                        | 6,500           | 1,600            | 8.6 J               | 1.8 U                | 1.9 U               | 1.9 U                | 1.9 U               | 1.8 U               | 1.7 U               | 1.8 U                | 2.1 U               | 0.58 J              | 0.71 J              |
| Total Metals (mg/kg)                        |               |                           |                 |                  |                     |                      |                     |                      |                     |                     |                     |                      |                     |                     |                     |
| Aluminum                                    | 5,487         |                           | 99,000          | 7,700            | 4,280               | 5,720                | <u>12,500</u>       | <u>11,400</u>        | 3,910 J+            | 1,150 J+            | 1,250 J+            | 1,380 J+             | 4,640 J+            | 7,490               | 6,340               |
| Antimony                                    | 0.447         |                           | 41              | 3.1              | 0.64 J-             | 1.5 UJ               | 1.6 UJ              | 1.6 UJ               | 1.6 U               | 1.6 U               | 0.27 J              | 0.27 J               | 0.34 J              | 1.5 UJ              | 1.5 UJ              |
| Arsenic                                     | 0.626         | 5.8                       | 1.6             | 0.39             | <u>1.7</u>          | <u>0.76</u> <u>J</u> | <u>4.1</u>          | <u>4.7</u>           | <u>1</u> <u>J</u>   | 0.24 J              | 0.39 J              | <u>0.49</u> <u>J</u> | <u>2.1</u>          | <u>4.1</u>          | <u>2.7</u>          |
| Barium                                      | 14.5          | 580                       | 19,000          | 1,500            | 34.3                | 9.2                  | 15.7                | 14.8                 | 6.5                 | 4.6                 | 2.9 J               | 4.3                  | 17.5                | 12.6                | 13.6                |
| Beryllium                                   | 0.103         |                           | 200             | 16               | 0.055 J             | 0.039 J              | 0.14 J              | 0.14 J               | 0.16 U              | 0.16 U              | 0.15 U              | 0.16 U               | 0.18 U              | 0.076 J             | 0.1 J               |
| Cadmium                                     | 0.033         | 3                         | 80              | 7                | 0.61                | 0.45 U               | 0.49 U              | 0.49 U               | 0.015 J             | 0.47 U              | 0.014 J             | 0.054 J              | 0.11 J              | 0.044 J             | 0.45 U              |
| Calcium                                     | 6,360         |                           |                 |                  | 36,500              | 1,680                | 12,600              | 29,900               | 94.3                | 157                 | 182                 | 366                  | 2,230               | 742                 | 555                 |
| Chromium                                    | 6.05          | 3.8                       | 5.6             | 0.29             | <u>7.2</u>          | <u>5.7</u>           | <u>17.1</u>         | <u>17.2</u>          | <u>4</u>            | <u>1.7</u>          | 1.4 J               | <u>1.9</u>           | <u>6.2</u>          | <u>10.2</u>         | <u>8.4</u>          |
| Cobalt<br>Copper                            | 0.294<br>4.83 | 700                       | 30<br>4,100     | 2.3<br>310       | 0.57<br>42.1        | 0.24 J<br>1.1 J      | 0.57<br>2.9         | 0.56<br>3.2          | 0.086 J<br>0.73 J   | 0.069 J<br>0.54 J   | 0.38 U<br>1.4 J     | 0.067 J<br>1.9       | 0.45 U<br>13.1      | 0.42<br>4.1         | 0.3 J<br>7.9        |
| Iron                                        | 3,245         | 150                       | 72,000          | 5,500            | 5,010               | 1,620                | 9,030               | 10,200               | 2,410               | 559                 | 903                 | 930                  | 3,430               | 6,430               | 5,270               |
| Lead                                        | 12.3          | 270                       | 800             | 400              | 70.3                | 3.7                  | 9,030               | 12.1                 | 3.9                 | 3                   | 9.1                 | 12.2                 | 3,430               | <u>6,430</u><br>11  | 19.4                |
| Magnesium                                   | 238           |                           | 800             | 400              | 312                 | 197                  | 614                 | 796                  | 103                 | 46.7                | 53.7                | 60.4                 | 38.6<br>247         | 339                 | 263                 |
| Manganese                                   | 13.7          | 65                        | 2,300           | 180              | 22.2                | 5.5                  | 9.7                 | 14                   | 4.6                 | 5.2                 | 6.2                 | 7.6                  | 14.3                | 7.9                 | 12.5                |
| Mercury                                     | 0.081         | 1                         | 31              | 2.4              | 0.51                | 0.034 U              | 0.035 U             | 0.041                | 0.034 U             | 0.034 U             | 0.033 U             | 0.019 J              | 0.039 U             | 0.044               | 0.049               |
| Nickel                                      | 1.21          | 130                       | 2,000           | 160              | 2.7                 | 1.3                  | 1.8                 | 2.1                  | 0.55 J              | 0.48 J              | 0.49 J              | 0.53 J               | 1.6                 | 1.7                 | 1.6                 |
| Potassium                                   | 116           |                           |                 |                  | 184                 | 287                  | 497                 | 475                  | 109                 | 78.8 U              | 76.3 U              | 78.8 U               | 220                 | 367                 | 249                 |
| Selenium                                    | 0.563         | 2.1                       | 510             | 39               | 0.49 J              | 1.5 U                | 1.6 U               | 1.6 U                | 1.6 U               | 1.6 U               | 1.5 U               | 1.6 U                | 1.8 U               | 1.5 U               | 1.5 U               |
| Silver                                      | 0.14          | 3.4                       | 510             | 39               | 1.6 U               | 1.5 U                | 1.6 U               | 1.6 U                | 1.6 U               | 0.17 J              | 1.5 U               | 1.6 U                | 1.8 U               | 1.5 U               | 1.5 U               |
| Sodium                                      | 80.9          |                           |                 |                  | 17.5 J              | 6.7 J                | 40.9 J              | 68.7 J               | 202 U               | 197 U               | 191 U               | 197 U                | 17.1 J              | 13.8 J              | 188 U               |
| Vanadium                                    | 8.9           |                           | 520             | 39               | 7.5                 | 7.2                  | 20.1                | 22.3                 | 5.5                 | 2.2 J               | 2.3 J               | 2.7 J                | 8.9                 | 18                  | 13.2                |
| Zinc                                        | 10.8          | 1,200                     | 31,000          | 2,400            | 170                 | 3.8 U                | 10                  | 11.9                 | 4 U                 | 3.9 U               | 6                   | 7.5                  | 26.2                | 12.5                | 18                  |
| Wet Chemistry                               |               |                           |                 |                  |                     |                      |                     |                      |                     |                     |                     |                      |                     |                     |                     |
| pH                                          |               |                           |                 |                  | 7.8                 | 8.3                  | 7.9                 | 8                    | 4.7                 | 4.8                 | 4.8                 | 5.6                  | 5.6                 | 5.2                 | 5.5                 |
| <u>II</u>                                   |               |                           | 1               |                  |                     | 0.0                  |                     | <u> </u>             |                     |                     |                     | 0.0                  | 0.0                 |                     | 0.0                 |

Notes:
Shading indicates exceedance of two times the mean base background concentration
Bold box indicates exceedance of NC SSLs
Bold text indicates exceedance of Adjusted Industrial Soil RSLs
Underline indicates exceedance of Adjusted Residential Soil RSLs
RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents
NA - not analyzed
J - Analyte present, value may or may not be accurate or precise
J - Analyte present, value may be biased low, actual value may be higher
J+ - Analyte present, value may be biased high, actual value may be lower
R - Unreliable Result
U - The material was analyzed for, but not detected
UJ - Analyte not detected, quantitation limit may be inaccurate
mg/kg - milligrams per kilogram
µg/kg - micrograms per kilogram

Site 15 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report

MCB CamLej, North Carolina

|                                             | Camp Lejeune<br>Background SB 2X | NCSSLs          | Adjusted             | Adjusted             | IR15-SB01         | 11110             | 5-SB02             | IR15-SB03           | IR15-SB04         | IR15-SB05         | IR15-SB06         | IR15-SB07            | IR15-SB08         | IR15-SB09            | IR15-SB10           |
|---------------------------------------------|----------------------------------|-----------------|----------------------|----------------------|-------------------|-------------------|--------------------|---------------------|-------------------|-------------------|-------------------|----------------------|-------------------|----------------------|---------------------|
|                                             | Dackground 3D ZA 1               |                 | Industrial Soil      | Residential Soil     | IR15-SB01-4-6-09C | IR15-SB02-2-7-09C | IR15-SB02D-2-7-09C | IR15-SB03-2-7-09C   | IR15-SB04-2-7-09C | IR15-SB05-2-7-09C | IR15-SB06-2-7-09C | IR15-SB07-2-4-09C    | IR15-SB08-2-4-09C | IR15-SB09-2-7-09C    | IR15-SB10-2-4-09C   |
| Sample Date                                 | Mean                             | (January, 2010) | RSLs                 | RSLs                 | 07/29/09          | 07/26/09          | 07/26/09           | 07/29/09            | 07/27/09          | 07/27/09          | 07/27/09          | 07/27/09             | 07/29/09          | 07/29/09             | 07/29/09            |
| Chemical Name                               |                                  |                 |                      |                      |                   |                   |                    |                     |                   |                   |                   |                      |                   |                      |                     |
|                                             |                                  |                 |                      |                      |                   |                   |                    |                     |                   |                   |                   |                      |                   |                      |                     |
| Volatile Organic Compounds (μg/kg)          |                                  |                 |                      |                      |                   |                   |                    |                     |                   |                   |                   |                      |                   |                      |                     |
| 1,2,4-Trichlorobenzene                      |                                  | 2,200           | 28,000               | 6,200                | 1.7 U             | 2 UJ              | 2.4 UJ             | 1.8 U               | 2.4 J             | 1.8 UJ            | 3.2 R             | 2.5 J                | 1.9 J             | 2.4 J                | 1.6 U               |
| 1,3-Dichlorobenzene                         |                                  | 7,600           |                      |                      | 1.7 U             | 2 UJ              | 2.4 UJ             | 1.8 U               | 1.4 J             | 1.8 UJ            | 3.2 R             | 1.6 J                | 1.6 U             | 1.3 J                | 1.6 U               |
| 1,4-Dichlorobenzene                         |                                  | 70              | 12,000               | 2,400                | 1.7 U             | 2 UJ              | 2.4 UJ             | 1.8 U               | 1.9 UJ            | 1.8 UJ            | 1.6 R             | 1.6 J                | 1.6 U             | 1.4 J                | 1.6 U               |
| 2-Butanone                                  |                                  | 16,000          | 20,000,000           | 2,800,000            | 3.4 U             | 4 UJ              | 4.8 UJ             | 3.6 U               | 6.6 J             | 3.7 UJ            | 3.2 R             | 21 J                 | 3.1 U             | 15 J                 | 3.2 U               |
| 2-Hexanone<br>4-Methyl-2-pentanone          |                                  | 1,200           | 140,000<br>3,400,000 | 21,000               | 3.4 U<br>3.4 U    | 4 UJ<br>4 UJ      | 4.8 UJ<br>4.8 UJ   | 3.6 U<br>3.6 U      | 3.9 UJ<br>3.9 UJ  | 3.7 UJ<br>3.7 UJ  | 3.2 R<br>3.2 R    | 4.1 J<br>4.2 UJ      | 3.1 U<br>3.1 U    | 0.6 J<br>1.7 J       | 3.2 U<br>3.2 U      |
| ' '                                         |                                  | 24,000          | 63,000,000           | 530,000<br>6,100,000 | 3.4 U             | 4 UJ<br>42 J      | 4.8 UJ<br>39 J     | 3.6 U<br>6.4 J      | 3.9 UJ<br>41 J    | 3.7 UJ<br>19 J    | 3.2 R<br>60 J     | 4.2 UJ<br>120 J      | 3.1 U<br>18 J     | 1.7 J<br>180 J       | 3.2 U<br>4.6        |
| Acetone<br>Benzene                          |                                  | 7.3             | 5.400                | 1.100                | 3.4 U<br>1.7 U    | 42 J<br>2 UJ      | 2.4 UJ             | 1.8 U               | 0.97 J            | 19 J              | 1.6 R             | 2.1 UJ               | 1.6 U             | 0.42 J               | 4.6<br>1.6 U        |
| Carbon disulfide                            |                                  | 3,800           | 370,000              | 82,000               | 1.7 U             | 2 UJ              | 2.4 UJ<br>1.4 J    | 1.8 U               | 0.97 J<br>1.9 UJ  | 1.8 UJ            | 1.6 R             | 2.1 UJ               | 1.6 U             | 0.42 J               | 1.6 U               |
| Chlorobenzene                               |                                  | 450             | 140,000              | 29,000               | 1.7 U             | 2 UJ              | 2.4 UJ             | 1.8 U               | 1.9 UJ            | 1.8 UJ            | 1.6 R             | 2.1 UJ               | 1.6 U             | 2.6 J                | 1.6 U               |
| Methyl acetate                              |                                  |                 | 29,000,000           | 7,800,000            | 1.7 U             | 1.9 J             | 3.5 J              | 1.8 U               | 1.9 UJ            | 7.8 J             | 1.6 R             | 2.1 UJ               | 1.6 U             | 1.9 R                | 1.6 U               |
| Methylene chloride                          |                                  | 23              | 53,000               | 11,000               | 3.4 UJ            | 2.2 J             | 3.1 J              | 3.6 UJ              | 2.9 J             | 8.9 J             | 3.2 R             | 3.3 J                | 3.1 U             | 3.9 R                | 3.2 UJ              |
| Styrene                                     |                                  | 920             | 870,000              | 630,000              | 1.7 U             | 2 UJ              | 2.4 UJ             | 1.8 U               | 3.9 UJ            | 1.8 UJ            | 3.2 R             | 2.9 J                | 3.1 U             | 2.6 J                | 1.6 U               |
| Tetrachloroethene                           |                                  | 5               | 2,600                | 550                  | 1.7 U             | 2 UJ              | 2.4 UJ             | 1.8 U               | 1.9 UJ            | 1.8 UJ            | 1.6 R             | 2.1 UJ               | 1.6 U             | 1.5 J                | 1.6 U               |
| Toluene                                     |                                  | 5,500           | 820,000              | 500,000              | 1.7 U             | 2 UJ              | 2.4 UJ             | 1.8 U               | 2.8 J             | 1.8 UJ            | 1.6 R             | 2.9 J                | 1.6 U             | 0.42 J               | 1.6 U               |
|                                             |                                  | -,              | ,                    | ,                    |                   | _ 50              |                    |                     |                   |                   |                   |                      |                   |                      |                     |
| Semivolatile Organic Compounds (µg/kg)      |                                  |                 |                      |                      |                   |                   |                    |                     |                   |                   |                   |                      |                   |                      |                     |
| bis(2-Ethylhexyl)phthalate                  |                                  | 7,200           | 120,000              | 35,000               | 37 J              | 320 U             | 330 U              | 31 J                | 360 U             | 330 U             | 180 U             | 210 U                | 190 U             | 200 U                | 32 J                |
| Pesticide/Polychlorinated Biphenyls (µg/kg) |                                  |                 |                      |                      |                   |                   |                    |                     |                   |                   |                   |                      |                   |                      | <del> </del>        |
| 4,4'-DDD                                    |                                  | 240             | 7,200                | 2,000                | 1.9 U             | 0.61 J            | 1.9 U              | 1.9 U               | 2.1 U             | 1.9 U             | 1.8 U             | 0.58 J               | 0.61 J            | 13                   | 46                  |
| 4,4'-DDE                                    |                                  | 240             | 5,100                | 1,400                | 1.9 U             | 9.7 J             | 0.54 J             | 1.9 U               | 2.1 U<br>1.6 J    | 0.56 J            | 1.8 U             | 0.58 J<br>0.68 J     | 0.61 J<br>0.92 J  | 6.8                  | 95                  |
| 4,4'-DDT                                    |                                  | 340             | 7,000                | 1,700                | 1.9 U             | 3.9 J             | 1.9 UJ             | 1.9 U               | 0.92 J            | 0.56 J            | 1.8 U             | 2.1 U                | 1.9 U             | 25                   | 180                 |
| alpha-Chlordane                             |                                  | 68              | 6,500                | 1,600                | 1.9 U             | 1.9 U             | 1.9 U              | 1.9 U               | 2.1 U             | 1.9 U             | 1.8 U             | 2.1 U                | 1.9 U             | 3.7 J                | 9.9 J               |
| Dieldrin                                    |                                  | 0.81            | 110                  | 30                   | 1.9 U             | 1.9 U             | 1.9 U              | 1.9 U               | 2.1 U             | 2.3               | 1.8 U             | 2.1 U                | 1.9 U             | 2 U                  | 1.8 U               |
| gamma-Chlordane                             |                                  | 68              | 6,500                | 1,600                | 1.9 U             | 1.9 U             | 1.9 U              | 1.9 U               | 2.1 U             | 1.9 U             | 1.8 U             | 2.1 U                | 1.9 U             | 3.2                  | 7.4                 |
| gamma omoraano                              |                                  | 00              | 0,000                | 1,000                | 0                 | 0                 | 1.0 0              | 1.0 0               | 2 0               | 1.0 0             | 1.0 0             | 2 0                  | 0                 | 0.2                  |                     |
| Total Metals (mg/kg)                        |                                  |                 |                      |                      |                   |                   |                    |                     |                   |                   |                   |                      |                   |                      |                     |
| Aluminum                                    | 10,369                           |                 | 99,000               | 7,700                | 3,380             | 6,070 J           | 5,570 J            | 3,310               | 4,940             | 4,190 J           | 1,590             | 2,650                | 455               | 5,090                | 3,550               |
| Antimony                                    | 0.36                             |                 | 41                   | 3.1                  | 0.82 J-           | 1.6 UJ            | 1.6 UJ             | 1.6 UJ              | 1.8 UJ            | 1.6 UJ            | 1.5 UJ            | 1.7 UJ               | 1.6 UJ            | 8.6 UJ               | 0.21 J-             |
| Arsenic                                     | 2.12                             | 5.8             | 1.6                  | 0.39                 | <u>1.8</u>        | <u>1.6</u>        | <u>1.4</u> J       | <u>1.2</u> <u>J</u> | <u>1.9</u>        | <u>1.8</u>        | 0.38 J            | <u>0.63</u> <u>J</u> | 1.6 U             | <u>16.6</u>          | <u>1.4</u> <u>J</u> |
| Barium                                      | 16.6                             | 580             | 19,000               | 1,500                | 32.3              | 13.6              | 12                 | 5.4                 | 14.8 J            | 6.8               | 3.6 J             | 8.8 J                | 4.1 U             | 21.5 U               | 8.5                 |
| Beryllium                                   | 0.165                            |                 | 200                  | 16                   | 0.042 J           | 0.16 U            | 0.16 U             | 0.04 J              | 0.18 U            | 0.16 U            | 0.15 U            | 0.17 U               | 0.16 U            | 0.071 J              | 0.056 J             |
| Cadmium                                     | 0.023                            | 3               | 80                   | 7                    | 0.53              | 0.47 U            | 0.47 U             | 0.47 U              | 0.54 U            | 0.49 U            | 0.46 U            | 0.52 U               | 0.49 U            | 0.82 J               | 0.019 J             |
| Calcium                                     | 441<br>14.5                      | 3.8             |                      | 0.29                 | 20,000            | 518               | 470                | 156<br><u>4.7 J</u> | 670               | 425               | 76.9 U            | 283<br>3.1           | 82.1 U            | 2,630                | 137                 |
| Chromium                                    |                                  |                 | 5.6                  |                      | 6.9 J             | <u>6.3</u>        | <u>5.5</u>         |                     | 7.4               | <u>6.1</u>        | 6.3               |                      | 1.1 J             | <u>52.4</u> <u>J</u> | <u>5.7 J</u>        |
| Cobalt<br>Copper                            | 0.822<br>2.56                    | 700             | 30<br>4,100          | 2.3<br>310           | 0.73<br>27.5      | 0.32 J<br>5.9     | 0.22 J<br>4.6      | 0.16 J<br>0.71 J    | 0.39 J<br>31.7    | 0.22 J<br>1.6 U   | 0.066 J<br>0.89 J | 0.099 J<br>2.1       | 0.41 U<br>0.27 J  | <u>9.3</u><br>10.6   | 0.14 J<br>2.6       |
| Iron                                        | 5,439                            | 150             | 72,000               | 5,500                | <u>5,830</u>      | 4,050             | 2,640              | 2,540               | 3,470             | 2,260             | 718               | 1,290                | 153 J+            | 179,000 J+           | 3,020               |
| Lead                                        | 8.49                             | 270             | 800                  | 400                  | 483               | 28.4              | 21.6               | 2,540               | 53                | 4.6               | 2.7               | 5.7                  | 1.3 J             | 111                  | 5.8                 |
| Magnesium                                   | 363                              |                 |                      |                      | 219               | 174               | 178                | 130                 | 206               | 180               | 58                | 89.6                 | 17.2 J            | 200                  | 105                 |
| Manganese                                   | 9.25                             | 65              | 2,300                | 180                  | 69.6              | 9.2               | 9.2                | 6.8                 | 21.9 J+           | 5.9               | 5.6 J+            | 8 J+                 | 1.5               | 626                  | 6.9                 |
| Mercury                                     | 0.071                            | 1               | 31                   | 2.4                  | 0.14              | 0.036             | 0.013 J            | 0.033 U             | 0.036 J           | 0.035 U           | 0.0027 J          | 0.032 J              | 0.033 U           | 0.037 U              | 0.045               |
| Nickel                                      | 2.27                             | 130             | 2,000                | 160                  | 3.9               | 1.7               | 1.5                | 0.79 U              | 1.5 J             | 0.033 0           | 0.74 J            | 0.032 J              | 0.82 U            | 24.4                 | 0.043               |
| Potassium                                   | 361                              |                 | 2,000                |                      | 143               | 121               | 137                | 144                 | 199               | 166               | 54.4 J            | 64.3 J               | 18.2 J            | 236 J                | 102                 |
| Sodium                                      | 68.3                             |                 |                      |                      | 202 U             | 8.8 J             | 7.7 J              | 5.6 J               | 15 J              | 7.2 J             | 4.3 J             | 8.2 J                | 205 U             | 1,080 U              | 194 U               |
| Thallium                                    | 0.38                             |                 | 6.6                  | 0.51                 | 2.4 U             | 2.3 U             | 2.4 U              | 2.4 U               | 2.7 U             | 2.5 U             | 2.3 U             | 2.6 U                | 2.5 U             | 1.9 J                | 2.3 U               |
| Vanadium                                    | 17.2                             |                 | 520                  | 39                   | 7                 | 10.4 J+           | 7.3 J+             | 6                   | 8.9 J             | 8.8 J+            | 2.3 J             | 3.4 J                | 4.1 U             | 21.5 U               | 7.1                 |
| Zinc                                        | 6.59                             | 1,200           | 31,000               | 2,400                | 345               | 19.5              | 17.1               | 3.9 U               | 34.3              | 4.1 U             | 1.5 J             | 4.1 J                | 4.1 U             | 99                   | 8 U                 |
|                                             |                                  | .,=             | ,                    | _,                   |                   |                   |                    |                     |                   |                   |                   |                      | 2                 |                      |                     |
| Wet Chemistry                               |                                  |                 |                      |                      |                   |                   |                    |                     |                   |                   |                   |                      |                   |                      |                     |
| pH (ph)                                     |                                  |                 |                      |                      | 7.5               | 6.9               | 7.3                | 5.1                 | 7.4               | 5.9               | 5.4               | 6                    | 6.8               | 7.5                  | 5                   |

Notes:
Shading indicates exceedance of two times the mean base background concentration
Bold box indicates exceedance of NCSSLs
Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

J - Analyte present, value may or may not be accurate or precise
J- - Analyte present, value may be biased low, actual value may be higher

J+ - Analyte present, value may be biased high, actual value may be lower

R - Unreliable Result

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

ph - pH units μg/kg - micrograms per kilogram

Created by: B. Propst/CLT Checked by: K. Howell/CLT

TABLE 5-6

IR Site 15 Groundwater Analytical Results Camp Johnson Construction Area Focused PA/SI Report

| Carolina |
|----------|
|          |

| Station ID                                                                                   | Camp Lejeune                                                                               |                                            |                                                       | IR15-TW01                                                                                     | IR15-TW02                                                                                     | IR15                                                                                        | i-TW03                                                                             | IR15-TW04                                                              | IR15-TW05                                                                        |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Sample ID                                                                                    | Background GW 2X                                                                           | NCGWQS (January,                           | Adjusted Tap Water                                    | IR15-TW01-09C                                                                                 | IR15-TW02-09C                                                                                 | IR15-TW03-09C                                                                               | IR15-TW03D-09C                                                                     | IR15-TW04-09C                                                          | IR15-TW05-09C                                                                    |
| Sample Date                                                                                  | Mean                                                                                       | 2010)                                      | RSLs                                                  | 07/29/09                                                                                      | 07/29/09                                                                                      | 07/28/09                                                                                    | 07/28/09                                                                           | 07/29/09                                                               | 07/28/09                                                                         |
| Chemical Name                                                                                |                                                                                            |                                            |                                                       |                                                                                               |                                                                                               |                                                                                             |                                                                                    |                                                                        |                                                                                  |
| Offerfical Name                                                                              |                                                                                            |                                            |                                                       |                                                                                               |                                                                                               |                                                                                             |                                                                                    |                                                                        |                                                                                  |
| Volatile Organic Compounds (µg/l)                                                            |                                                                                            |                                            |                                                       |                                                                                               |                                                                                               |                                                                                             |                                                                                    |                                                                        |                                                                                  |
| Isopropylbenzene                                                                             |                                                                                            | 70                                         | 68                                                    | 1 U                                                                                           | 1 U                                                                                           | 1 UJ                                                                                        | 4.9 J                                                                              | 1 U                                                                    | 1 R                                                                              |
| Styrene                                                                                      |                                                                                            | 70                                         | 160                                                   | 1 U                                                                                           | 1 U                                                                                           | 1 UJ                                                                                        | 5.9 J                                                                              | 1 U                                                                    | 1 R                                                                              |
|                                                                                              |                                                                                            |                                            |                                                       |                                                                                               |                                                                                               |                                                                                             |                                                                                    |                                                                        |                                                                                  |
| Semivolatile Organic Compounds (µg/l)                                                        |                                                                                            |                                            |                                                       |                                                                                               |                                                                                               |                                                                                             |                                                                                    |                                                                        |                                                                                  |
| No Detections                                                                                |                                                                                            |                                            |                                                       | NA                                                                                            | NA                                                                                            | NA                                                                                          | NA                                                                                 | NA                                                                     | NA                                                                               |
|                                                                                              |                                                                                            |                                            |                                                       |                                                                                               |                                                                                               |                                                                                             |                                                                                    |                                                                        |                                                                                  |
| Pesticide/Polychlorinated Biphenyls (μg/l)                                                   |                                                                                            |                                            |                                                       | NA                                                                                            | NA                                                                                            |                                                                                             |                                                                                    |                                                                        |                                                                                  |
| No Detections                                                                                |                                                                                            |                                            |                                                       | NA                                                                                            | NA NA                                                                                         | NA                                                                                          | NA                                                                                 | NA                                                                     | NA                                                                               |
| Total Metals (μg/l)                                                                          |                                                                                            |                                            |                                                       |                                                                                               |                                                                                               |                                                                                             |                                                                                    |                                                                        |                                                                                  |
| Aluminum                                                                                     | 1.886                                                                                      |                                            | 3,700                                                 | 45.8 J                                                                                        | 148 J                                                                                         | 612 J                                                                                       | 1,000 U                                                                            | 307 J                                                                  | 3,360                                                                            |
| Arsenic                                                                                      | 5.77                                                                                       | 10                                         | 0.045                                                 | 20 U                                                                                          | 20 U                                                                                          | 20 U                                                                                        | 20 U                                                                               | 3.2 J                                                                  | 20 U                                                                             |
| Barium                                                                                       | 86.2                                                                                       | 700                                        | 730                                                   | 28 J                                                                                          | 24.3 J                                                                                        | 92.1                                                                                        | 95                                                                                 | 24.1 J                                                                 | 19.2 J                                                                           |
| Beryllium                                                                                    | 0.308                                                                                      | 4                                          | 7.3                                                   | 2 U                                                                                           | 2 U                                                                                           | 0.17 J                                                                                      | 0.18 J                                                                             | 2 U                                                                    | 2 U                                                                              |
| Calcium                                                                                      | 69,078                                                                                     |                                            |                                                       | 27,500                                                                                        | 4,110                                                                                         | 3,580                                                                                       | 3,540                                                                              | 45,500                                                                 | 42,500                                                                           |
| Chromium                                                                                     | 3.13                                                                                       | 10                                         | 0.043                                                 | 20 U                                                                                          | 20 U                                                                                          | 20 U                                                                                        | 1.7 J                                                                              | 20 U                                                                   | 5 J                                                                              |
| Cobalt                                                                                       | 3.4                                                                                        | -                                          | 1.1                                                   | 3.9 J                                                                                         | 0.63 J                                                                                        | 1 J                                                                                         | 2.6 J                                                                              | 0.66 J                                                                 | 5 U                                                                              |
| Copper                                                                                       | 2.76                                                                                       | 1,000                                      | 150                                                   | 20 U                                                                                          | 2.8 J                                                                                         | 20 U                                                                                        | 2.9 J                                                                              | 20 U                                                                   | 3.8 J                                                                            |
| Iron                                                                                         | 5,999                                                                                      | 300                                        | 2,600                                                 | 25,800                                                                                        | 2,910                                                                                         | 6,450                                                                                       | 6,440                                                                              | 10,600                                                                 | 1,040                                                                            |
| Magnesium                                                                                    | 6,363                                                                                      |                                            |                                                       | 1,410                                                                                         | 393                                                                                           | 4,520                                                                                       | 4,620                                                                              | 2,940                                                                  | 1,040                                                                            |
| Manganese                                                                                    | 214                                                                                        | 50                                         | 88                                                    | 439                                                                                           | 49.6                                                                                          | 87                                                                                          | 89.6                                                                               | 149                                                                    | 5.2                                                                              |
| Nickel                                                                                       | 7.97                                                                                       | 100                                        | 73                                                    | 30                                                                                            | 21.2                                                                                          | 10.1                                                                                        | 12.1                                                                               | 10 U                                                                   | 2.3 J                                                                            |
| Potassium                                                                                    | 3,277                                                                                      |                                            |                                                       | 1,330                                                                                         | 2,540                                                                                         | 1,480                                                                                       | 1,550                                                                              | 808 J                                                                  | 624 J                                                                            |
| Sodium                                                                                       | 22,508                                                                                     |                                            |                                                       | 1,590 J                                                                                       | 5,120                                                                                         | 7,670                                                                                       | 8,000                                                                              | 2,910                                                                  | 4,510                                                                            |
| Thallium                                                                                     | 3.78                                                                                       | 2                                          | 0.24                                                  | 30 U                                                                                          | 30 U                                                                                          | 30 U                                                                                        | 30 U                                                                               | 3.2 J                                                                  | 30 U                                                                             |
| Zinc                                                                                         | 42.1                                                                                       | 1,000                                      | 1,100                                                 | 5.3 J                                                                                         | 5.5 J                                                                                         | 10.9 J                                                                                      | 7.8 J                                                                              | 9,2 J                                                                  | 7.1 J                                                                            |
|                                                                                              |                                                                                            |                                            |                                                       |                                                                                               |                                                                                               |                                                                                             |                                                                                    | 5.2 0                                                                  |                                                                                  |
| Dissolved Metals (µg/l)                                                                      |                                                                                            |                                            |                                                       |                                                                                               |                                                                                               |                                                                                             |                                                                                    | 5.2 0                                                                  |                                                                                  |
| A lease income                                                                               | 4.000                                                                                      |                                            | 2.700                                                 | 4.000 11                                                                                      | 40.1                                                                                          | 546                                                                                         | 620.1                                                                              |                                                                        |                                                                                  |
| Aluminum                                                                                     | 1,886                                                                                      |                                            | 3,700                                                 | 1,000 U                                                                                       | 40 J                                                                                          | 516 J                                                                                       | 629 J                                                                              | 1,000 U                                                                | 1,000 U                                                                          |
| Barium                                                                                       | 86.2                                                                                       | 700                                        | 730                                                   | 25.6 J                                                                                        | 21.8 J                                                                                        | 94                                                                                          | 96.8                                                                               | 1,000 U<br>23.2 J                                                      | 1,000 U<br>20 U                                                                  |
| Barium<br>Beryllium                                                                          | 86.2<br>0.308                                                                              | 700<br>4                                   | 730<br>7.3                                            | 25.6 J<br>2 U                                                                                 | 21.8 J<br>0.089 J                                                                             | 94<br>0.21 J                                                                                | 96.8<br>0.2 J                                                                      | 1,000 U<br>23.2 J<br>2 U                                               | 1,000 U<br>20 U<br>2 U                                                           |
| Barium<br>Beryllium<br>Calcium                                                               | 86.2<br>0.308<br>69,078                                                                    | 700<br>4<br>                               | 730<br>7.3<br>                                        | 25.6 J<br>2 U<br>25,000                                                                       | 21.8 J<br>0.089 J<br>3,980                                                                    | 94<br>0.21 J<br>3,550                                                                       | 96.8<br>0.2 J<br>3,710                                                             | 1,000 U<br>23.2 J<br>2 U<br>44,100                                     | 1,000 U<br>20 U<br>2 U<br>42,900                                                 |
| Barium<br>Beryllium<br>Calcium<br>Cobalt                                                     | 86.2<br>0.308<br>69,078<br>3.4                                                             | 700<br>4<br>                               | 730<br>7.3<br><br>1.1                                 | 25.6 J<br>2 U<br>25,000<br>3.1 J                                                              | 21.8 J<br>0.089 J<br>3,980<br>0.54 J                                                          | 94<br>0.21 J<br>3,550<br>1.1 J                                                              | 96.8<br>0.2 J<br>3,710<br>1.1 J                                                    | 1,000 U<br>23.2 J<br>2 U<br>44,100<br>0.66 J                           | 1,000 U<br>20 U<br>2 U<br>42,900<br>5 U                                          |
| Barium<br>Beryilium<br>Calcium<br>Cobalt<br>Copper                                           | 86.2<br>0.308<br>69,078<br>3.4<br>2.76                                                     | 700<br>4<br><br><br>1,000                  | 730<br>7.3<br><br>1.1<br>150                          | 25.6 J<br>2 U<br>25,000<br><b>3.1 J</b><br>2.7 J                                              | 21.8 J<br>0.089 J<br>3,980<br>0.54 J<br>4.6 J                                                 | 94<br>0.21 J<br>3,550<br>1.1 J<br>2.7 J                                                     | 96.8<br>0.2 J<br>3,710<br>1.1 J<br>20 U                                            | 1,000 U<br>23.2 J<br>2 U<br>44,100<br>0.66 J<br>20 U                   | 1,000 U<br>20 U<br>2 U<br>42,900<br>5 U<br>20 U                                  |
| Barium<br>Beryilium<br>Calcium<br>Cobalt<br>Copper<br>Iiron                                  | 86.2<br>0.308<br>69,078<br>3.4<br>2.76<br>5,999                                            | 700<br>4<br>                               | 730<br>7.3<br><br>1.1                                 | 25.6 J<br>2 U<br>25,000<br>3.1 J<br>2.7 J<br>20,500                                           | 21.8 J<br>0.089 J<br>3,980<br>0.54 J<br>4.6 J<br>2,570                                        | 94<br>0.21 J<br>3,550<br>1.1 J<br>2.7 J<br><b>6,620</b>                                     | 96.8<br>0.2 J<br>3,710<br>1.1 J<br>20 U<br><b>6,720</b>                            | 1,000 U<br>23.2 J<br>2 U<br>44,100<br>0.66 J<br>20 U<br>7,240          | 1,000 U<br>20 U<br>2 U<br>42,900<br>5 U<br>20 U                                  |
| Barium Beryllium Calcium Cobalt Copper Iron Magnesium                                        | 86.2<br>0.308<br>69,078<br>3.4<br>2.76<br>5,999<br>6,363                                   | 700<br>4<br><br>1,000<br>300               | 730<br>7.3<br><br>1.1<br>150<br>2,600                 | 25.6 J<br>2 U<br>25,000<br>3.1 J<br>2.7 J<br>20,500<br>1,350                                  | 21.8 J<br>0.089 J<br>3,980<br>0.54 J<br>4.6 J<br>2,570                                        | 94<br>0.21 J<br>3,550<br>1.1 J<br>2.7 J<br><b>6,620</b><br>4,580                            | 96.8<br>0.2 J<br>3,710<br>1.1 J<br>20 U<br><b>6,720</b><br>4,740                   | 1,000 U 23.2 J 2 U 44,100 0.66 J 20 U 7,240 2,840                      | 1,000 U<br>20 U<br>2 U<br>42,900<br>5 U<br>20 U<br>102 J<br>912                  |
| Barium Beryllium Calcium Cobalt Copper Iron Magnesium Manganese                              | 86.2<br>0.308<br>69,078<br>3.4<br>2.76<br>5,999<br>6,363<br>214                            | 700<br>4<br><br><br>1,000<br>300<br><br>50 | 730<br>7.3<br><br>1.1<br>150<br>2,600<br><br>88       | 25.6 J<br>2 U<br>25,000<br>3.1 J<br>2.7 J<br>20,500<br>1,350<br>236                           | 21.8 J<br>0.089 J<br>3,980<br>0.54 J<br>4.6 J<br>2,570<br>370<br>45.7                         | 94<br>0.21 J<br>3,550<br>1.1 J<br>2.7 J<br><b>6,620</b><br>4,580<br><b>90.2</b>             | 96.8<br>0.2 J<br>3,710<br>1.1 J<br>20 U<br><b>6,720</b><br>4,740<br>88.8           | 1,000 U<br>23.2 J<br>2 U<br>44,100<br>0.66 J<br>20 U<br>7,240<br>2,840 | 1,000 U<br>20 U<br>2 U<br>42,900<br>5 U<br>20 U<br>102 J<br>912<br>2.8 J         |
| Barium Berylium Calcium Cobalt Copper Iiron Magnesium Manganese Nickel                       | 86.2<br>0.308<br>69.078<br>3.4<br>2.76<br>5.999<br>6,363<br>214<br>7.97                    | 700<br>4<br><br>1,000<br>300               | 730<br>7.3<br><br>1.1<br>150<br>2,600                 | 25.6 J<br>2 U<br>25,000<br>3.1 J<br>2.7 J<br>20,500<br>1,350<br>236                           | 21.8 J<br>0.089 J<br>3,980<br>0.54 J<br>4.6 J<br>2,570<br>370<br>45.7                         | 94<br>0.21 J<br>3,550<br>1.1 J<br>2.7 J<br><b>6,620</b><br>4,580<br><b>90.2</b>             | 96.8<br>0.2 J<br>3,710<br>1.1 J<br>20 U<br>6,720<br>4,740<br>88.8<br>10.4          | 1,000 U 23.2 J 2 U 44,100 0.66 J 20 U 7,240 2,840 165                  | 1,000 U<br>20 U<br>2 U<br>42,900<br>5 U<br>20 U<br>102 J<br>912<br>2.8 J<br>10 U |
| Barium Beryllium Calcium Cobalt Copper Iron Magnesium Manganese                              | 86.2<br>0.308<br>69,078<br>3.4<br>2.76<br>5,999<br>6,363<br>214                            | 700<br>4<br>                               | 730<br>7.3<br><br>1.1<br>150<br>2,600<br><br>88<br>73 | 25.6 J<br>2 U<br>25,000<br>3.1 J<br>2.7 J<br>20,500<br>1,350<br>236<br>25<br>1,110            | 21.8 J<br>0.089 J<br>3,980<br>0.54 J<br>4.6 J<br>2,570<br>370<br>45.7<br>23<br>2,460          | 94<br>0.21 J<br>3,550<br>1.1 J<br>2.7 J<br>6,620<br>4,580<br>90.2<br>10.2                   | 96.8<br>0.2 J<br>3,710<br>1.1 J<br>20 U<br><b>6,720</b><br>4,740<br>88.8           | 1,000 U<br>23.2 J<br>2 U<br>44,100<br>0.66 J<br>20 U<br>7,240<br>2,840 | 1,000 U<br>20 U<br>2 U<br>42,900<br>5 U<br>20 U<br>102 J<br>912<br>2.8 J         |
| Barium Beryllium Calcium Cobalt Copper Iron Magnesium Manganese Nickel Potassium             | 86.2<br>0.308<br>69,078<br>3.4<br>2.76<br>5.999<br>6,363<br>214<br>7.97<br>3,277           | 700 4 1,000 300 50                         | 730 7.3 1.1 150 2,600 88 73                           | 25.6 J<br>2 U<br>25,000<br>3.1 J<br>2.7 J<br>20,500<br>1,350<br>236                           | 21.8 J<br>0.089 J<br>3,980<br>0.54 J<br>4.6 J<br>2,570<br>370<br>45.7                         | 94<br>0.21 J<br>3,550<br>1.1 J<br>2.7 J<br><b>6,620</b><br>4,580<br><b>90.2</b>             | 96.8<br>0.2 J<br>3,710<br>1.1 J<br>20 U<br>6,720<br>4,740<br>88.8<br>10.4<br>1,600 | 1,000 U 23.2 J 2 U 44,100 0.66 J 20 U 7,240 2,840 165                  | 1,000 U 20 U 2 U 42,900 5 U 20 U 102 J 912 2.8 J 10 U 472 J                      |
| Barium Beryllium Calcium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Sodium Zinc | 86.2<br>0.308<br>69,078<br>3.4<br>2.76<br>5,999<br>6.363<br>214<br>7.97<br>3,277<br>22,508 | 700 4 1,000 300 50 100                     | 730 7.3 1.1 150 2,600 88 73                           | 25.6 J<br>2 U<br>25,000<br>3.1 J<br>2.7 J<br>20,500<br>1,350<br>236<br>25<br>1,110<br>1,580 J | 21.8 J<br>0.089 J<br>3,980<br>0.54 J<br>4.6 J<br>2,570<br>370<br>45.7<br>23<br>2,460<br>5,010 | 94<br>0.21 J<br>3,550<br>1.1 J<br>2.7 J<br>6,620<br>4,580<br>90.2<br>10.2<br>1,560<br>7,910 | 96.8 0.2 J 3,710 1.1 J 20 U 6,720 4,740 88.8 10.4 1,600 8,120                      | 1,000 U 23.2 J 2 U 44,100 0.66 J 20 U 7,240 2,840 165 10 U 780 J 2,900 | 1,000 U 20 U 2 U 42,900 5 U 20 U 102 J 912 2.8 J 10 U 472 J 4,290                |
| Barium Beryllium Calcium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Sodium      | 86.2<br>0.308<br>69,078<br>3.4<br>2.76<br>5,999<br>6.363<br>214<br>7.97<br>3,277<br>22,508 | 700 4 1,000 300 50 100                     | 730 7.3 1.1 150 2,600 88 73                           | 25.6 J<br>2 U<br>25,000<br>3.1 J<br>2.7 J<br>20,500<br>1,350<br>236<br>25<br>1,110<br>1,580 J | 21.8 J<br>0.089 J<br>3,980<br>0.54 J<br>4.6 J<br>2,570<br>370<br>45.7<br>23<br>2,460<br>5,010 | 94<br>0.21 J<br>3,550<br>1.1 J<br>2.7 J<br>6,620<br>4,580<br>90.2<br>10.2<br>1,560<br>7,910 | 96.8 0.2 J 3,710 1.1 J 20 U 6,720 4,740 88.8 10.4 1,600 8,120                      | 1,000 U 23.2 J 2 U 44,100 0.66 J 20 U 7,240 2,840 165 10 U 780 J 2,900 | 1,000 U 20 U 2 U 42,900 5 U 20 U 102 J 912 2.8 J 10 U 472 J 4,290                |

Notes: Shading indicates exceedance of two times the mean base background concentration

Bold box indicates exceedance of NCGWQS

Bold text indicates exceedance of Adjusted Tap Water RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

J - Analyte present, value may or may not be accurate or precise

R - Unreliable Result

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

μg/l - micrograms per liter

TABLE 5-7

IR Site 17 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Reprt MCB CamLej, North Carolina

| Station ID                                 | Camp Lejeune     |                           | Adjusted        | Adjusted    | IR1                 | 7-SS01               | IR17-SS02           | IR17-SS03                               | IR17-SS04           | IR17-SS05           |
|--------------------------------------------|------------------|---------------------------|-----------------|-------------|---------------------|----------------------|---------------------|-----------------------------------------|---------------------|---------------------|
| Sample ID                                  | Background SS 2X | NCSSLs (January,<br>2010) | Industrial Soil | Residential | IR17-SS01-00-01-09C | IR17-SS01D-00-01-09C | IR17-SS02-00-01-09C | IR17-SS03-00-01-09C                     | IR17-SS04-00-01-09C | IR17-SS05-00-01-09C |
| Sample Date                                | Mean             | 2010)                     | RSLs            | Soil RSLs   | 07/10/09            | 07/10/09             | 07/10/09            | 07/10/09                                | 07/10/09            | 07/10/09            |
| Chemical Name                              |                  |                           |                 |             |                     |                      | 2171272             | *************************************** | 31,110,00           |                     |
| Chemical Name                              |                  |                           |                 |             |                     |                      |                     |                                         |                     |                     |
| Volatile Organic Compounds (μg/kg          |                  |                           |                 |             |                     |                      |                     |                                         |                     |                     |
| 2-Butanone                                 |                  | 16,000                    | 20,000,000      | 2,800,000   | 14 J                | 4.9 J                | 5.1 J               | 11 UJ                                   | 23 J                | 2.8 J               |
| Acetone                                    |                  | 24,000                    | 63,000,000      | 6,100,000   | 680 J               | 200 J                | 70 J                | 11 UJ                                   | 900 J               | 72 J                |
| Chloroform                                 |                  | 340                       | 1,500           | 300         | 6.5 UJ              | 3 UJ                 | 13 J                | 5.4 UJ                                  | 5.2 R               | 4.8 UJ              |
| Chloromethane                              |                  | 15                        | 50,000          | 12,000      | 6.5 J               | 2.8 J                | 9.2 UJ              | 11 UJ                                   | 10 R                | 9.7 UJ              |
| Methyl acetate                             |                  |                           | 29,000,000      | 7,800,000   | 6.5 UJ              | 3 UJ                 | 4.3 J               | 3.6 J                                   | 70 J                | 7 J                 |
| Semivolatile Organic Compounds (µg/kg      |                  |                           |                 |             |                     |                      |                     |                                         |                     |                     |
| bis(2-Ethylhexyl)phthalate                 |                  | 7.200                     | 120.000         | 35.000      | 96 J                | 240 U                | 180 U               | 180 U                                   | 180 U               | 180 U               |
| Di-n-butylphthalate                        |                  | 19,000                    | 6,200,000       | 610,000     | 93 J                | 240 U                | 180 U               | 180 U                                   | 180 U               | 180 U               |
| Pesticide/Polychlorinated Biphenyls (µg/kg |                  |                           |                 |             |                     |                      |                     |                                         |                     |                     |
| 4,4'-DDE                                   |                  |                           | 5,100           | 1,400       | 0.63 J              | 0.6 J                | 1.1 J               | 1.8 UJ                                  | 0.83 J              | 2.2 J               |
| 4,4'-DDT                                   |                  | 340                       | 7.000           | 1,700       | 2.5 UJ              | 2.4 UJ               | 1.1 J               | 1.8 UJ                                  | 0.63 J              | 0.9 J               |
| 4,4 001                                    |                  | 540                       | 7,000           | 1,700       | 2.5 00              | 2.4 00               | 1.5 0               | 1.0 00                                  | 10                  | 0.5 0               |
| Total Metals (mg/kg)                       |                  |                           |                 |             |                     |                      |                     |                                         |                     |                     |
| Aluminum                                   | 5,487            |                           | 99,000          | 7,700       | 7,580 J+            | 7,110 J+             | 7,320               | 5,150                                   | 5,810               | 5,520               |
| Arsenic                                    | 0.626            | 5.8                       | 1.6             | 0.39        | 4.9                 | 3.3                  | <u>1.3</u> <u>J</u> | <u>1.9</u>                              | <u>1.8</u>          | <u>1.1 J</u>        |
| Barium                                     | 14.5             | 580                       | 19,000          | 1,500       | 16.1                | 19.2                 | 21.3                | 12.7                                    | 14.8                | 14.9                |
| Beryllium                                  | 0.103            |                           | 200             | 16          | 0.21 U              | 0.2 U                | 0.16                | 0.15 U                                  | 0.14 J              | 0.14 J              |
| Cadmium                                    | 0.033            | 3                         | 80              | 7           | 0.64 U              | 0.61 U               | 0.02 J              | 0.45 U                                  | 0.44 U              | 0.46 U              |
| Calcium                                    | 6,360            | -                         |                 |             | 356                 | 372                  | 91.5                | 210                                     | 92.5                | 181                 |
| Chromium                                   | 6.05             | 3.8                       | 5.6             | 0.29        | <u>8.3</u>          | <u>7.5</u>           | 3.8                 | 3.7                                     | 3.3                 | 2.7                 |
| Cobalt                                     | 0.294            |                           | 30              | 2.3         | 0.54 U              | 0.51 U               | 0.29 J              | 0.21 J                                  | 0.33 J              | 0.31 J              |
| Copper                                     | 4.83             | 700                       | 4,100           | 310         | 1 J                 | 0.95 J               | 0.92 J              | 0.7 J                                   | 0.81 J              | 0.93 J              |
| Iron                                       | 3,245            | 150                       | 72,000          | 5,500       | <u>7,640</u>        | 5,230                | 2,190               | 1,800                                   | 1,670               | 1,880               |
| Lead                                       | 12.3             | 270                       | 800             | 400         | 17.1                | 13.9                 | 7.5                 | 9.3                                     | 8.7                 | 9.3                 |
| Magnesium                                  | 238              |                           |                 |             | 667                 | 646                  | 221                 | 178                                     | 186                 | 132                 |
| Manganese                                  | 13.7             | 65                        | 2,300           | 180         | 9.1                 | 8.2                  | 9.3                 | 8.7<br>0.042                            | 10.8                | 5.9                 |
| Mercury<br>Nickel                          | 0.081<br>1.21    | 130                       | 31<br>2,000     | 2.4<br>160  | 0.052<br>1.5        | 0.045 U<br>1.2       | 0.033 U<br>2        | 0.042                                   | 0.033 U<br>1.5      | 0.033 U<br>1.4      |
| Potassium                                  | 1.21             | 130                       | 2,000           | 160         | 495                 | 461                  | 134                 | 1.4                                     | 1.5                 | 1.4                 |
| Selenium                                   | 0.563            | 2.1                       | 510             | 39          | 0.69 J              | 0.57 J               | 1.5 U               | 1.5 U                                   | 1.5 U               | 1.5 U               |
| Silver                                     | 0.563            | 3.4                       | 510             | 39          | 0.69 J<br>0.4 J     | 0.57 J<br>0.16 J     | 1.5 U               | 1.5 U                                   | 1.5 U               | 1.5 U               |
| Sodium                                     | 80.9             | 3.4                       | 510             |             | 1.840               | 1,870                | 30.8 J              | 1.5 U                                   | 13.5 J              | 13.1 J              |
| Vanadium                                   | 8.9              |                           | 520             | 39          | 20.8                | 15.9                 | 6.8                 | 6.2                                     | 6.2                 | 5.8                 |
| Zinc                                       | 10.8             | 1,200                     | 31.000          | 2.400       | 5.4 U               | 5.1 U                | 5.2                 | 4.3                                     | 4.3                 | 5.2                 |
| Zino                                       | 10.0             | 1,200                     | 31,000          | 2,700       | 3.4 0               | 3.1 0                | 3.2                 | 4.5                                     | 4.5                 | 5.2                 |
| Wet Chemistry                              |                  |                           |                 |             |                     |                      |                     |                                         |                     |                     |
| pH                                         |                  | -                         |                 |             | 4.2                 | 4.2                  | 4.7                 | 4.6                                     | 4.9                 | 4.3                 |
| <u> </u>                                   | L                | •                         |                 |             |                     | ·                    |                     | ***                                     |                     |                     |

Notes:
Shading indicates exceedance of two times the mean base background concentration
Bold box indicates exceedance of NCSSLs
Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

J - Analyte present, value may or may not be accurate or precise

J+ - Analyte present, value may be biased high, actual value may be lower

R - Unreliable Result

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

μg/kg - micrograms per kilogram

IR Site 17 Subsurface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Camp Lejeune     |                 | Adjusted        | Adjusted    | IR17-SB01         | IR17-SB02         | I                  | R17-SB03           | IR17-SB04         | IR17-SB05         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-----------------|-------------|-------------------|-------------------|--------------------|--------------------|-------------------|-------------------|
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Background SB 2X | NCSSLs          | Industrial Soil | Residential | IR17-SB01-2-4-09C | IR17-SB02-2-7-09C | IR17-SB03-2-7-09C  | IR17-SB03D-2-7-09C | IR17-SB04-2-7-09C | IR17-SB05-2-7-09C |
| Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean             | (January, 2010) | RSLs            | Soil RSLs   | 07/27/09          | 07/28/09          | 07/28/09           | 07/28/09           | 07/28/09          | 07/28/09          |
| Chemical Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |                 |             |                   |                   |                    |                    |                   |                   |
| Official data in the second of |                  |                 |                 |             |                   |                   |                    |                    |                   |                   |
| Volatile Organic Compounds (µg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                 |             |                   |                   |                    |                    |                   |                   |
| 1.2.4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                | 2,200           | 28,000          | 6.200       | 1.1 J             | 1.4 U             | 2 UJ               | 1.8 R              | 1.7 UJ            | 1.8 UJ            |
| 1,2-Dibromo-3-chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 0.25            | 69              | 5.4         | 1.6 J             | 1.4 U             | 2 UJ               | 1.8 R              | 1.7 UJ            | 1.8 UJ            |
| 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                | 16,000          | 20,000,000      | 2,800,000   | 1.4 J             | 2.9 U             | 2.6 J              | 1.3 J              | 3.3 UJ            | 3.5 UJ            |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                | 24,000          | 63,000,000      | 6,100,000   | 70 J              | 2.9 U             | 99 J               | 41 J               | 3.3 UJ            | 3.5 UJ            |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                | 340             | 1,500           | 300         | 4.9 J             | 2.3               | 2 UJ               | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Methyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                |                 | 29,000,000      | 7,800,000   | 1.3 J             | 1.4 U             | 96 J               | 13 J               | 5.1 J             | 1.3 J             |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                | 23              | 53,000          | 11,000      | 2.2 UJ            | 1.4 U             | 1.5 J              | 1.8 UJ             | 3.3 UJ            | 1.8 UJ            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                 |             |                   |                   |                    | <u> </u>           |                   |                   |
| Semivolatile Organic Compounds (µg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                 |                 |             |                   |                   |                    |                    |                   |                   |
| No Detections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |                 |             | NA                | NA                | NA                 | NA                 | NA                | NA                |
| B (1:11/B)   11   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                 |             |                   |                   |                    |                    |                   |                   |
| Pesticide/Polychlorinated Biphenyls (μg/kg)<br>4,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                 | 5.100           | 1.400       | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U              | 4711              | 0.41 J            |
| 4,4 -DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                 | 5,100           | 1,400       | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U              | 1.7 U             | 0.41 J            |
| Total Metals (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                 |                 |             |                   |                   |                    |                    |                   |                   |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,369           |                 | 99,000          | 7,700       | 17,400            | 4,520             | 20,000             | 17,700             | 5,270             | 7,900             |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36             |                 | 41              | 3.1         | 0.93 J            | 1.7 U             | 1.8 U              | 1.8 U              | 1.6 U             | 1.6 U             |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.12             | 5.8             | 1.6             | 0.39        | 7.2               | 1.3 J             | 13                 | 14.6               | 0.95 J            | 2.5               |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.6             | 580             | 19.000          | 1,500       | 18.9              | 9.7               | 21.8               | 20                 | 6.6               | 19.5              |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.165            |                 | 200             | 16          | 0.21              | 0.057 J           | 0.31               | 0.28               | 0.055 J           | 0.15 J            |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 441              | -               | -               |             | 90 U              | 84.6 U            | 89.1 U             | 92 U               | 227               | 97.3              |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.5             | 3.8             | 5.6             | 0.29        | <u>27.4</u>       | 4.7               | <u>35.8</u>        | <u>34.1</u>        | 5.6               | 7.4               |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.822            |                 | 30              | 2.3         | 0.59              | 0.28 J            | 1.1                | 1                  | 0.26 J            | 0.65              |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.56             | 700             | 4,100           | 310         | 3.5               | 0.66 J            | 5                  | 4.2                | 0.86 J            | 1.5 J             |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,439            | 150             | 72,000          | 5,500       | 16,400            | 2,240             | 19,600             | 28,400             | 2,500             | 6,230             |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.49             | 270             | 800             | 400         | 10.7              | 5.2               | 15.4               | 15.9               | 3.3               | 6.7               |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 363              |                 |                 |             | 791               | 179               | 1,020              | 836                | 184               | 284               |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.25             | 65              | 2,300           | 180         | 10.8              | 8.7               | 12.1               | 13.3               | 5.4               | 11.4              |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.071            | 1               | 31              | 2.4         | 0.039 U           | 0.036 U           | 0.04 U             | 0.041 U            | 0.033 U           | 0.049             |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.27             | 130             | 2,000           | 160         | 2.1               | 1.3               | 2.7                | 2.5                | 1.2               | 1.9               |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 361              |                 |                 |             | 943               | 145               | 1,070              | 833                | 155               | 225               |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.505            | 2.1             | 510             | 39          | 1.8 U             | 1.7 U             | 1.2 J              | 1.4 J              | 1.6 U             | 1.6 U             |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68.3             |                 |                 |             | 230               | 22.6 J            | 106 J              | 81.9 J             | 5.3 J             | 21 J              |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.2<br>6.59     | 1,200           | 520             | 39<br>2.400 | 37.6<br>7.5       | 7<br>3.1 J        | <u>49.4</u><br>8.9 | <u>70.4</u><br>8.9 | 7.4<br>2.4 J      | 13.2<br>6.3       |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.59             | 1,200           | 31,000          | 2,400       | 1.5               | 3.1 J             | 8.9                | 8.9                | 2.4 J             | 0.3               |
| Wet Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |                 |             |                   |                   |                    |                    |                   |                   |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                 |             | 3.8               | 4.6               | 4.4                | 4.3                | 4.7               | NA                |
| Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>         |                 |                 |             | 5.0               | 1.0               | 7.7                | 4.5                | 7.7               | 10/3              |

Notes: Shading indicates exceedance of two times the mean base background concentration for

## Bold box indicates exceedance of NCSSLs Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

J - Analyte present, value may or may not be accurate or precise

R - Unreliable Result

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram μg/kg - micrograms per kilogram

IR Site 17 Groundwater Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID                                 | Camp Lejeune     | NOOMOO (I        | A.P. etc. I.T Western      | IR17-TW01     | IR17-TW02      |                 |  |
|--------------------------------------------|------------------|------------------|----------------------------|---------------|----------------|-----------------|--|
| Sample ID                                  | Background GW 2X | NCGWQS (January, | Adjusted Tap Water<br>RSLs | IR17-TW01-09C | IR17-TW02-09C  | IR17-TW02D-09C  |  |
| Sample Date                                | Mean             | 2010)            | KSLS                       | 07/29/09      | 07/29/09       | 07/29/09        |  |
| Chemical Name                              |                  |                  |                            |               |                |                 |  |
| Onomical Name                              |                  |                  |                            |               |                |                 |  |
| Volatile Organic Compounds (µg/l)          |                  |                  |                            |               |                |                 |  |
| Chloroform                                 |                  | 70               | 0.19                       | 4.4           | 1 U            | 1 U             |  |
|                                            |                  |                  |                            |               |                |                 |  |
| Semivolatile Organic Compounds (µg/l)      |                  |                  |                            |               |                |                 |  |
| Caprolactam                                |                  | 4,000            | 1,800                      | 4.5 J         | 10 U           | 10 U            |  |
|                                            |                  |                  |                            |               |                |                 |  |
| Pesticide/Polychlorinated Biphenyls (µg/l) |                  |                  |                            |               |                |                 |  |
| No Detections                              |                  |                  |                            | NA            | NA             | NA              |  |
| Total Matala (conti)                       |                  |                  |                            |               |                |                 |  |
| Total Metals (µg/l)<br>Aluminum            | 1,886            |                  | 3,700                      | 1,680         | 621 J          | 1,260           |  |
| Barium                                     | 86.2             | 700              | 730                        | 474           | 621 J<br>8 J   | 1,260<br>9.2 J  |  |
| Beryllium                                  | 0.308            | 4                | 7.3                        | 2 U           | 0.12 J         | 9.2 J<br>0.16 J |  |
| Calcium                                    | 69,078           |                  |                            | 111,000       | 911 J          | 893 J           |  |
| Chromium                                   | 3.13             | 10               | 0.043                      | 1.8 J         | 20 U           | 20 U            |  |
| Iron                                       | 5,999            | 300              | 2,600                      | 2,590         | 814            | 1,170           |  |
| Lead                                       | 2.8              | 15               |                            | 3.2 J         | 20 U           | 3.2 J           |  |
| Magnesium                                  | 6,363            |                  |                            | 57,300        | 466            | 537             |  |
| Manganese                                  | 214              | 50               | 88                         | 57.5          | 16.9           | 17.7            |  |
| Mercury                                    | 0.1              | 1                | 1.1                        | 0.25          | 0.2 U          | 0.2 U           |  |
| Nickel                                     | 7.97             | 100              | 73                         | 13.8          | 10 U           | 10 U            |  |
| Potassium                                  | 3,277            |                  |                            | 8,250         | 1,010          | 1,070           |  |
| Selenium                                   | 3.14             | 20               | 18                         | 20 U          | 3.9 J          | 4.2 J           |  |
| Sodium                                     | 22,508           |                  |                            | 499,000       | 7,220          | 7,470           |  |
| Zinc                                       | 42.1             | 1,000            | 1,100                      | 10.2 J        | 5.7 J          | 4.9 J           |  |
|                                            |                  |                  |                            |               |                |                 |  |
| Dissolved Metals (μg/l)                    |                  |                  |                            |               |                |                 |  |
| Aluminum                                   | 1,886<br>86.2    |                  | 3,700                      | 567 J         | 1,000 U        | 1,000 U         |  |
| Barium<br>Beryllium                        | 0.308            | 700<br>4         | 730<br>7.3                 | 498<br>2 U    | 5.1 J<br>0.1 J | 4.5 J<br>2 U    |  |
| Calcium                                    | 69,078           |                  | 1.3                        | 110,000       | 612 J          | 609 J           |  |
| Copper                                     | 2.76             | 1.000            | 150                        | 3.8 J         | 20 U           | 20 U            |  |
| Iron                                       | 5,999            | 300              | 2.600                      | 2.760         | 309            | 296             |  |
| Lead                                       | 2.8              | 15               | 2,000                      | 2.6 J         | 20 U           | 20 U            |  |
| Magnesium                                  | 6,363            |                  |                            | 59,200        | 263            | 266             |  |
| Manganese                                  | 214              | 50               | 88                         | 64.6          | 13             | 11              |  |
| Nickel                                     | 7.97             | 100              | 73                         | 15.9          | 10 U           | 10 U            |  |
| Potassium                                  | 3,277            |                  |                            | 8,580         | 1,060          | 1,040           |  |
| Selenium                                   | 3.14             | 20               | 18                         | 20 U          | 20 U           | 4.2 J           |  |
| Sodium                                     | 22,508           |                  |                            | 510,000       | 7,650          | 7,810           |  |
| Zinc                                       | 42.1             | 1,000            | 1,100                      | 14.7 J        | 7.9 J          | 5.2 J           |  |

Notes:
Shading indicates exceedance of two times the mean base background concentration
Bold box indicates exceedance of NCGWQS
Bold text indicates exceedance of Adjusted Tap Water RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents NA - Not analyzed

- NA Not analyzed
  J Analyte present, value may or may not be accurate or precise
  R Unreliable Result
  U The material was analyzed for, but not detected
  UJ Analyte not detected, quantitation limit may be inaccurate
  µg/I micrograms per liter

IR Site 85 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID                                  | Camp Leieune   |                 | Adjusted      | Adjusted     | IR85-SS06            | IR85-SS07            | IR85-SS08            | IR8                 | 5-SS09               | IR85-SS10           | IR85-SS11           | IR85-SS12            | IR85-SS13            | IR8                 | 5-SS14               |
|---------------------------------------------|----------------|-----------------|---------------|--------------|----------------------|----------------------|----------------------|---------------------|----------------------|---------------------|---------------------|----------------------|----------------------|---------------------|----------------------|
| Sample ID                                   | Background SS  | NCSSLs          | Industrial    | Residential  | IR85-SS06-00-01-09C  | IR85-SS07-00-01-09C  | IR85-SS08-00-01-09C  | IR85-SS09-00-01-09C | IR85-SS09D-00-01-09C | IR85-SS10-00-01-09C | IR85-SS11-00-01-09C | IR85-SS12-00-01-09C  | IR85-SS13-00-01-09C  | IR85-SS14-00-01-09C | IR85-SS14D-00-01-09C |
| Sample Date                                 | 2X Mean        | (January, 2010) | Soil RSLs     | Soil RSLs    | 07/09/09             | 07/09/09             | 07/09/09             | 07/10/09            | 07/10/09             | 07/10/09            | 07/10/09            | 07/10/09             | 07/10/09             | 07/10/09            | 07/10/09             |
| Chemical Name                               |                |                 |               |              | 01700700             | 01700700             | 01700700             | 01/10/00            | 01/10/00             | 01/10/03            | 01710703            | 01/10/00             | 01710700             | 01/10/00            | 01/10/00             |
| Chemical Name                               |                |                 |               |              |                      |                      |                      |                     |                      |                     |                     |                      |                      |                     |                      |
| Volatile Organic Compounds (µg/kg)          |                |                 |               |              |                      |                      |                      |                     |                      |                     |                     |                      |                      |                     |                      |
| 2-Butanone                                  |                | 16,000          | 20,000,000    | 2,800,000    | 7.8 J                | 9.7 UJ               | 9.5 UJ               | 12 UJ               | 6.6 J                | 4.9 R               | 12 R                | 7.3 J                | 6.9 J                | 14 J                | 27 J                 |
| Acetone                                     |                | 24,000          | 63,000,000    | 6,100,000    | 250 J                | 85 J                 | 65 J                 | 1,300 J             | 280 J                | 75 R                | 320 J               | 130 J                | 110 J                | 270 J               | 420 J                |
| Methyl acetate                              |                |                 | 29,000,000    | 7,800,000    | 12 J                 | 3.8 J                | 8 J                  | 84 J                | 18 J                 | 15 R                | 6.2 R               | 20 J                 | 12 J                 | 12 J                | 26 J                 |
| Methylene chloride                          |                | 23              | 53,000        | 11,000       | 10 UJ                | 9.7 UJ               | 9.5 UJ               | 12 UJ               | 12 UJ                | 7.3 R               | 12 R                | 9.3 UJ               | 9.7 UJ               | 11 UJ               | 11 UJ                |
| Saminalatila Ossania Communida (colles)     |                |                 |               |              |                      |                      |                      |                     |                      |                     |                     |                      |                      |                     |                      |
| Semivolatile Organic Compounds (µg/kg)      |                | 7.200           | 400.000       | 25.000       | 140 J                | 180 U                | 190 U                | 58 J                | 180 U                | 180 U               | 180 UJ              | 180 U                | 190 U                | 190 U               | 190 U                |
| bis(2-Ethylhexyl)phthalate                  |                | 7,200           | 120,000       | 35,000       | 140 J                | 180 U                | 190 0                | 58 J                | 180 0                | 180 0               | 180 03              | 180 0                | 190 0                | 190 0               | 190 0                |
| Pesticide/Polychlorinated Biphenyls (μg/kg) |                |                 |               |              |                      |                      |                      |                     |                      |                     |                     |                      |                      |                     |                      |
| 4,4'-DDD                                    |                | 240             | 7,200         | 2,000        | 1.9 U                | 1.8 U                | 0.93 J               | 1.8 U               | 1.8 U                | 0.39 J              | 1.8 U               | 1.4 J                | 1.9 U                | 1.9 U               | 1.9 U                |
| 4,4'-DDE                                    |                |                 | 5,100         | 1,400        | 1.9 U                | 0.99 J               | 2.7                  | 2.4 J               | 2.6 J                | 4.5                 | 0.64 J              | 3 J                  | 0.71 J               | 3.1 J               | 3 J                  |
| 4,4'-DDT                                    |                | 340             | 7,000         | 1,700        | 1.9 UJ               | 0.68 J               | 1.2 J                | 2.4 J               | 0.83 J               | 3 J                 | 1.8 UJ              | 3.6 J                | 0.86 J               | 1.4 J               | 1.4 J                |
| Aroclor-1254                                |                |                 | 740           | 110          | 19 U                 | 18 U                 | 19 U                 | 17 U                | 18 U                 | 18 U                | 18 U                | 17 U                 | 17 U                 | 17 U                | 17 U                 |
| Dieldrin                                    |                | 0.81            | 110           | 30           | 1.9 U                | 1.8 U                | 1.9 U                | 1.8 UJ              | 1.8 U                | 1.8 U               | 1.8 U               | 1.8 UJ               | 1.9 UJ               | 1.9 UJ              | 1.9 UJ               |
| gamma-Chlordane                             |                | 68              | 6,500         | 1,600        | 1.9 U                | 1.8 U                | 1.9 U                | 1.8 UJ              | 1.8 U                | 1.8 U               | 1.8 U               | 1.8 UJ               | 1.9 UJ               | 1.9 UJ              | 1.9 UJ               |
| Total Maria (confine)                       |                |                 |               |              |                      |                      |                      |                     |                      |                     |                     |                      |                      |                     |                      |
| Total Metals (mg/kg)                        |                |                 |               |              |                      |                      |                      | 3.370 J+            |                      | - 100               | 5,690               |                      |                      |                     |                      |
| Aluminum                                    | 5,487<br>0.447 |                 | 99,000<br>41  | 7,700        | 6,090 J+             | 3,780 J+             | 3,480 J+             |                     | 3,250 J+<br>1.5 U    | 5,180               |                     | 3,960 J+             | 3,390 J+             | 7,220 J+            | 7,300 J+             |
| Antimony                                    | 0.447          | 5.8             |               | 3.1          | 1.6 U                | 1.6 U                | 1.6 U                | 1.6 UJ              |                      | 1.5 UJ              | 1.5 UJ              | 1.6 UJ               | 1.6 UJ               | 1.6 UJ              | 1.6 UJ               |
| Arsenic                                     |                |                 | 1.6           | 0.39         | <u>0.83</u> <u>J</u> | <u>0.78</u> <u>J</u> | <u>0.85</u> <u>J</u> | <u>1.1 J</u>        | <u>0.93</u> <u>J</u> | <u>1.1 J</u>        | <u>0.91 J</u>       | <u>0.83</u> <u>J</u> | <u>0.57</u> <u>J</u> | <u>1.2 J</u>        | <u>1.2 J</u>         |
| Barium                                      | 14.5<br>0.103  | 580             | 19,000<br>200 | 1,500        | 10.8<br>0.16 U       | 8.6<br>0.16 U        | 9.4<br>0.16 U        | 10<br>0.055 J       | 9<br>0.15 U          | 12.6<br>0.034 J     | 10.6<br>0.036 J     | 9.9<br>0.047 J       | 5.9<br>0.025 J       | 13.4<br>0.031 J     | 13.3<br>0.042 J      |
| Beryllium                                   | 0.103          |                 |               | 16           | 0.16 U<br>0.49 U     | 0.16 U<br>0.47 U     | 0.16 U<br>0.49 U     | 0.055 J<br>0.47 U   | 0.15 U<br>0.46 U     | 0.034 J<br>0.45 U   | 0.036 J<br>0.46 U   | 0.047 J<br>0.48 U    | 0.025 J<br>0.48 U    | 0.031 J<br>0.48 U   | 0.042 J<br>0.49 U    |
| Cadmium                                     | 6,360          | 3               | 80            | /            | 82.1 U               | 78.7 U               | 167                  |                     |                      | 0.45 U<br>266       | 76.4 U              |                      | 97.5                 | 0.48 U<br>37.2 J    | 0.49 U<br>40.5 J     |
| Calcium                                     | 6,360          |                 |               |              |                      |                      |                      | 316                 | 282                  |                     |                     | 118                  | 97.5                 |                     |                      |
| Chromium                                    | 0.294          | 3.8             | 5.6           | 0.29         | 3.5                  | 2.8                  | 3.3                  | 2.7                 | 2.7                  | 4.1                 | 3.2                 | 3.6                  | 3                    | 4.5                 | 4.5                  |
| Cobalt                                      | 0.294<br>4.83  | 700             | 30<br>4.100   | 2.3          | 0.41 U<br>2.4        | 0.39 U<br>1.3 J      | 0.12 J<br>4.3        | 0.11 J<br>0.69 J    | 0.11 J<br>0.76 J     | 0.21 J              | 0.11 J<br>1.4 J     | 0.13 J<br>4.7        | 0.11 J               | 0.17 J<br>1.5 J     | 0.19 J<br>1.4 J      |
| Copper                                      | 3,245          | 150             | 72,000        | 310<br>5,500 | 2,310                |                      | 1,820                | 2,040               | 2,000                | 2,530               |                     | 2,010                | 2.8                  | 3,730               | 3,700                |
| Iron                                        |                |                 |               |              |                      | 1,690                |                      |                     |                      |                     | 1,830               |                      | 1,870                |                     |                      |
| Lead                                        | 12.3<br>238    | 270             | 800           | 400          | 4.8<br>173           | 7.2<br>108           | 7.8<br>110           | 7.8<br>95.8         | 6.5<br>95.2          | 17.5<br>173         | 6.2<br>146          | 17.4<br>112          | 7.2<br>98.1          | 7.5<br>172          | 7.3<br>178           |
| Magnesium                                   | 13.7           | <br>65          | 2,300         |              | 173                  | 9.6                  | 22.6                 | 95.8<br>6.7         | 95.2<br>7.7          | 43.7                | 5.9                 | 20.4                 | 98.1                 | 9.1                 | 9.9                  |
| Manganese                                   | 0.081          | 00              | 2,300         | 180<br>2.4   | 0.044                | 0.033 U              | 0.038                | 0.032 U             | 0.037                | 43.7<br>0.31        | 0.034 U             | 0.055                | 0.039                | 9.1<br>0.059        | 9.9<br>0.06          |
| Mercury<br>Nickel                           | 1.21           | 130             | 2.000         | 160          | 1.2                  | 0.033 0              | 1.1                  | 0.032 0             | 0.037                | 1.3                 | 2.5                 | 1.3                  | 1.4                  | 0.059               | 1.2                  |
| Nickei<br>Potassium                         | 1.21           | 130             | 2,000         | 160          | 1.2                  | 0.91<br>73.1 J       | 1.1<br>81.7 U        | 78.3 U              | 0.81<br>72.1 J       | 1.3                 | 96.9                | 79.5 U               | 79.3 U               | 1.3                 | 1.2                  |
| Selenium                                    | 0.563          | 2.1             | 510           | 39           | 1.6 U                | 73.1 J<br>1.6 U      | 81.7 U<br>1.6 U      | 78.3 U<br>1.6 U     | 72.1 J<br>1.5 U      | 115<br>1.5 U        | 96.9<br>1.5 U       | 79.5 U               | 79.3 U<br>1.6 U      | 0.45 J              | 117<br>1.6 U         |
| Silver                                      | 0.565          | 3.4             | 510           | 39           | 1.6 U                | 0.083 J              | 1.6 U                | 1.6 U               | 1.5 U                | 1.5 U               | 1.5 U               | 0.15 J               | 0.21 J               | 0.45 J<br>1.6 U     | 1.6 U                |
| Sodium                                      | 80.9           |                 | 510           | 39           | 3.2 J                | 3.7 J                | 204 U                | 5.7 J               | 7.5 J                | 3.4 J               | 4.3 J               | 3.9 J                | 198 U                | 6.8 J               | 6.4 J                |
| Thallium                                    | 0.36           |                 | 6.6           | 0.51         | 2.5 U                | 2.4 U                | 2.4 U                | 2.3 U               | 2.3 U                | 2.3 U               | 2.3 U               | 2.4 U                | 2.4 U                | 2.4 U               | 2.5 U                |
| Vanadium                                    | 8.9            |                 | 520           | 39           | 6.6                  | 5.7                  | 5.5                  | 6 J                 | 5.8                  | 7.7                 | 7.1                 | 5.9 J                | 5.3 J                | 9.8 J               | 10 J                 |
| Zinc                                        | 10.8           | 1,200           | 31,000        | 2.400        | 33.4                 | 5.2                  | 31.4                 | 3.9 U               | 3.9 U                | 252                 | 4.2                 | 30.2                 | 22.9                 | 4 U                 | 4.1 U                |
|                                             | 10.0           | 1,200           | 0.,000        | 2,           | 30.7                 | V.E                  | <b>U</b>             | 0.00                | 0.0 0                | 202                 |                     | 30.2                 |                      |                     | 0                    |
| Wet Chemistry                               |                | 1               | 1             | 1            |                      |                      |                      |                     |                      |                     |                     |                      |                      |                     |                      |
| pH                                          |                |                 |               |              | 4.8                  | 4.5                  | 5.6                  | 4.4                 | 4.5                  | 5.6                 | 4.3                 | 4.8                  | 4.8                  | 4.4                 | 4.4                  |
| L.                                          |                | •               | •             |              | 1                    |                      | •                    | •                   | -                    | •                   | •                   | •                    | •                    | •                   |                      |

Notes:
Shading indicates exceedance of two times the mean base background concentration
Bold box indicates exceedance of NCSSLs
Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs
RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

J - Analyte present, value may or may not be accurate or precise

J- - Analyte present, value may be biased low, actual value may be higher

J+ - Analyte present, value may be biased high, actual value may be lower

R - Unreliable Result
U - The material was analyzed for, but not detected
UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - Milligrams per kilogram μg/kg - micrograms per kilogram

IR Site 85 Surface Soil Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID                                  | Camp Lejeune  |                 | Adjusted     | Adjusted     | IR85-SS15           | IR85-SS16           | IR85-SS17           | IR85-SS18           |  |
|---------------------------------------------|---------------|-----------------|--------------|--------------|---------------------|---------------------|---------------------|---------------------|--|
| Sample ID                                   | Background SS | NCSSLs          | Industrial   | Residential  | IR85-SS15-00-01-09C | IR85-SS16-00-01-09C | IR85-SS17-00-01-09C | IR85-SS18-00-01-09C |  |
| Sample Date                                 | 2X Mean       | (January, 2010) | Soil RSLs    | Soil RSLs    | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            |  |
|                                             | ZX MCuii      |                 | COII ILOES   | OOII NOES    | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            |  |
| Chemical Name                               |               |                 |              |              |                     |                     |                     |                     |  |
| Volatile Organic Compounds (μg/kg)          |               |                 |              |              |                     |                     |                     |                     |  |
| 2-Butanone                                  |               | 16,000          | 20,000,000   | 2,800,000    | 8.6 UJ              | 13 UJ               | 19 UJ               | 11 R                |  |
| Acetone                                     |               | 24,000          | 63,000,000   | 6,100,000    | 38 J                | 40 J                | 360 J               | 72 J                |  |
| Methyl acetate                              |               | 24,000          | 29,000,000   | 7,800,000    | 5.7 J               | 11 J                | 200 J               | 5.4 R               |  |
| Methylene chloride                          |               | 23              | 53,000       | 11,000       | 8.6 UJ              | 13 UJ               | 14 J                | 11 R                |  |
| ,                                           |               | -               |              | ,            |                     |                     | -                   |                     |  |
| Semivolatile Organic Compounds (µg/kg)      |               |                 |              |              |                     |                     |                     |                     |  |
| bis(2-Ethylhexyl)phthalate                  |               | 7,200           | 120,000      | 35,000       | 29 J                | 190 U               | 230 U               | 220 U               |  |
|                                             |               |                 |              |              |                     | -                   |                     |                     |  |
| Pesticide/Polychlorinated Biphenyls (µg/kg) |               |                 |              |              |                     |                     |                     |                     |  |
| 4,4'-DDD                                    |               | 240             | 7,200        | 2,000        | 1.9 U               | 0.97 J              | 2.3 U               | 3.1 J               |  |
| 4,4'-DDE                                    |               |                 | 5,100        | 1,400        | 2.4 J               | 4.5 J               | 1.5 J               | 29 J                |  |
| 4,4'-DDT<br>Aroclor-1254                    |               | 340             | 7,000<br>740 | 1,700<br>110 | 3 J<br>40 J         | 1.9 J<br>17 U       | 4 J<br>50           | 25 J<br>22 U        |  |
| Dieldrin                                    |               | 0.81            | 110          | 30           | 1.9 UJ              | 1.9 UJ              | 1.9 J               | 2.2 UJ              |  |
| gamma-Chlordane                             |               | 68              | 6,500        | 1,600        | 1.9 UJ              | 1.9 UJ              | 0.88 J              | 2.2 UJ<br>2.7 J     |  |
| gariiria-Criiordane                         |               | 00              | 0,500        | 1,000        | 1.9 03              | 1.9 03              | 0.00 J              | Z.1 J               |  |
| Total Metals (mg/kg)                        |               |                 |              |              |                     |                     |                     |                     |  |
| Aluminum                                    | 5.487         |                 | 99,000       | 7,700        | 4.960 J+            | 4.100 J+            | 2,980 J+            | 4,330               |  |
| Antimony                                    | 0.447         |                 | 41           | 3.1          | 1.7 UJ              | 1.6 UJ              | 38.5 UJ             | 5.9 J-              |  |
| Arsenic                                     | 0.626         | 5.8             | 1.6          | 0.39         | 1.5 J               | 1.9                 | 9.9 J               | 2.3 J               |  |
| Barium                                      | 14.5          | 580             | 19,000       | 1,500        | 14.2                | 15.7                | 31 J                | 24 U                |  |
| Beryllium                                   | 0.103         |                 | 200          | 16           | 0.049 J             | 0.042 J             | 3.9 U               | 0.096 J             |  |
| Cadmium                                     | 0.033         | 3               | 80           | 7            | 0.59                | 0.49 U              | 2.9 J               | 3.5                 |  |
| Calcium                                     | 6,360         |                 |              |              | 289                 | 468                 | 1,930 U             | 481 U               |  |
| Chromium                                    | 6.05          | 3.8             | 5.6          | 0.29         | <u>4.5</u>          | <u>5.1</u>          | 38.5 U              | <u>8.5</u> <u>J</u> |  |
| Cobalt                                      | 0.294         |                 | 30           | 2.3          | 0.3 J               | 0.31 J              | <u>2.4 J</u>        | 0.66 J              |  |
| Copper                                      | 4.83          | 700             | 4,100        | 310          | 26.5                | 13.2                | 79.5                | 214                 |  |
| Iron                                        | 3,245         | 150             | 72,000       | 5,500        | 3,170               | 3,990               | 4,820               | <u>11,500</u>       |  |
| Lead                                        | 12.3          | 270             | 800          | 400          | 42.6                | 35.2                | 165                 | <u>614</u>          |  |
| Magnesium                                   | 238           |                 |              |              | 165                 | 143                 | 80.5 J              | 143                 |  |
| Manganese                                   | 13.7          | 65              | 2,300        | 180          | <u>294</u>          | 417                 | <u>10,700</u>       | <u>1,120</u>        |  |
| Mercury                                     | 0.081         | 1               | 31           | 2.4          | 1.1                 | 0.27                | <u>5</u>            | 8.8                 |  |
| Nickel                                      | 1.21          | 130             | 2,000        | 160          | 2.2                 | 1.8                 | 8.7 J               | 2.8 J               |  |
| Potassium<br>Selenium                       | 116<br>0.563  | 2.1             | <br>510      | 39           | 126<br>1.7 U        | 109<br>1.6 U        | 1,930 U<br>38.5 U   | 117 J<br>9.6 U      |  |
| Silver                                      | 0.563         | 3.4             | 510          | 39           | 0.11 J              | 0.29 J              | 38.5 U              | 9.6 U               |  |
| Sodium                                      | 80.9          | 3.4<br>         |              |              | 207 U               | 0.29 J<br>206 U     | 4,820 U             | 1,200 U             |  |
| Thallium                                    | 0.36          |                 | 6.6          | 0.51         | 2.5 U               | 0.44 J              | 18.7 J              | 1,200 U             |  |
| Vanadium                                    | 8.9           |                 | 520          | 39           | 7.8 J               | 7.6 J               | 96.3 U              | 9 J                 |  |
| Zinc                                        | 10.8          | 1,200           | 31,000       | 2,400        | 758                 | 406                 | 5,600               | 2,100               |  |
| · ·                                         |               | -,              | ,            | -,           |                     |                     | *,***               | _,                  |  |
| Wet Chemistry                               |               |                 |              |              |                     |                     |                     |                     |  |
| pH                                          |               |                 | 1            |              | 5.9                 | 6.4                 | 6.4                 | 5.4                 |  |
|                                             |               |                 |              |              |                     |                     |                     |                     |  |

Notes:
Shading indicates exceedance of two times the mean base background concentration
Bold box indicates exceedance of NCSSLs
Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

- NA not analyzed

  J Analyte present, value may or may not be accurate or precise

  J- Analyte present, value may be biased low, actual value may be higher

  J+ Analyte present, value may be biased high, actual value may be lower
- R Unreliable Result
- U The material was analyzed for, but not detected

  UJ Analyte not detected, quantitation limit may be inaccurate
- mg/kg Milligrams per kilogram μg/kg micrograms per kilogram

IR Site 85 Subsurface Soil Analyical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID                                                        | Camp Lejeune     |                 | Adjusted   | Adjusted    | IR85-SB06         | IR85-SB07         | IR85-SB08         | IR85-SB09         | IR85-SB10            | IR85-SB11         | IR85-SB12            | IR85-SB13         | IR85-SB14             | IR8                  | 5-SB17             |
|-------------------------------------------------------------------|------------------|-----------------|------------|-------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|----------------------|-------------------|-----------------------|----------------------|--------------------|
| Sample ID                                                         | Background SB 2X | NCSSLss         | Industrial | Residential | IR85-SB06-2-7-09C | IR85-SB07-2-4-09C | IR85-SB08-2-7-09C | IR85-SB09-2-7-09C | IR85-SB10-4-7-09C    | IR85-SB11-2-7-09C | IR85-SB12-2-7-09C    | IR85-SB13-2-7-09C | IR85-SB14-2-7-09C     | IR85-SB17-6-7-09C    | IR85-SB17D-6-7-09C |
| Sample Date                                                       | Mean             | (January, 2010) | Soil RSLs  | Soil RSLs   | 07/29/09          | 07/28/09          | 07/28/09          | 07/27/09          | 07/29/09             | 07/29/09          | 07/28/09             | 07/28/09          | 07/29/09              | 07/28/09             | 07/28/09           |
|                                                                   |                  |                 |            |             | 01720700          | 01/20/00          | 01/20/00          | 01/21/00          | 01/20/00             | 01720700          | 01/20/00             | 01720/00          | 01/20/00              | 01/20/00             | 01/20/00           |
| Chemical Name                                                     |                  |                 | -          |             |                   |                   |                   |                   |                      |                   |                      |                   |                       |                      |                    |
| Volatile Organic Compounds (µg/kg)                                |                  |                 |            |             |                   |                   |                   |                   |                      |                   |                      |                   |                       |                      |                    |
| 1,2,4-Trichlorobenzene                                            |                  | 2,200           | 28,000     | 6,200       | 2.1 J             | 1.4 R             | 2.6 J             | 1.9 UJ            | 2 J                  | 2.7 J             | 1.7 U                | 1.6 UJ            | 2 J                   | 1.8 UJ               | 5.9 R              |
| 1,2-Dibromo-3-chloropropane                                       |                  | 0.25            | 69         | 5.4         | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U                | 2.4 J             | 1.7 U                | 1.6 UJ            | 1.7 U                 | 1.8 UJ               | 5.9 R              |
| 1,3-Dichlorobenzene                                               |                  | 7,600           |            |             | 1.2 J             | 1.4 R             | 1.4 J             | 1.9 UJ            | 1.6 UJ               | 1.4 J             | 1.7 U                | 1.6 UJ            | 1.7 U                 | 1.8 UJ               | 5.9 R              |
| 2-Butanone                                                        |                  | 16.000          | 20.000.000 | 2.800.000   | 1.5 J             | 2.8 J             | 2.3 J             | 3.8 UJ            | 2.6 J                | 2.6 J             | 3.5 U                | 4.1 J             | 3.2 J                 | 1.6 J                | 12 R               |
| 4-Methyl-2-pentanone                                              |                  |                 | 3,400,000  | 530.000     | 3.3 U             | 2.9 R             | 4.1 UJ            | 3.8 UJ            | 3.1 U                | 1.5 J             | 3.5 U                | 3.3 UJ            | 3.3 U                 | 3.6 UJ               | 12 R               |
| Acetone                                                           |                  | 24,000          | 63,000,000 | 6,100,000   | 30 J              | 76 J              | 39 J              | 3.8 UJ            | 69 J                 | 33 J              | 3.5 U                | 100 J             | 75 J                  | 90 J                 | 20 J               |
| Chloroform                                                        |                  | 340             | 1,500      | 300         | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U                | 1 J               | 1.7 U                | 1.6 UJ            | 1.7 U                 | 1.8 UJ               | 5.9 R              |
| Isopropylbenzene                                                  |                  | 1,300           | 270,000    | 210,000     | 2.2 J             | 1.4 R             | 2.7 J             | 1.9 UJ            | 2 J                  | 2.6 J             | 1.7 U                | 2.1 J             | 1.7 U                 | 1.8 UJ               | 5.9 R              |
| Methyl acetate                                                    |                  |                 | 29,000,000 | 7,800,000   | 1.6 U             | 20 J              | 6.8 J             | 1.9 UJ            | 1.6 U                | 1.3 J             | 3.4                  | 1.2 J             | 1.7 U                 | 3 J                  | 5.9 R              |
| Methylene chloride                                                |                  | 23              | 53,000     | 11,000      | 1.7 J             | 1.9 J             | 2.3 J             | 1.4 J             | 3.1 U                | 0.88 J            | 1.7 J                | 1.4 J             | 3.3 U                 | 0.62 J               | 12 R               |
| Styrene                                                           |                  | 920             | 870,000    | 630,000     | 2.2 J             | 1.4 R             | 2.8 J             | 1.9 UJ            | 2.1 J                | 2.7 J             | 1.7 U                | 2.3 J             | 3.3 U                 | 2.5 J                | 5.9 R              |
| Tetrachloroethene                                                 |                  | 5               | 2,600      | 550         | 1.3 J             | 1.4 R             | 1.6 J             | 1.9 UJ            | 1.6 U                | 1.6 J             | 1.7 U                | 1.3 J             | 1.7 U                 | 1.8 UJ               | 5.9 R              |
| Toluene                                                           |                  | 5,500           | 820,000    | 500,000     | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U                | 1.9 U             | 1.7 U                | 1.6 UJ            | 1.7 U                 | 0.64 J               | 5.9 R              |
| Oranical-file Orana is Community (confirm)                        |                  |                 |            |             |                   |                   |                   |                   |                      |                   |                      |                   |                       |                      |                    |
| Semivolatile Organic Compounds (μg/kg) bis(2-Ethylhexyl)phthalate |                  | 7,200           | 120.000    | 35,000      | 180 U             | 190 U             | 180 U             | 190 U             | 190 U                | 190 U             | 190 U                | 190 U             | 58 J                  | 190 U                | 200 U              |
| bis(2-Ethylnexyr)phthalate                                        |                  | 7,200           | 120,000    | 35,000      | 180 0             | 190 0             | 160 0             | 190 0             | 190 0                | 190 0             | 190 0                | 190 0             | 36 J                  | 190 0                | 200 0              |
| Pesticide/Polychlorinated Biphenyls (µg/kg)                       |                  |                 |            |             |                   |                   |                   |                   |                      |                   |                      |                   |                       |                      |                    |
| 4,4'-DDD                                                          |                  | 240             | 7,200      | 2,000       | 1.8 U             | 1.3 J             | 1.8 U             | 1.9               | 1.9 U                | 1.9 U             | 1.7 U                | 1.9 U             | 1.9 U                 | 1.9 U                | 2 U                |
| 4,4'-DDE                                                          |                  |                 | 5,100      | 1,400       | 2                 | 31                | 1.8 U             | 1.7 U             | 1.9 U                | 1.9 U             | 1.7 U                | 1.9 U             | 1.9 U                 | 1.9 U                | 2 U                |
| 4,4'-DDT                                                          |                  | 340             | 7,000      | 1,700       | 1.3 J             | 10                | 1.8 U             | 1.7 U             | 1.9 U                | 1.9 U             | 1.7 U                | 1.9 U             | 1.9 U                 | 1.9 U                | 2 U                |
| delta-BHC                                                         |                  | 1.2             | 960        | 270         | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U                | 1.9 U             | 1.7 U                | 1.1 J             | 1.9 U                 | 1.9 U                | 2 U                |
| gamma-Chlordane                                                   |                  | 68              | 6,500      | 1,600       | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U                | 1.9 U             | 1.7 U                | 1.9 J             | 1.9 U                 | 1.9 U                | 2 U                |
|                                                                   |                  |                 |            |             |                   |                   |                   |                   |                      |                   |                      |                   |                       |                      |                    |
| Total Metals (mg/kg)                                              |                  |                 |            |             |                   |                   |                   |                   |                      |                   |                      |                   |                       |                      |                    |
| Aluminum                                                          | 10,369           |                 | 99,000     | 7,700       | 3,830             | 6,420             | 3,750             | 12,000            | 4,090                | 6,230             | 5,180                | 6,180             | 6,260                 | 2,560                | 4,610              |
| Arsenic                                                           | 2.12             | 5.8             | 1.6        | 0.39        | <u>1</u> <u>J</u> | <u>2.3</u>        | <u>0.92</u> J     | <u>1.7</u>        | <u>0.68</u> <u>J</u> | <u>1.2 J</u>      | <u>1.2</u> <u>J</u>  | <u>1.1</u> J      | <u>1.4</u> <u>J</u>   | <u>0.67</u> <u>J</u> | <u>1.7 J</u>       |
| Barium                                                            | 16.6             | 580             | 19,000     | 1,500       | 5.8               | 11.2              | 6.6               | 16.2              | 4.9                  | 8.9               | 7.4                  | 9                 | 7.9                   | 4 U                  | 6.1                |
| Beryllium<br>Calcium                                              | 0.165<br>441     |                 | 200        | 16          | 0.16 U<br>81.2 U  | 0.16 U<br>79.1 U  | 0.024 J<br>79 U   | 0.072 J<br>84.8   | 0.16 U<br>80.1 U     | 0.16 U<br>80.8 U  | 0.037 J<br>79 U      | 0.16 U<br>78.2 U  | 0.033 J<br>16.6 J     | 0.16 U<br>80 U       | 0.17 U<br>83 U     |
| Chromium                                                          | 14.5             | 3.8             | 5.6        | 0.29        | 4.5               | 79.1 0<br>7.5     | 4.3               | 12.5              | 4.3                  |                   |                      | 5.7               | 6.3 J                 | 3.7                  | 6.2                |
| Cobalt                                                            | 0.822            |                 | 3.0        | 2.3         | 0.41 U            | 0.3 J             | 0.39 U            | 0.72              | 0,21 J               | 6.1<br>0.4 U      | <u>5.6</u><br>0.21 J | 0.39 U            | 0.3 <u>J</u><br>0.4 U | 0.4 U                | 0.42 U             |
| Copper                                                            | 2.56             | 700             | 4.100      | 310         | 1.3 J             | 0.99 J            | 0.89 J            | 1.6               | 0.54 J               | 0.4 U<br>0.82 J   | 0.21 J<br>0.95 J     | 0.39 U            | 0.4 U<br>0.8 J        | 0.4 U                | 1.7                |
| Iron                                                              | 5,439            | 150             | 72,000     | 5,500       | 2,640             | 4,620             | 2,010             | 5,040             | 1,670                | 3,790             | 3,310                | 3,440             | 4,050 J+              | 1,750                | 2,940              |
| Lead                                                              | 8.49             | 270             | 800        | 400         | 5.2               | 4.8               | 3.3               | 7.7               | 2.8                  | 3.6               | 4.3                  | 4.5               | 3.7                   | 3                    | 4.9                |
| Magnesium                                                         | 363              |                 |            |             | 131               | 219               | 125               | 424               | 149                  | 201               | 158                  | 208               | 202                   | 84.5                 | 165                |
| Manganese                                                         | 9,25             | 65              | 2.300      | 180         | 9.6               | 6.6               | 31.2              | 19                | 4.5                  | 4.5               | 5.2                  | 5.9               | 4.5                   | 3.1                  | 5                  |
| Mercury                                                           | 0.071            | 1               | 31         | 2.4         | 0.17              | 0.034 U           | 0.035             | 0.037 U           | 0.035 U              | 0.035 U           | 0.033 U              | 0.036 U           | 0.033 U               | 0.033 U              | 0.034 U            |
| Nickel                                                            | 2.27             | 130             | 2,000      | 160         | 0.85              | 1.5               | 0.86              | 2.4               | 0.76 J               | 1                 | 1.2                  | 1                 | 1.1                   | 0.8 U                | 0.83 U             |
| Potassium                                                         | 361              |                 |            |             | 104               | 164               | 109               | 306               | 123                  | 139               | 131                  | 137               | 145                   | 95                   | 165                |
| Selenium                                                          | 0.505            | 2.1             | 510        | 39          | 1.6 U             | 1.6 U             | 1.6 U             | 0.47 J            | 1.6 U                | 1.6 U             | 1.6 U                | 1.6 U             | 1.6 U                 | 1.6 U                | 1.7 U              |
| Silver                                                            | 0.129            | 3.4             | 510        | 39          | 1.6 U                | 1.6 U             | 1.6 U                | 0.083 J           | 0.17 J                | 1.6 U                | 0.086 J            |
| Sodium                                                            | 68.3             |                 |            |             | 8.3 J             | 10.8 J            | 8.6 J             | 23.1 J            | 4.6 J                | 8.3 J             | 4.1 J                | 6.2 J             | 199 U                 | 3.1 J                | 5.1 J              |
| Vanadium                                                          | 17.2             |                 | 520        | 39          | 7.5 J             | 13.1 J            | 6.1 J             | 16.4              | 6.1 J                | 10.4 J            | 8.4                  | 9.3 J             | 10.5                  | 4.9 J                | 9 J                |
| Zinc                                                              | 6.59             | 1,200           | 31,000     | 2,400       | 23.7              | 4 U               | 51.2              | 6.6               | 4 U                  | 4 U               | 6.5                  | 10.6              | 4 U                   | 27.8                 | 52.9               |
|                                                                   |                  |                 |            |             |                   |                   |                   |                   |                      |                   |                      |                   |                       |                      |                    |
| Wet Chemistry                                                     |                  |                 |            |             |                   |                   | ,_                |                   |                      |                   | ***                  |                   |                       |                      |                    |
| рн                                                                |                  |                 |            |             | 4.3               | 4.6               | 4.7               | 4.6               | 4.4                  | 4.5               | NA                   | 4.6               | 4.2                   | 4.5                  | 4.5                |

Notes:
Shading indicates exceedance of two times the mean base background concentration
Bold box indicates exceedance of NCSSLs
Bold text indicates exceedance of Adjusted Industrial Soil RSLs

Underline indicates exceedance of Adjusted Residential Soil RSLs
RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed

J - Analyte present, value may or may not be accurate or precise J+ - Analyte present, value may be biased high, actual value may be lower

R - Unreliable Result

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

mg/kg - milligrams per kilogram

μg/kg - micrograms per kilogram

IR Site 85 Groundwater Analytical Results Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| - · · · ·                                  | i              |                 |              |                |                 |                |                |               |                |                        |                        |                |                       |
|--------------------------------------------|----------------|-----------------|--------------|----------------|-----------------|----------------|----------------|---------------|----------------|------------------------|------------------------|----------------|-----------------------|
| Station ID                                 | Camp Lejeune   | NCGWQS          | Adjusted Tap | IR85-MW01      | IR85-MW02       | IR85-MW04      | IR85-MW05      | IR85-TW04     | IR85-TW05      |                        | -TW06                  | IR85-TW07      | IR85-TW08             |
| Sample ID                                  | Background GW  | (January, 2010) | Water RSLs   | IR85-MW01-09C  | IR85-MW02-09C   | IR85-MW04-09C  | IR85-MW05-09C  | IR85-TW04-09C | IR85-TW05-09C  | IR85-TW06-09C          | IR85-TW06D-09C         | IR85-TW07-09C  | IR85-TW08-09C         |
| Sample Date                                | 2X Mean        | (,              |              | 07/23/09       | 07/23/09        | 07/22/09       | 07/21/09       | 07/27/09      | 07/29/09       | 07/30/09               | 07/30/09               | 07/30/09       | 07/30/09              |
| Chemical Name                              |                |                 |              |                |                 |                |                |               |                |                        |                        |                |                       |
| Volatile Organic Compounds (µg/l)          |                |                 |              |                |                 |                |                |               |                |                        |                        |                |                       |
| Chloroform                                 |                | 70              | 0.19         | 1 U            | 6.2             | 1 U            | 11 J           | 1 U           | 1 U            | 1 U                    | 1 U                    | 1 U            | 2.2 UJ                |
| Methylene chloride                         |                | 5               | 4.8          | 1 U            | 1 U             | 1 UJ           | 11 J           | 1 U           | 1 U            | 190                    | 190                    | 1 U            | 14 J                  |
| incuryione emonde                          |                | 3               | 4.0          | 10             | 10              | 1 00           | 1 00           | 10            | 10             | 130                    | 130                    | 10             | 140                   |
| Semivolatile Organic Compounds (µg/l)      |                |                 |              |                |                 |                |                |               |                |                        |                        |                |                       |
| No Detections                              |                |                 |              | NA             | NA              | NA             | NA             | NA            | NA             | NA                     | NA                     | NA             | NA                    |
| Pesticide/Polychlorinated Biphenyls (µg/l) |                |                 |              |                |                 |                |                |               |                |                        |                        |                |                       |
| 4,4'-DDD                                   |                | 0.1             | 0.28         | 0.051 U        | 0.052 U         | 0.078 U        | 0.05 U         | 0.05 U        | 0.05 U         | 0.079 J                | 0.05 U                 | 0.05 U         | 0.05 U                |
| 1,1 222                                    |                | 0               | 0.20         | 0.001.0        | 0.002 0         | 0.070          | 0.00           | 0.00 0        | 0.00 0         | 0.070                  | 0.00 0                 | 0.00 0         | 0.00 0                |
| Total Metals (µg/l)                        |                |                 |              |                |                 |                |                |               |                |                        |                        |                |                       |
| Aluminum                                   | 1,886          |                 | 3,700        | 124 J          | 873 J           | 560 J          | 469 J          | 182 J         | 110 J          | 15,100                 | 9,130                  | 148 J          | 921 J                 |
| Arsenic                                    | 5.77           | 10              | 0.045        | 20 U           | 2 J             | 20 U           | 20 U           | 20 U          | 20 U           | 20 U                   | 20 U                   | 20 U           | 20 U                  |
| Barium                                     | 86.2           | 700             | 730          | 50 U           | 56.9            | 39.6 J         | 37 J           | 24.2 J        | 41.3 J         | 50 U                   | 50 U                   | 50 U           | 50 U                  |
| Beryllium                                  | 0.308          | 4               | 7.3          | 0.11 J         | 0.27 J          | 0.17 J         | 0.11 J         | 0.098 J       | 2 U            | 2 U                    | 2 U                    | 2 U            | 2 U                   |
| Cadmium                                    | 0.358          | 2               | 1.8          | 6 U            | 6 U             | 0.14 J         | 6 U            | 6 U           | 0.16 J         | 6 U                    | 6 U                    | 6 U            | 0.28 J                |
| Calcium<br>Chromium                        | 69,078<br>3.13 | <br>10          | 0.043        | 569 J          | 1,330 J<br>20 U | 1,960<br>20 U  | 760 J<br>20 U  | 579 J<br>20 U | 1,130<br>20 U  | 3,190<br><b>18.9 J</b> | 3,140<br><b>11.7 J</b> | 2,200<br>20 U  | 1,280<br><b>1.8</b> J |
|                                            |                |                 |              | 20 U           |                 |                |                |               |                |                        |                        |                |                       |
| Cobalt                                     | 3.4<br>2.76    | 1.000           | 1.1<br>150   | 5 U<br>20 U    | 0.67 J<br>40 U  | 0.78 J         | 5 U<br>20 U    | 0.89 J        | 1.2 J<br>2.4 J | 5 U<br>6.8 J           | 5 U<br>6.2 J           | 0.64 J         | 5 U<br>5.6 J          |
| Copper                                     | 5,999          | 300             | 2,600        | 166            | 1,050           | 20 U<br>425    | 20 U<br>106 J  | 2.4 J<br>531  | 6,380          | 6,900                  | 4,770                  | 4.1 J<br>1.110 | 1,480                 |
| Iron<br>Lead                               | 2.8            | 15              | 2,600        | 20 U           | 40 U            | 425<br>2.4 J   | 20 U           | 20 U          | 20 U           | 15.9 J                 | 4,770<br>12.7 J        | 20 U           | 3.7 J                 |
|                                            |                |                 |              |                |                 | 2.4 J<br>445   | 2,480          | 836           |                |                        |                        |                | 379                   |
| Magnesium                                  | 6,363<br>214   | <br>50          | <br>88       | 1,350          | 2,310<br>22     | 5.8            | 2,480<br>4.2 J | 9.6           | 2,510<br>72.5  | 2,060                  | 1,540<br>66.4          | 1,160<br>29    | 36.5                  |
| Manganese                                  |                | 50<br>1         |              | 8              | 0.085 J         | 0.2 U          | -              | 0.036 J       |                | 70.8<br>0.2 U          | 0.2 U                  | -              |                       |
| Mercury<br>Nickel                          | 0.1<br>7.97    | 100             | 1.1<br>73    | 0.2 U<br>1.2 J | 0.085 J<br>3 J  | 0.2 U<br>1.5 J | 0.2 U<br>10 U  | 10 U          | 0.2 U<br>19.7  | 7.9 J                  | 0.2 U<br>6.6 J         | 0.2 U<br>9.5 J | 0.2 U<br>2.2 J        |
| Potassium                                  | 3,277          |                 |              | 498 J          | 2,180           | 496 J          | 650 J          | 726 J         | 813 J          | 1,210                  | 1,010                  | 624 J          | 656 J                 |
| Selenium                                   | 3,277          | 20              | 18           | 20 U           | 2,180<br>20 U   | 20 U           | 20 U           | 20 U          | 4.3 J          | 20 U                   | 20 U                   | 20 U           | 20 U                  |
| Silver                                     | 0.77           | 20              | 18           | 20 U           | 20 U            | 20 U           | 20 U           | 1.5 J         | 20 U           | 20 U                   | 20 U                   | 20 U           | 20 U                  |
| Sodium                                     | 22,508         |                 |              | 6,620          | 14,900          | 4,910          | 5,140          | 3,070         | 4,510          | 26,800                 | 25,700                 | 2,840          | 13,200                |
| Zinc                                       | 42.1           | 1,000           | 1,100        | 4.4 J          | 16.6 J          | 12.6 J         | 50 U           | 50 U          | 30.9 J         | 48 J                   | 41.1 J                 | 13.7 J         | 110                   |
| Discolus d Matela (varil)                  |                |                 |              |                |                 |                |                |               |                |                        |                        |                |                       |
| Dissolved Metals (μg/l) Aluminum           | 1,886          |                 | 3,700        | NA             | NA              | NA             | NA             | 41.2 J        | 92.7 J         | 1,000 U                | 1,000 U                | 106 J          | 1,000 U               |
| Barium                                     | 86.2           | 700             | 730          | NA<br>NA       | NA<br>NA        | NA<br>NA       | NA<br>NA       | 23.3 J        | 41.5 J         | 50 U                   | 50 U                   | 50 U           | 50 U                  |
| Beryllium                                  | 0.308          | 4               | 7.3          | NA<br>NA       | NA<br>NA        | NA<br>NA       | NA<br>NA       | 2 U           | 0.13 J         | 2 U                    | 2 U                    | 2 U            | 2 U                   |
| Calcium                                    | 69,078         | -               |              | NA<br>NA       | NA NA           | NA NA          | NA<br>NA       | 586 J         | 1,140          | 1,000 U                | 1,000 U                | 2,130          | 1,000 U               |
| Chromium                                   | 3.13           | 10              | 0.043        | NA<br>NA       | NA              | NA NA          | NA NA          | 20 U          | 20 U           | 20 U                   | 20 U                   | 1.4 J          | 20 U                  |
| Cobalt                                     | 3.4            |                 | 1.1          | NA             | NA              | NA             | NA             | 0.82 J        | 1.1 J          | 5 U                    | 5 U                    | 0.76 J         | 5 U                   |
| Copper                                     | 2.76           | 1,000           | 150          | NA             | NA              | NA             | NA             | 20 U          | 2.6 J          | 20 U                   | 2.2 J                  | 5.2 J          | 20 U                  |
| Iron                                       | 5,999          | 300             | 2,600        | NA             | NA              | NA             | NA             | 433           | 6,090          | 150 U                  | 150 U                  | 1,050          | 144 J                 |
| Magnesium                                  | 6,363          |                 |              | NA             | NA              | NA             | NA             | 817           | 2,460          | 250 U                  | 250 U                  | 1,150          | 130 J                 |
| Manganese                                  | 214            | 50              | 88           | NA             | NA              | NA             | NA             | 9.9           | 70.1           | 1.5 J                  | 1.3 J                  | 28.8           | 15.3                  |
| Mercury                                    | 0.1            | 1               | 1.1          | NA             | NA              | NA             | NA             | 0.2 U         | 0.2 U          | 0.2 U                  | 0.2 U                  | 0.04 J         | 0.2 U                 |
| Nickel                                     | 7.97           | 100             | 73           | NA             | NA              | NA             | NA             | 10 U          | 19.5           | 10 U                   | 10 U                   | 9.6 J          | 1.3 J                 |
| Potassium                                  | 3,277          |                 |              | NA             | NA              | NA             | NA             | 688 J         | 852 J          | 506 J                  | 492 J                  | 559 J          | 624 J                 |
| Selenium                                   | 3.14           | 20              | 18           | NA             | NA              | NA             | NA             | 20 U          | 4.3 J          | 20 U                   | 20 U                   | 20 U           | 20 U                  |
| Sodium                                     | 22,508         |                 |              | NA             | NA              | NA             | NA             | 2,920         | 4,660          | 27,300                 | 26,500                 | 2,800          | 13,600                |
| Zinc                                       | 42.1           | 1,000           | 1,100        | NA             | NA              | NA             | NA             | 6.8 J         | 31.5 J         | 50 U                   | 50 U                   | 13.5 J         | 49.5 J                |

Notes:
Shading indicates exceedance of two times the mean base background concentration
Bold box indicates exceedance of NCGWQS
Bold text indicates exceedance of Adjusted Tap Water RSLs

RSLs were adjusted for noncarcinogens to account for exposure to multiple constituents

NA - not analyzed
J - Analyte present, value may or may not be accurate or precise
R - Unreliable Result

U - The material was analyzed for, but not detected UJ - Analyte not detected, quantitation limit may be

μg/l - micrograms per liter

IR Site 85 Battery Analytical Data Camp Johnson Construction Area Focused PA/SI Report MCB CamLej, North Carolina

| Station ID           | IR85-BAT        |
|----------------------|-----------------|
| Sample ID            | IR85-BAT-071009 |
| Sample Date          | 07/10/09        |
| Chemical Name        |                 |
|                      |                 |
| Total Metals (mg/kg) |                 |
| Aluminum             | 7,460 U         |
| Antimony             | 149 UJ          |
| Arsenic              | 2.2 J           |
| Barium               | 37.3 U          |
| Beryllium            | 1.5 U           |
| Cadmium              | 12              |
| Calcium              | 195 J           |
| Chromium             | 4.7 J           |
| Cobalt               | 3.7 U           |
| Copper               | 250             |
| Iron                 | 1,780           |
| Lead                 | 1,640           |
| Magnesium            | 98.1 J          |
| Manganese            | 2,740           |
| Mercury              | 222             |
| Nickel               | 5.9 J           |
| Potassium            | 7,460 U         |
| Selenium             | 14.9 U          |
| Silver               | 14.9 U          |
| Sodium               | 1,870 U         |
| Thallium             | NA              |
| Vanadium             | 373 U           |
| Zinc                 | 45,000          |

#### Notes:

- J Analyte present, value may or may not be accurate or precise
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate





CH2MHILL



Surface/Subsurface Soil Sample Locations/Temporary Wells

Approximate Electromagnetic Geophysical Anomaly

IR Site 15 Boundary

**Bold text indicates exceedance of Adjusted Industrial** 

Soil RSLs or Adjusted Tapwater RSL

Underline indicates exceedance of Adjusted Residential Soil RSLs

- U The material was analyzed for, but not detected
- J Analyte present, value may or may not be accurate or precise
- J+ Analyte present, value may be biased high, actual value may be lower NS - No standard



1 inch = 250 feet

Preliminary Assessment/Site Inspection Camp Johnson Construction Area MCB CamLei North Carolina





Camp Johnson Construction Area

Underline indicates exceedance of Adjusted Residential Soil RSLs

U - The material was analyzed for, but not detected

J - Analyte present, value may or may not be accurate or precise J+ - Analyte present, value may be biased high, actual value may be lower NS - No standard

1 inch = 400 feet

MCB CamLei North Carolina





- Surface Soil Sample
- Surface Soil/Subsurface Soil Sample
- Surface Soil/Subsurface Soil/Temporary Well
- Former Battery Pile
- Approximate Former IR Site 85 Boundary
- IR Site 15 Boundary

Italics indicates exceedance of NCSSLs or NCGWQS

**Bold text indicates exceedance of Adjusted Industrial** Soil RSLs or Adjusted Tapwater RSL

Underline indicates exceedance of Adjusted Residential Soil RSLs

- U The material was analyzed for, but not detected
- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower NS - No standard



1 inch = 100 feet

IR Site 85 Analytical Exceedances Preliminary Assessment/Site Inspection Camp Johnson Construction Area MCB CamLei North Carolina



# **Human Health Risk Screening**

A conservative preliminary human health risk screening (HHRS) was performed to assess the potential for human health risks associated with exposure to site media (soil and groundwater) at four areas within the CJCA, including UXO-20 and IR Sites 15, 17, and 85. The purpose of the HHRS is to provide a preliminary indication of potential risks from constituents of potential concern (COPCs), and to evaluate whether future residential use is acceptable or if further evaluation is required (e.g., a baseline risk assessment, additional data collection).

The data included in the risk evaluation were validated, and evaluated to determine the reliability of the data for use in the HHRS. A review of the data identified the following criteria for data usability:

- Estimated values flagged with a J and/or P qualifier (including J-, J+, and JP qualifiers) were treated as detected concentrations
- The maximum concentration between parent/duplicate samples was used as the sample concentration
- Unfiltered groundwater samples were analyzed in the risk evaluations following EPA Region IV guidance (EPA, 2000).

# 6.1 Human Health Conceptual Site Model

The human health conceptual site model (CSM) presents an overview of site conditions, potential contaminant migration pathways, and exposure pathways to potential receptors. The human health CSM for soil and groundwater is presented in **Figure 6-1**. Refer to **Section 2.2** for a detailed summary of the site history and setting. A summary of the human health CSM is provided below.

Potential current receptors include visitors, trespassers, Base/industrial workers, and maintenance workers. The current receptors may come in contact with surface soil. Exposure routes may include incidental ingestion of and dermal contact with the surface soil, and inhalation of volatile and particulate emissions from the surface soil.

Potential future receptors include current receptors, and construction workers who perform any future construction projects at the site. Additionally, future residents are included as a worst-case scenario, to evaluate unrestricted future site use. Future receptors could be exposed to surface and subsurface soil if future construction at the site results in re-working the soil, and exposing the subsurface soil. Exposure routes for future exposure to the surface and subsurface soil are the same as those for current surface soil, incidental ingestion of and dermal contact with the soil, and inhalation of volatile and particulate emissions from the soil.

ES080210002430WDC 6-1

Potable water supplies for MCB CamLej and the surrounding residential area are provided by water supply wells that pump groundwater from the Castle Hayne aquifer; therefore, there is no current exposure to shallow groundwater at the CJCA. The groundwater use patterns are already established for the Base and area around the CJCA, thus use of shallow groundwater from CJCA for industrial or residential purposes is unlikely. Additionally, the surficial aquifer at MCB CamLej is not suitable for potable water use due to high dissolved solids, hardness and fluctuating water levels that negatively affect water yields. However, state and federal governing policies assume that underground fresh water resources are potable, and should be maintained as such; therefore, a potable use scenario was evaluated in this risk assessment. It was conservatively assumed if future residential development of the site occurs the residents could potentially use the groundwater as a potable water supply. The residents would be exposed through ingestion, dermal contact while bathing, and inhalation of VOCs while showering. Additionally, due to the groundwater depth (from 4 to 16 ft bgs), construction workers could be exposed to the groundwater through dermal contact and inhalation of VOCs from an open excavation during construction activities.

Vapor intrusion from groundwater (or soil) to indoor air is not considered a significant exposure pathway for the CJCA. Minimal amounts of VOCs were detected in the groundwater and soil.

# 6.2 Human Health Risk-Based Screening and Risk Ratio Evaluation Methodology

The HHRS was conducted in three steps using a risk ratio technique (Navy, 2000). If COPCs were identified after Step 1, the COPCs were evaluated in Step 2. If COPCs were identified after Step 2, the COPCs were evaluated in Step 3. The three-step screening process is described below:

## 6.2.1 Step 1

The maximum detected analyte concentrations for each medium were compared to EPA RSLs, other human health risk screening levels (if appropriate), and twice the Base background (for inorganics in soil and groundwater). RSLs based on noncarcinogenic effects were divided by 10 to account for exposure to multiple constituents (i.e., were adjusted to a hazard quotient [HQ] of 0.1, from the HQ of 1.0 used on the RSL table). RSLs based on carcinogenic endpoints were used as presented in the RSL table, and are based on a carcinogenic risk of  $1 \times 10^{-6}$ .

The soil data were compared to residential soil RSLs. Residential RSLs are more conservative (i.e., lower) than industrial soil RSLs and are therefore protective of all potential receptors (e.g., residents, industrial workers, construction workers).

The groundwater data were compared to Tap Water RSLs. Groundwater data were also compared to MCLs and the NCGWQS; however, these comparisons were not used to identify the groundwater COPCs to carry forward to Step 2.

6-2 ES080210002430WDC

If the maximum detected concentration in soil or groundwater exceeded the appropriate screening value and background concentration, the screening level risk evaluation proceeded to Step 2.

In addition to comparing the detected concentrations to the screening levels, the detection limits for non-detected analytes were compared to the screening levels. Non-detected analytes with detection limits exceeding the screening level were not identified as COPCs to carry forward to Step 2, but were discussed below to evaluate the potential for underestimating the total risks.

### 6.2.2 Step 2

For analytes identified as COPCs in Step 1, a corresponding risk level was calculated using the following equation:

The concentration is the maximum detected concentration (the same concentration that was used in Step 1). The acceptable risk level is 1 for noncarcinogens and 10-6 for carcinogens. RSLs for noncarcinogenic effects were not adjusted by 10 as was done in Step 1, they are used as presented in the RSL table.

All of the corresponding risk levels for each analyte within a media were summed to calculate the cumulative corresponding hazard index (HI) (for noncarcinogens) and cumulative corresponding carcinogenic risk (for carcinogens). A cumulative corresponding HI was also calculated for each target organ/effect. If the cumulative corresponding HI for a target organ/effect is greater than 0.5, or the cumulative corresponding carcinogenic risk is greater than  $5\times10^{-5}$ , the analytes contributing to these values are retained as COPCs and carried forward to Step 3.

## 6.2.3 Step 3

A corresponding risk level was calculated as discussed above for Step 2; however, the 95 percent upper confidence limit (UCL) was used in place of the maximum detected concentration, if more than five samples were available for that media, to obtain a more site-specific risk ratio. If the cumulative corresponding HI by target organ/effect is greater than 0.5, or the cumulative corresponding carcinogenic risk is greater than  $5 \times 10^{-5}$ , then constituents contributing to these values are considered COPCs.

ProUCL Version 4.00.04 (EPA, 2009a) was used to test the data distribution and calculate 95 percent UCL used for the Step 3 risk ratio calculations.

ES080210002430WDC 6-3

# 6.3 Human Health Risk Screening Results

The HHRS (comparison to risk-based criteria and background levels, Step 1) and risk ratio evaluation (Steps 2 and 3) were performed for UXO-20, Site 15, Site 17, and Site 85 surface soil, combined surface and subsurface soil, and groundwater.

#### 6.3.1 UXO-20

### Surface Soil Risk Screening

Tables 2.1 and 2.1a, **Appendix E**, present the risk-based screening and risk ratio evaluation for surface soil. As shown on Table 2.1 in **Appendix E**, arsenic was identified as a COPC. Based on Step 2 of the screening process (Table 2.1a, **Appendix E**), arsenic was eliminated as a COPC; therefore, exposure to surface soil at UXO-20 would not pose any unacceptable risks, and further evaluation of surface soil based on human health risks is not necessary.

#### Combined Surface and Subsurface Soil Risk Screening

The risk-based screening and risk ratio evaluation for combined surface and subsurface soil data are presented in Tables 2.2 through 2.2b of **Appendix E**. As shown on Table 2.2, **Appendix E**, arsenic exceeded the first step of the screening and was identified as a COPC for evaluation in Step 2. Based on Step 2 (Table 2.2a, **Appendix E**), arsenic was identified as a COPC. Step 3 (Table 2.2b, **Appendix E**) eliminated arsenic as a COPC. Exposure to surface and subsurface soil at UXO-20 would not pose any unacceptable risks, and further evaluation of UXO-20 combined surface and subsurface soil based on human health risks is not necessary.

### **Groundwater Risk Screening**

Tables 2.3 through 2.3b, **Appendix E**, present the risk-based screening and risk ratio evaluation for the groundwater. As shown on Table 2.3 in **Appendix E**, arsenic and lead were identified as COPCs. Based on Step 2 of the screening process (Table 2.3a, **Appendix E**), arsenic was identified as a COPC. Lead was eliminated as a COPC because the mean concentration of lead, used in the EPA's Integrated Exposure Uptake Biokinetic (IEUBK) model, is below the screening level. This indicates exposure to lead would not be a risk to residential receptors. Step 3 (Table 2.3b, **Appendix E**) did not eliminate arsenic as a COPC. Therefore, exposure to groundwater could result in an unacceptable risk to human receptors. However, arsenic was only detected in 12 of the 37 samples, and arsenic exceeded background concentrations in only two samples. Therefore, the arsenic may not be associated with site-related activities, but may be associated with background conditions at the base.

#### Non-detected Analytes

Only one metal, antimony, which was not detected in groundwater, had detection limits above the screening level. All of the other metals analyzed for in groundwater and soil samples were detected.

6-4 ES080210002430WDC

### 6.3.2 IR Site 15

### Surface Soil Risk Screening

Tables 2.4 through 2.4b, **Appendix E**, present the risk-based screening and risk ratio evaluation for surface soil. As shown on Table 2.4 in **Appendix E**, three SVOCs [chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene], Aroclor-1254, and four metals (aluminum, arsenic, chromium, and iron) were identified as COPCs. The concentration of two of the SVOCs [chrysene and indeno(1,2,3-dc)pyrene] did not exceed the screening level, however they were identified as COPCs following EPA Region 4 risk assessment guidance (EPA, 2000), another chemical, dibenz(a,h)anthracene, from the same chemical class (carcinogenic polycyclic aromatic hydrocarbon) was identified as a COPC. Based on Step 2 of the screening process (Table 2.4a, **Appendix E**), the three polycyclic aromatic hydrocarbon (PAHs), Aroclor-1254, and two of the metals (arsenic and chromium) were identified as COPCs. Step 3 eliminated all of the COPCs, therefore, exposure to surface soil would not pose any unacceptable risks, and further evaluation of Site 15 surface soil based on human health risks is not necessary.

### Surface and Subsurface Soil Risk Screening

The risk-based screening and risk ratio evaluation for surface and subsurface soil data are presented in Tables 2.5 through 2.5b of **Appendix E**. As shown on Table 2.5 in **Appendix E**, three SVOCs [chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene], Aroclor-1254, and seven metals (aluminum, arsenic, chromium, cobalt, iron, lead, and manganese) were identified as COPCs. The concentration of two of the SVOCs [chrysene and indeno(1,2,3dc)pyrene] did not exceed the screening level; however they were identified as COPCs following EPA Region 4 risk assessment guidance (EPA, 2000), another chemical, dibenz(a,h)anthracene, from the same chemical class (carcinogenic PAH) was identified as a COPC. Based on Step 2 of the screening process (Table 2.5a, Appendix E), the three PAHs, Aroclor-1254, and four of the metals (arsenic, chromium, iron, and lead) were identified as COPCs. Lead was eliminated as a COPC because the mean concentration of lead, used in the IEUBK model, is below the screening level. This indicates exposure to lead would not be a risk to residential receptors. Step 3 eliminated the remaining COPCs; therefore, exposure to surface and subsurface soil would not pose any unacceptable risks, and further evaluation of Site 15 surface and subsurface soil based on human health risks is not necessary.

#### Groundwater Risk Screening

Tables 2.6 through 2.6b, **Appendix E**, present the risk-based screening and risk ratio evaluation for the groundwater. As shown on Table 2.6 in **Appendix E**, chromium, cobalt, iron, and manganese were identified as COPCs. Based on Step 2 of the screening process (Table 2.6a, **Appendix I**), chromium and iron were retained as COPCs. Chromium and iron could not be eliminated as COPCs in Step 3 (Table 2.3b, **Appendix E**). Therefore, exposure to groundwater could result in an unacceptable risk to human receptors associated with exposure to chromium and iron.

Chromium is the only contributor to the carcinogenic risk. Chromium was detected in groundwater samples collected from two of the five temporary monitoring wells. Only the maximum detected concentration exceeded twice the Base background. In the absence of chromium speciation information, the tap water RSL for hexavalent chromium, the more

ES080210002430WDC 6-5

toxic (and carcinogenic) form of chromium, was used as the screening value for total chromium. The use of hexavalent chromium for comparison to total chromium is extremely conservative because the presence of trivalent chromium is strongly favored in natural waters and because the concentrations of constituents known to reduce hexavalent chromium to trivalent chromium generally far outweigh the concentrations of the few constituents known to oxidize trivalent chromium to hexavalent chromium. Furthermore, once reduced, trivalent chromium is very stable in aquatic environments and highly unlikely to oxidize to hexavalent chromium. Thus, chromium in groundwater is more likely to be in its trivalent form than its hexavalent form (Fendorf and Zasoski, 1992; Milacic and Stupar, 1995; Weaver and Hochella, 2003). The maximum detected concentration of total chromium in the groundwater is below the tap water RSL for trivalent chromium. Additionally, prior to including the New Jersey EPA oral cancer slope factor (CSF) for hexavalent chromium in the RSL table, the groundwater RSL for hexavalent chromium was over three-orders of magnitude higher than the value on the current RSL table. It should also be noted that there is some uncertainty associated with the hexavalent chromium oral CSF, and RSL, as the value is from New Jersey EPA, and has not been included in EPA's Integrated Risk Information System (IRIS) database.

The only contributor to the non-carcinogenic hazard is iron. The maximum detected concentration of iron equals the tap water RSL. The 95 percent UCL concentration of iron is below the EPA Tap Water RSL. The conservative screening level HHRS indicated that potable use of the groundwater could result in an HI of 0.7 associated with the iron. Additionally, iron is an essential nutrient for human health. Therefore, it is unlikely there would be any adverse effects associated with exposure to the iron in Site 15 groundwater.

### Non-detected Analytes

Six SVOCs (benzo(a)pyrene, benzo(a)anthracene, benzo(b)flouranthene, bis(2-chloroethyl)ether, hexachlorobenzene, and n-nitroso-di-n-propylamine) and one VOC (1,2-dibromo-3-chloropropane) that were not detected in soil, and had detection limits above the screening levels. However, in general, the detection limits for these analytes in surface and subsurface soil were only slightly above the screening level (were within one order of magnitude of the non-carcinogenic adjusted RSL).

As shown on Table 2.6 in **Appendix E** 20 VOCs and 29 SVOCs were not detected in the groundwater but had detection limits above the screening level. However, due to the limited amount of VOCs and SVOCs detected in the groundwater, it is not expected that they are present in the groundwater, and if they are, it is likely they would be below levels of potential concern for human health because the majority of the detection limits were within an order of magnitude of the RSL or MCL. There were also six metals (antimony, cadmium, lead, selenium, silver, and vanadium) not detected in groundwater with a detection limit above the screening level. The detection limits of these metals were only slightly (within an order of magnitude) above the screening levels.

#### 6.3.3 Site 17

#### Surface Soil Risk Screening

Tables 2.7 and 2.7a, **Appendix** E, present the risk-based screening and risk ratio evaluation for surface soil. As shown on Table 2.7 in **Appendix** E, three metals (arsenic, chromium, and iron) were identified as COPCs. Based on Step 2 of the screening process (Table 2.7a,

6-6 ES080210002430WDC

**Appendix E**), none of these metals were identified as COPCs. Therefore, exposure to surface soil would not pose any unacceptable risks, and further evaluation of Site 17 surface soil based on human health risks is not necessary.

### Combined Surface and Subsurface Soil Risk Screening

The risk-based screening and risk ratio evaluation for surface and subsurface soil data are presented in Tables 2.8 through 2.8b of **Appendix E**. As shown on Table 2.8 in **Appendix E**, five metals (aluminum, arsenic, chromium, iron, and vanadium) were identified as COPCs. Based on Step 2 of the screening process (Table 2.8a, **Appendix E**), arsenic and chromium were identified as COPCs. Step 3 did not eliminate either arsenic or chromium from consideration as COPCs. Chromium is the main contributor to the potential carcinogenic risk associated with the subsurface soil, and the only COPC wih a cancer risk above 5x10-5. Elimination of chromium as a COPC would also result in elimination of arsenic as a COPC, because it doesn't contribute significantly (above 5x10-5) to the cumulative calculated risk.

The soil samples collected at Site 17 were analyzed for total chromium, and in the absence of chromium speciation data, it was assumed that hexavalent chromium contributed to the concentrations. Therefore, hexavalent chromium, the more toxic (and carcinogenic) form of chromium, was used as the screening value for total chromium. In order to determine the concentrations of hexavalent and trivalent chromium, additional subsurface soil samples were collected from sample locations IR17-SB01 through IR17-SB05 in July 2010. The samples were submitted for laboratory analysis of total and hexavalent chromium. Trivalent chromium concentrations were determined by subtracting the hexavalent chromium concentrations from the total chromium concentrations. The hexavalent and trivalent chromium concentrations were screened against their respective RSLs, as shown on Table 2.9 of Appendix E. Step 1 of the screening process eliminated trivalent chromium as a COPC. Based on Step 2 of the screening process (Table 2.9a, Appendix E) hexavalent chromium was eliminated as a COPC. The elimination of chromium as a COPC also eliminated arsenic as a COPC; therefore exposure to Site 17 soil would not result in an unacceptable risk to human receptors. Further evaluation of soil at Site 17 based on human health risks is not necessary.

#### Groundwater Risk Screening

Tables 2.10 and 2.10a, **Appendix E**, present the risk-based screening and risk ratio evaluation for the groundwater. As shown on Table 2.10 in **Appendix E**, chloroform was identified as a COPC. Based on Step 2 of the screening process (Table 2.10a, **Appendix E**), chloroform was not identified as a COPC. Therefore, exposure to Site 17 groundwater would not result in an acceptable risk to human receptors and further evaluation of groundwater at Site 17 based on human health is not necessary.

#### Non-detected Analytes

Three SVOCs (benzo(a)pyrene, bis(2-chloroethyl)ether, and dibenz(a,h)anthracene) and one VOC (1,2-dibromo-3-chloropropane) were not detected in soil that had detection limits above the screening level. However, in general, the detection limits for these analytes in surface and subsurface soil were only slightly above the screening level (were within one order of magnitude of the non-carcinogenic adjusted RSL). As shown on Table 2.9 in **Appendix E** 20 VOCs and 29 SVOCs were not detected in the groundwater but had detection limits above the screening level. However, due to the limited VOCs and SVOCs

ES080210002430WDC 6-7

detected in the groundwater, it is not expected that they are present in the groundwater, and if they are, it is likely they would be below levels of potential concern for human health because the majority of the detection limits were within an order of magnitude of the RSL or MCL.

#### 6.3.4 Site 85

### Surface Soil Risk Screening

Tables 2.11 through 2.11b, **Appendix E**, present the risk-based screening and risk ratio evaluation for surface soil. As shown on Table 2.11 in **Appendix E**, nine metals (antimony, arsenic, chromium, cobalt, iron, lead, manganese, mercury, and zinc) were identified as COPCs. Based on Step 2 of the screening process (Table 2.11a, **Appendix E**), two metals, lead and manganese, were identified as COPCs. Lead was eliminated as a COPC because the mean concentration of lead, used in the IEUBK model, is below the screening level. This indicates exposure to lead would not be a risk to residential receptors. Step 3 of the screening process identified manganese as a COPC. Manganese was only detected in one of the 13 surface soil samples at a concentration above the RSL. This detected concentration was 10 times higher than the next highest detection. Therefore, the potential risk associated with manganese is associated with only one sample. Additionally, manganese is an essential human nutrient.

#### Surface and Subsurface Soil Risk Screening

The risk-based screening and risk ratio evaluation for surface and subsurface soil data are presented in Tables 2.12 through 2.12b of **Appendix E**. As shown on Table 2.12 in **Appendix E**, ten metals (aluminum, antimony, arsenic, chromium, cobalt, iron, lead, manganese, mercury, and zinc) were identified as COPCs. Based on Step 2 of the screening process (Table 2.12a, **Appendix E**), five metals (aluminum, arsenic, chromium, lead, and manganese) were identified as COPCs. Lead was eliminated as a COPC because the mean concentration of lead, the lead concentration used in the IEUBK model to evaluate exposure to lead, is below the screening level, indicating exposure to lead would not be a risk to residential receptors. Based on Step 3 aluminum and manganese were identified as COPCs.

Manganese was only detected in 1 of the 23 soil samples at a concentration above the RSL. This detected concentration was 10 times higher than the next highest detection. Therefore, the potential risk associated with manganese is associated with only one sample. Additionally, manganese is an essential human nutrient. Aluminum was identified as a COPC because it affects the same target organ as manganese. Aluminum alone does not contribute a hazard above the acceptable screening level HI of 0.5.

#### **Groundwater Risk Screening**

Tables 2.13 and 2.13b, **Appendix E**, present the risk-based screening and risk ratio evaluation for the groundwater. As shown on Table 2.13 in **Appendix E**, two VOCs (chloroform and methylene chloride) and four metals (aluminum, chromium, iron, and lead), were identified as COPCs. Based on Step 2 of the screening process (Table 2.13a, **Appendix E**), the chloroform, methylene chloride, chromium, and lead were identified as COPCs. Lead was eliminated as a COPC because the mean concentration of lead, the lead concentration used in the IEUBK model to evaluate exposure to lead, is below the screening

6-8 ES080210002430WDC

level indicating exposure to lead would not be a risk to residential receptors. After Step 3, chloroform, methylene chloride, and chromium were identified as COPCs.

Chloroform and methylene chloride are common laboratory contaminants and may not be associated with site use. Chromium was detected in groundwater samples collected from two of the nine temporary monitoring wells. Only the maximum detected concentration exceeded twice the Base background. In the absence of chromium speciation information, the tap water RSL for hexavalent chromium, the more toxic (and carcinogenic) form of chromium, was used as the screening value for total chromium. The use of hexavalent chromium for comparison to total chromium is extremely conservative because the presence of trivalent chromium is strongly favored in natural waters and because the concentrations of constituents known to reduce hexavalent chromium to trivalent chromium generally far outweigh the concentrations of the few constituents known to oxidize trivalent chromium to hexavalent chromium. Furthermore, once reduced, trivalent chromium is very stable in aquatic environments and highly unlikely to oxidize to hexavalent chromium. Therefore, chromium in groundwater is more likely to be in its trivalent form than its hexavalent form (Fendorf and Zasoski, 1992; Milacic and Stupar, 1995; Weaver and Hochella, 2003). The maximum detected concentration of total chromium in the groundwater is below the tap water RSL for trivalent chromium. Additionally, prior to including the New Jersey EPA oral CSF for hexavalent chromium in the table, the groundwater RSL for hexavalent chromium was more than three orders of magnitude higher than the value on the current RSL table. It also needs to be noted that there is some uncertainty associated with the hexavalent chromium oral CSF, and RSL, because the value is from New Jersey EPA and has not been included in EPA's Integrated Risk Information System (IRIS) database.

#### Non-detected Analytes

Three SVOCs (benzo(a)pyrene, bis(2-chloroethyl)ether, and dibenz(a,h)anthracene) that were not detected in soil that had detection limits above the screening level. However, in general, the detection limits for these analytes in surface and subsurface soil were only slightly above the screening level (were within one order of magnitude of the non-carcinogenic adjusted RSL). As shown on Table 2.13 in **Appendix E**, there were 20 VOCs and 31 SVOCs in groundwater that were not detected but had detection limits above the screening level. However, due to the limited amount of VOCs and SVOCs detected in the groundwater, it is not expected that they are present in the groundwater, and if they are, it is likely they would be below levels of potential concern for human health because the majority of the detection limits were within an order of magnitude of the RSL or MCL. There were also two metals (antimony and vanadium) not detected in groundwater with a detection limit above the screening level. The detection limits of these metals were only slightly above the screening levels.

ES080210002430WDC 6-9

FIGURE 6-1 Conceptual Site Model for HHRA Preliminary Assessment/Site Inspection Camp Johnson Construction Area

MCB CamLej, North Carolina



<sup>&</sup>lt;sup>1</sup>Current receptor populations may be exposed to surface soil. Future receptor populations may be exposed to surface and subsurface soil.

Created by: D. Stannard Checked by: B. Propst

NA - Not Applicable or pathway is incomplete

X - Potentially complete exposure pathways

# Preliminary Ecological Risk Screening

An ecological risk screening (ERS) was conducted for four sites at Camp Johnson – UXO-20, Site 15, Site 17, and Site 85. Analytical data from surface soil, subsurface soil, and groundwater samples were screened against benchmarks intended to be protective of ecological receptors. All data considered in the screening were collected during the 2009 sampling events, except for some historical data that were included as part of the screening for Site 15.

# 7.1 Site Ecological Setting and Available Data

The following section provides information on site ecological setting and available data for UXO-20, IR Site 15, IR Site 17, and IR Site 85. No jurisdictional wetlands have been identified within the CJCA boundary.

#### 7.1.1 UXO-20

The area of investigation is approximately 90 percent vegetated with trees and thick undergrowth.

Data from the following samples were considered in the screen:

- 214 surface soil samples (plus 31 duplicates) from 0 to 1 ft bgs.
- 67 subsurface soil samples (plus 7 duplicates) collected from 2 to 7 ft bgs
- 37 groundwater samples (plus 3 duplicates). Dissolved metals data were available for a subset of the wells. Groundwater from UXO-20 is assumed to discharge to marine waters.

#### 7.1.2 IR Site 15

Site 15 consists of an open area surrounded by vegetation, and encompasses approximately 24 acres. However, historical investigations indicate the former disposal area covers only about 2 acres in the eastern portion of the site. Site 15 is predominately vegetated with trees and thick undergrowth. One area of bare disturbed ground is present in the northeastern portion of the site.

Data from the following samples were considered in the screen:

- Seven surface soil samples were collected in 2006 (SWMU46 samples).
- 10 surface samples (plus one duplicate) collected in 2009 from 0 to 1 ft bgs.
- 10 subsurface soil samples (plus one duplicate) collected from 0 to 5 ft bgs in 2009.
- 5 groundwater samples (plus 1 duplicate) collected in 2009. Dissolved metals data were available for all of the wells. Groundwater from Site 15 is assumed to discharge to marine waters.

ES080210002430WDC 7-1

#### 7.1.3 IR Site 17

Site 17 consists of an area of approximately 5 acres covered by concrete debris, located along the shoreline of the New River.

Data from the following samples were considered in the screen:

- 5 surface soil samples (plus one duplicate) were collected from 0 to 1 ft bgs.
- 5 subsurface soil samples (plus one duplicate) collected from 0 to 5 ft bgs
- 2 groundwater samples (plus one duplicate) Dissolved metals data were also available. Groundwater from Site 17 is assumed to discharge to marine waters.

#### 7.1.4 IR Site 85

Site 85 encompasses approximately 4.5 acres in the Camp Johnson support operations area of MCB CamLej. Site 85 is predominately vegetated with trees and thick undergrowth.

Data from the following samples were considered in the screen:

- 13 surface soil samples (plus two duplicates) collected from 0 to 1 ft bgs
- 10 subsurface soil samples (no duplicates) collected from 0 to 5 ft bgs
- 9 groundwater samples (plus one duplicate). Dissolved metals data were available for a subset of the wells. Groundwater from Site 85 is assumed to discharge to marine waters.

# 7.2 Screening Methodology

For each medium (surface soil, subsurface soil, and groundwater), the maximum and average concentrations are presented in **Tables F-1** through **F-12** along with representative ecological screening values (ESVs) intended to be protective of ecological receptors. HQs were calculated by dividing these exposure concentrations by the ESVs. It should be noted that ESVs for inorganics in water are generally based on dissolved concentrations and comparing them to total metals concentrations is conservative and may over-represent risk.

For locations with multiple data points (i.e., a parent and duplicate sample were available), data were reduced to the value of the greatest detected concentration or highest detection limit if there was no detection. Where average concentrations are reported, one half of the detection limit was used for non-detects as the representative concentration when determining the average.

For soil, the EPA ecological soil screening levels (EPA, 2009b) were preferentially selected over Region 4 values (EPA, 2001). When no ecological soil screening level was available for a constituent, the Region 4 value was selected.

A selection hierarchy was also applied to groundwater. The national recommended water quality criteria (NRWQC) were preferentially selected over the Region 4 value (EPA, 2009c). However, when no NRWQC was available for a constituent, the Region 4 value was selected as the ESV for that constituent. It is assumed that groundwater discharges to marine waters; therefore, marine ESVs were selected.

7-2 ES080210002430WDC

A base background study for inorganics was conducted at MCB CamLej in June and July 2000 (Baker, 2001). As part of the ERS, surface soil, subsurface soil, and groundwater background concentrations were compared to site-specific media concentrations. Additional lines of evidence in the evaluation include the frequency of detection, frequency of exceedance, magnitude of exceedance, and identification of potential laboratory contaminants.

Calcium, magnesium, potassium, and sodium were evaluated but not considered as COPCs in the ERS. Each is considered a macronutrient (Whitehead, 2000).

# 7.3 Screening Results

This section addresses constituents that were detected and had available ESVs based on the selection hierarchy discussed above for the four evaluated sites. Constituents not detected are not expected to pose a risk to ecological receptors. The ERS results are presented in **Appendix F**.

### 7.3.1 UXO-20

#### Surface Soil

Three detected constituents had concentrations in excess of ESVs (antimony, lead, and zinc) (**Table F-1**). The maximum concentration of antimony exceeded twice the mean background but was within the Base background range for surface soils at MCB CamLej and is considered to be representative of background.

Lead and zinc concentrations exceeded the ESVs and were above the background ranges for surface soil. However, lead only exceeded the Region 4 screening level in 1 of 214 samples and the background concentration in 2 of 214 samples, suggesting that lead is likely consistent with background and is not considered to pose a risk to ecological receptors. While zinc had an HQ above one, the frequency (3/214) and magnitude of exceedance (HQ = 2.5) were low and the mean HQ was less than 1.0. Consequently, inorganics in surface soil at the former range fans are not expected to pose risk to ecological receptors.

#### Subsurface Soil

Of the detected constituents, arsenic, lead, and zinc had concentrations in excess of the ESVs (**Table F-2**). The maximum concentration of lead exceeded twice the Base background but was within the background range for surface soils at MCB CamLej and is considered to be representative of background.

Arsenic and zinc concentrations exceeded the ESVs with respective maximum-based HQs of 1.38 and 1.07. Because the frequency and magnitude of exceedance was low for both analytes, risk is considered low. Consequently, inorganics are not expected to pose a significant risk to ecological receptors.

#### Groundwater

Of the total inorganics, three detected constituents had concentrations in excess of the selected ESVs including copper, lead, and zinc (**Table F-3**). While the maximum concentrations of each analyte exceeded twice the mean background, these concentrations were within the background range for groundwater at MCB CamLej and are considered to

ES080210002430WDC 7-3

be representative of background. Consequently, none of these constituents are expected to pose a significant risk.

Of the dissolved inorganics, copper and zinc were the only analytes with a maximum concentration greater than the ESV. The maximum concentrations, however, were within the respective background ranges for shallow groundwater. Consequently, dissolved inorganics are not expected to pose a significant risk to ecological receptors.

#### 7.3.2 IR Site 15

#### **Surface Soil**

Seven detected organic constituents and nine inorganic constituents had concentrations in excess of ESVs (**Table F-4**). Of these organics, all analytes, with the exception of chloroform and Aroclor-1254, had low frequencies and/or magnitudes of exceedance. While chloroform had an HQ of 5.2, it is a common lab contaminant (California Department of Toxic Substances Control [CDTSC], 2006) and only a limited number of VOCs were detected. Aroclor-1254 had a low frequency of detection (1/15) but had an elevated HQ of 18.

Of the inorganics, aluminum, antimony, iron, and vanadium exceeded twice the Base background; however, the concentrations were within the respective background ranges. Cadmium, copper, lead (based on the Region 4 ESV), and zinc were all found to have low frequencies of detection and/or magnitudes of exceedance and risk from these analytes is considered low. Mercury had a maximum-based HQ of 5.1 and a mean-based HQ of less than 1.0.

While ecological risks are generally low for inorganic analytes, the majority of predicted risk is from one sample location (IR15-SS01). This sample location is co-located with the maximum Aroclor-1254 detection. Because this area is not well characterized, additional investigation to delineate the nature and extent of inorganics and PCBs in this area is recommended.

#### Subsurface Soil

Of the detected constituents, 3 pesticides (4, 4'-DDD, 4, 4'-DDE, and 4, 4'-DDT) and 12 inorganics had concentrations in excess of the ESVs (**Table F-5**). The pesticides were all elevated in IR15-SB10 and had HQs ranging from 2.19 to 8.54. Because sampling in this area is limited and HQs were elevated, additional investigation is recommended to evaluate these pesticides (particularly, 4,4'-DDE, and 4,4'-DDT).

Of the inorganics, aluminum and vanadium had maximum concentrations that were consistent with MCB CamLej background levels and are not considered to pose a significant risk to ecological receptors. Cadmium, chromium, copper, manganese, and thallium all had low frequencies and/or magnitudes of exceedances. Additionally, the majority of these analytes had mean-based HQs less than 1.0. Antimony, iron, lead, and zinc all had maximum-based HQs and mean-based HQs above 1.0. Although inorganics in subsurface soil are not expected to pose significant risks to ecological receptors, additional investigation is recommended for inorganics in subsurface soils at Site 15. It should also be noted that the majority of subsurface contamination is collocated with surface contamination found in IR15-SS01.

7-4 ES080210002430WDC

#### Groundwater

Of the detected inorganics in groundwater, only copper and nickel, had concentrations in excess of the selected ESVs (**Table F-6**). However, while both analytes exceed twice the Base background, they are both within the respective background range based on total and dissolved concentrations. Consequently, neither of these constituents is expected to pose a significant risk.

#### 7.3.3 IR Site 17

#### Surface Soil

Six detected constituents had concentrations in excess of ESVs including one organic (chloroform) and five inorganics (aluminum, iron, lead, selenium, and vanadium) (**Table F-7**). While chloroform had an elevated HQ, it is a common lab contaminant (CDTSC, 2006) and was the only VOC detected in excess of the ESV.

The maximum concentrations of all five inorganics were twice the Base background but were within the respective background ranges for surface soils at MCB CamLej and are considered to be representative of background.

#### Subsurface Soil

Of the detected constituents, only one organic (chloroform) and seven inorganics had concentrations in excess of the ESVs (**Table F-8**). Aluminum had a maximum concentration (20,000 mg/kg) that was greater than the background range (260 to 16,800 mg/kg) and a maximum- and mean-based HQ above 1.0. Antimony had a low magnitude of exceedance and was greater than the ESV in only one of five samples. Chromium, lead, and selenium had maximum-based HQs greater than 1.0, but mean-based HQs less than 1.0. Additionally, these analytes each had a low magnitude of exceedance based on the maximum detection and lead had a maximum-based HQ of less than 1.0 when using the Region 4 screening value of 50 mg/kg. Iron and vanadium both had maximum- and mean-based HQs greater than 1.0. While aluminum, iron, and vanadium all had elevated HQs, these analytes are not thought to be the result of site-related activities because Site 17 was a surface dumping site. Surface soils at this site are not significantly affected and it is unlikely that inorganics in subsurface soils would be elevated as a result of surface disposal. Additionally, the area was a disposal site for concrete debris and is unlikely to have contributed to metals contamination in soils.

#### Groundwater

Of the detected inorganics in groundwater, only copper and nickel, had concentrations in excess of the selected ESVs (**Table F-9**). However, while both analytes exceed twice the Base background, they are both within the respective background range based on total and dissolved concentrations. Consequently, neither of these constituents is expected to pose a significant risk.

#### 7.3.4 IR Site 85

#### Surface Soil

Fifteen detected constituents had concentrations in excess of ESVs, including 4 organics (bis[2-ethylhexyl]phthalate; 4,4′-DDE; 4,4′-DDT, and Aroclor-1254) and 11 inorganics (**Table F-10**). Of these, the organic analytes were found to have a low frequency of

ES080210002430WDC 7-5

occurrence and/or magnitude of exceedance and mean HQs less than 1.0. Additionally, phthalates are known to be common laboratory contaminants (CDTSC, 2006).

Of the inorganics, the maximum concentrations of aluminum, iron, and vanadium exceeded twice the mean background but were within the background range for surface soils at MCB CamLej and are considered to be representative of background. The remaining inorganics (antimony, cadmium, copper, lead, manganese, mercury, thallium, and zinc) had high magnitudes of exceedance and were well outside the respective background ranges. Consequently, these inorganics are considered to pose potential risk to ecological receptors and additional evaluation is recommended.

#### Subsurface Soil

Of the detected constituents, two organics (chloroform and 4,4'-DDE) and five inorganics (aluminum, iron, mercury, vanadium, and zinc) had concentrations in excess of the ESVs (**Table F-11**). Both organic analytes had a low magnitude of exceedance and a mean-based HQ less than 1.0. Additionally, chloroform is known to be a common laboratory contaminant (CDTSC, 2006).

For inorganics, the iron and vanadium maximum concentrations were consistent with MCB CamLej background levels and are not considered to pose a significant risk to ecological receptors. The maximum concentration of aluminum exceeded twice the Base background but was within the background range for subsurface soils at MCB CamLej and is considered to be representative of background. Mercury and zinc both had a low magnitude of exceedance (maximum-based HQs less than 2.0) and mean HQs less than 1.0. Additionally, the maximum mercury concentration (0.17 mg/kg) only slightly exceeds the maximum background value (0.16 mg/kg). Consequently, an ecological risk from analytes in subsurface soil is considered negligible.

#### Groundwater

Six detected constituents had concentrations in excess of the selected ESVs, including 4,4'-DDD, copper, lead, nickel, silver, and zinc (**Table F-12**). The magnitude of exceedance for 4, 4'-DDD was low and it was detected in only 1 of 9 samples. It is unlikely that concentrations of pesticides in groundwater are related to battery disposal that occurred at the site but rather the result of application of pesticides at the Base.

The maximum concentration of zinc is within the MCB CamLej background range for groundwater. While total concentrations of lead, silver, and zinc were above background, they were consistent with background based on dissolved data. Additionally, while copper (total and dissolved) and nickel (total and dissolved) concentrations in groundwater were above respective background ranges, concentrations in subsurface soils at the site were consistent with background, suggesting that elevated concentrations of inorganics in groundwater are not site-related. Consequently, none of these constituents are expected to pose a significant risk.

## 7.4 Supplemental Evaluation

This section addresses constituents that were detected but did not have ESVs based on the selection hierarchy discussed above. Supplemental values were selected as available from *Update to Guidance for Conducting Ecological Risk Assessments at Remediation Sites in Texas* 

7-6 ES080210002430WDC

(Texas Commission of Environmental Quality, 2006), screening quick reference tables (Buchman, 2008), and other publications, as needed. These comparisons are discussed along with other lines of evidences, such as frequency of detection and relationship to the range of background concentrations. It should be noted that supplemental ESVs were not needed for the former range fans and these areas are not discussed in this section.

#### 7.4.1 IR Site 15

#### Surface Soil

In surface soil, 2-butanone, acetone, and methyl acetate were the only detected organic constituents lacking an ESV. Inorganic analytes lacking ESVs were all macronutrients which are not considered to be COPCs. The maximum concentrations of 2-butanone and acetone were less than the supplemental ESVs. These analytes are not expected to pose a significant risk to ecological receptors. A supplemental ESV was not available for methyl acetate.

#### Subsurface Soil

In subsurface soil, 2-butanone, 2-hexanone, 4-methyl 2-pentanone, acetone, carbon disulfide, and methyl acetate were the only detected organic constituents lacking an ESV. Inorganic analytes lacking ESVs were all macronutrients, which are not considered to be COPCs. Supplemental ESVs were available for all analytes except methyl acetate, and the maximum concentrations of these analytes were less than the supplemental ESVs.

#### Groundwater

In groundwater, isopropylbenzene and styrene were detected but lacked ESVs. The concentrations for these two constituents were below supplemental ESVs, and the risk to ecological receptors is considered negligible. While ESVs were lacking for several inorganic constituents, these constituents were considered to be (1) consistent with background, (2) within the respective background range, or (3) a macronutrient. Consequently, none of these constituents are considered to pose significant risk.

#### 7.4.2 IR Site 17

#### Surface Soil

In surface soil, 2-butanone, acetone, chloromethane, and methyl acetate were the only detected organic constituents lacking an ESV. Inorganic analytes lacking ESVs were all macronutrients, which are not considered to be COPCs. The maximum concentrations of 2-butanone, acetone, and chloromethane were less than the supplemental ESVs. These analytes are not expected to pose a significant risk to ecological receptors. A supplemental ESV was not available for methyl acetate.

#### Subsurface Soil

In subsurface soil, 1,2-dibromo-3-chloropropane, 2-butanone, acetone, and methyl acetate were the only detected organic constituents lacking an ESV. Inorganic analytes lacking ESVs were all macronutrients, which are not considered to be COPCs. The maximum concentrations of 2-butanone and acetone were less than the supplemental ESVs. These analytes are not expected to pose a significant risk to ecological receptors. Supplemental ESVs were not available for methyl acetate and 1,2-dibromo-3-chloropropane.

ES080210002430WDC 7-7

#### Groundwater

In groundwater, caprolactam and several inorganics were detected but lacked ESVs. A supplemental ESV was not available for caprolactam. While ESVs were lacking for several inorganic constituents, these constituents were considered to be (1) consistent with background, (2) within the respective background range, or (3) a macronutrient. Consequently, none of these constituents are considered to pose significant risk.

#### 7.4.3 IR Site 85

#### Surface Soil

In surface soil, 2-butanone, acetone, and methyl acetate were the only detected organic constituents lacking an ESV. Inorganic analytes lacking ESVs were all macronutrients, which are not considered to be COPCs. The maximum concentrations of 2-butanone and acetone were less than the supplemental ESVs. These analytes are not expected to pose a significant risk to ecological receptors. A supplemental ESV was not available for methyl acetate.

#### Subsurface Soil

In subsurface soil, 1,2-dibromo-3-chloropropane, 2-butanone, 4-methyl 2-pentanone, acetone, isopropylbenzene, and methyl acetate were the only detected organic constituents lacking ESVs. Inorganic analytes lacking ESVs were all macronutrients, which are not considered to be COPCs. Supplemental ESVs were available for all analytes except isopropylbenzene and methyl acetate. The maximum concentrations of analytes with supplemental ESVs were less than the supplemental ESVs. These analytes are not expected to pose a significant risk to ecological receptors.

#### Groundwater

In groundwater, ESVs were lacking for several detected inorganic constituents; however, these constituents were considered to be (1) consistent with background, (2) within the respective background range, or (3) a macronutrient. Consequently, none of these constituents are considered to pose significant risk.

## 7.5 Summary

Potential ecological risks at UXO-20 and Site 17 are considered to be low, and the resulting risk to ecological receptors is considered insignificant. Additional investigation of these sites is not recommended.

At Site 15, Aroclor-1254 and mercury in surface soil and 4,4'-DDE, 4,4'-DDT, antimony, lead, and zinc in subsurface soil were detected at elevated concentrations in one area (IR15-SS01). Because this area is not well characterized, additional investigation to delineate the nature and extent of inorganics, pesticides, and PCBs is recommended. Although inorganics in subsurface soil are not expected to pose significant risks to ecological receptors, further evaluation of inorganics in subsurface soil is recommended.

At Site 85, antimony, cadmium, copper, lead, manganese, mercury, thallium, and zinc in surface soil had high magnitudes of exceedance and were well outside the respective background ranges. Consequently, these inorganics are considered to pose potential risk to ecological receptors and additional evaluation is recommended.

7-8 ES080210002430WDC

#### **SECTION 8**

## **Conclusions and Recommendations**

This section presents the conclusions and recommendations based on the results of the investigative activities conducted during this PA/SI.

#### 8.1 Conclusions

#### 8.1.1 UXO-20

#### Surface and Subsurface Soil

Arsenic was the most prevalent metal detected in surface and subsurface soils across UXO-20, with concentrations exceeding regulatory criteria and twice the Base background concentration. No other analyzed metals were detected at concentrations exceeding regulatory screening criteria and twice the Base background.

#### Groundwater

Two metals, arsenic and lead, were detected at concentrations exceeding regulatory screening criteria and twice the Base background in groundwater samples collected at UXO-20.

#### HHRS and ERS

Initially, arsenic in groundwater was identified as a COPC in the HHRS. However, arsenic was detected in only 12 of 37 groundwater samples. Additionally, arsenic exceeded twice the mean background concentration (5.77  $\mu$ g/L) in only 2 of 37 samples (9.4J  $\mu$ g/L and 6.1J  $\mu$ g/L). This suggests that the detected concentrations of arsenic in soil from UXO-20 likely associated with naturally occurring levels and not a result of former small arms range activities. Therefore, arsenic was eliminated as a COPC in the HHRS.

Based on the evaluation of available soil and groundwater data, results of the human health and ecological risk-based screenings indicate that exposure to soil and groundwater within UXO-20 would not result in any potentially unacceptable risks to human health or ecological receptors.

#### 8.1.2 IR Site 15

#### Surface Soil

VOCs or SVOCs were not detected at concentrations exceeding regulatory criteria in surface soil samples collected at Site 15. One PCB, aroclor-1254, was detected above regulatory criteria at one surface soil sample location. One pesticide, dieldrin, was detected above regulatory criteria at two surface soil sample locations. Four metals were detected at concentrations exceeding regulatory criteria and twice the Base background in surface soil samples at IR 15, including aluminum, arsenic, chromium, and iron.

ES080210002430WDC 8-1

#### Subsurface Soil

VOCs, SVOCs, or PCBs were not detected at concentrations exceeding regulatory criteria in subsurface soil samples collected at Site 15. One pesticide, dieldrin, was detected above regulatory criteria at one subsurface soil sample location. Five metals were detected at concentrations exceeding regulatory criteria and twice the Base background in subsurface soil samples, including arsenic, chromium, iron, lead, and manganese.

#### Groundwater

VOCs, SVOCs, OCPs, or PCBs were not detected at concentrations exceeding regulatory criteria in groundwater samples collected at Site 15. Three metals were detected at concentrations exceeding regulatory criteria and twice the Base background in groundwater samples, including, chromium, iron, and manganese. Two dissolved metals, iron and manganese, were detected at concentrations exceeding regulatory criteria and twice the Base background.

#### **Test Pits**

Eight test pits (IR15-TP01 through IR15-TP08) were excavated to depths ranging from 2 to 7 ft bgs to assess the boundaries of the former disposal area (**Figure 4-6**). Based on the observations made during the test pit excavations, the boundaries of the former disposal area appear to have been adequately delineated.

#### HHRS and ERS

Based on the analytical data for surface and subsurface soil samples collected at Site 15, constituents detected do not present an unacceptable risk to human health. However, chromium was identified as a COPC in groundwater. Exposure to groundwater at Site 15 may present an unacceptable risk to human health and further assessment is recommended.

Based on the analytical data collected from Site 15, exposure to PCBs and metals in surface soil and pesticides in subsurface soils present a potentially unacceptable risk to ecological receptors and further assessment is recommended. No unacceptable risks to ecological receptors were identified in groundwater at Site 15.

#### 8.1.3 IR Site 17

#### Surface Soil

VOCs, SVOCs, OCPs, or PCBs were not detected at concentrations exceeding regulatory criteria in surface soil samples collected at Site 17. Three metals were detected at concentrations exceeding both twice the Base background and regulatory criteria in surface soil samples, including arsenic, chromium, and iron.

#### Subsurface Soil

One VOC, 1,2-dibromo-3-chloropropane, was detected above regulatory criteria in one subsurface soil sample location at Site 17. No SVOCs, OCPs, or PCBs were detected above regulatory criteria in the subsurface soil samples. Four metals (aluminum, arsenic, chromium, and iron) were detected at concentrations exceeding regulatory criteria and twice the Base background in subsurface soil samples.

8-2 ES080210002430WDC

#### Groundwater

One VOC, chloroform was detected at a concentration exceeding regulatory criteria in the groundwater samples collected at Site 17. No SVOCs, OCPs, or PCBs were detected in the groundwater samples at concentrations exceeding regulatory criteria. No metals were detected in the groundwater samples at concentrations exceeding both Base background and regulatory criteria.

#### HHRS and ERS

Based on the evaluation of available soil and groundwater data, results of the human health and ecological risk-based screenings indicate that exposure to soil and groundwater within Site 17 would not result in any potentially unacceptable risks to human health or ecological receptors.

#### 8.1.4 IR Site 85

#### Surface Soil

No VOCs, SVOCs, or PCBs were detected at concentrations exceeding regulatory criteria in surface soil samples collected at Site 85. One pesticide, dieldrin, was detected above regulatory criteria at two surface soil sample locations. Ten metals (antimony, arsenic, cadmium, chromium, iron, lead, manganese, mercury, thallium, and zinc) were detected at concentrations exceeding regulatory criteria and twice the Base background in surface soil samples.

#### Subsurface Soil

One VOC, 1,2-dibromo-3-chloropropane, was detected above regulatory criteria in one subsurface soil sample location at Site 85. No SVOCs, pesticides, or PCBs were detected above regulatory criteria in the subsurface soil samples. Two metals (aluminum and arsenic) were detected at concentrations exceeding regulatory criteria and Base background in subsurface soil samples.

#### Groundwater

One VOC, methylene chloride, was detected in the groundwater samples collected are IR 85. No SVOCs, pesticides, or PCBs were detected in the groundwater samples at concentrations exceeding regulatory criteria. Three metals (aluminum, iron, and chromium) were detected in the groundwater samples collected at IR 85 at concentrations exceeding both Base background and regulatory criteria in the groundwater samples.

#### **Batteries**

Lead and mercury were detected in the battery sample at concentrations exceeding the EPA maximum toxicity values. The batteries observed at Site 85 were removed during the test pit excavations.

#### HHRS and ERS

Based on the analytical data collected at Site 85, exposure to groundwater may present an unacceptable risk to human health from chromium, based on the screening value for hexavalent chromium. Unacceptable human health risks were not identified for surface and subsurface soils.

ES080210002430WDC 8-3

Based on surface soil samples collected at Site 85, exposure to metals presents a potentially unacceptable risk to ecological receptors. Unacceptable risks to populations of ecological receptors were not identified from subsurface soil and groundwater.

## 8.2 Summary

Based on the analytical results for surface soil, subsurface soil, and groundwater samples collected from UXO-20 and the former IR Sites and the HRS and ERS summarized above, the following conclusions are made:

- No risks to human health or ecological receptors were identified at Site 17.
- No risks to human health or ecological receptors were identified at UXO-20 and no small
  arms-related items associated with the former ranges were found during the field
  investigation. The absence of contamination at UXO-20 suggests that it is unlikely that
  water bodies, including the New River, would be impacted as a result of the former
  small arms range activities.
- The presence of chromium in groundwater poses a potentially unacceptable risk to human health based on potable use of groundwater in the vicinity of Sites 15 and 85.
- The presence of metals, pesticides, and PCBs in soil poses a potentially unacceptable risk to ecological receptors in the vicinity of Site 15.
- The presence of metals in soil poses a potentially unacceptable risk to ecological receptors in the vicinity of Site 85.
- Debris remains in place within the boundaries of the Site 15 former disposal area and batteries may be present in the Site 85 vicinity.

## 8.3 Recommendations

Based on the conclusions summarized above, the following recommendations are made:

- Closeout and removal of UXO-20 from the MMRP based on the lack of contamination resulting from former small arms range activities.
- Collection of additional soil and groundwater samples from Site 15 and Site 85 based on the potentially unacceptable risks to human and ecological receptors. The additional investigations planned and presence of debris at Sites 15 and 85 should be considered during MILCON planning in these areas.

8-4 ES080210002430WDC

#### **SECTION 9**

## References

AH Environmental Consultants. 2002. *Wellhead Protection Plan –* 2002 *Update, Marine Corps Base Camp Lejeune, North Carolina.* 

Baker Environmental (Baker). 2002. *Phase II – SWMU Confirmatory Sampling Report, MCB Camp Lejeune, North Carolina*. April.

Baker. 2001. Final Base Background Soil Study Report, Marine Corps Base Camp Lejeune, North Carolina. April 25.

Baker. 2001. *Phase I – SWMU Confirmatory Sampling Report, MCB Camp Lejeune, North Carolina*. November.

Baker. 1999. Final Engineering Evaluation/Cost Analysis, Site 85, the Camp Johnson Battery Dump, Marine Corps Base Camp Lejeune, Jacksonville, North Carolina. September 10.

Baker. 1998. Final Pre-Remedial Investigation Screening Study, Sites 12, 68, 75, 76, 84, 85, and 87, Marine Corps Base Camp Lejeune, North Carolina. November 24.

Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages.

California Department of Toxic Substances Control (CDTSC). 2006. Environmental Chemistry Laboratory (ECL) User's Manual Section No.: Appendix C Revision no.: 14 Date: July 27, 2006.

Cardinell, A. P., S. A. Berg, and O. B. Lloyd, Jr. 1993. *Hydrogeologic Framework of U.S. Marine Corps Base at Camp Lejeune, North Carolina*. Water Resources Investigations Report 93-4049. U.S. Geological Survey.

CH2M HILL/Baker Environmental. 2005a. Final SWMU 46 RCRA Facility Investigation Report, Marine Corps Base Camp Lejeune, North Carolina. August.

CH2M HILL/Baker. 2005b. Final No Further Action Decision Document, Site 85, Marine Corps Base Camp Lejeune, Jacksonville, North Carolina. May.

CH2M HILL. 2009. Site Specific Work Plan Addendum for Focused Preliminary Assessment/Site Inspection, Camp Johnson MILCON Area, Marine Corps Base Camp Lejeune, North Carolina. June.

CH2M HILL. 2008a. MCB Camp Lejeune Munitions Response Program Master Project Plans, Marine Corps Base Camp Lejeune, North Carolina. May.

CH2M HILL, 2008b. *Master Project Plans, Marine Corps Base Camp Lejeune, Jacksonville, North Carolina*. June.

CH2M HILL. 2006. *Site Reconnaissance and Soil Sampling Activities; SWMU 46 (Montford Point Dump Site), Marine Corps Base Camp Lejeune, Jacksonville, North Carolina*. September.

ES080210002430WDC 9-1

Environmental Safety and Design. 1996. RCRA Facility Assessment Report for Marine Corps Base Camp Lejeune, North Carolina. July

United States Environmental Protection Agency (EPA). 2000. Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment Bulletins. May.

EPA. 2001. Region 4 Recommended Ecological Screening Values. http://www.epa.gov/region04/waste/ots/ecolbul.htm.

EPA. 2004. National Functional Guidelines for Inorganic Data Review EPA, October 2004.

EPA. 2008. National Functional Guidelines for Superfund for Organic Methods Data Review. June 2008.

EPA. 2009a. ProUCL Version 4.00.04 User Guide. Draft. EPA/600/R-07/038. February.

EPA. 2009b. Ecological Soil Screening Levels. <a href="http://www.epa.gov/ecotox/ecossl/">http://www.epa.gov/ecotox/ecossl/</a>

EPA. 2009c. National Recommended Water Quality Criteria. Originally published May 2005. Website version updated in 2009. <a href="http://epa.gov/waterscience/criteria/wqctable/">http://epa.gov/waterscience/criteria/wqctable/</a>

EPA. 2009d. 2009 Edition of the Drinking Water Standards and Health Advisories U.S. Environmental Protection Agency. Office of Water. EPA 816-F-09-004.

EPA. 20010. Regional Screening Levels. May.

Fendorf, S.E., and R.J. Zasoski. 1992. Chromium (III) Oxidation by ∂-MnO2. 1. Characterization. *Environ. Sci. Technol.* 26: 79–85.

Harned, D. et al. 1989. Assessment of Hydrologic and Hydrogeologic Data at Camp Lejeune Marine Corps Base, North Carolina. U.S. Geological Survey Water-Resources Investigation Report 89-4096, 64p.

Heath, R. 1989. Basic Groundwater Hydrology. U.S. Geological Survey WSP 2220.

Milacic, R., and J. Stupar. 1995. Fractionation and Oxidation of Chromium in Tannery Waste and Sewage Sludge-Amended Soils. *Environ. Sci. Technol.* 29: 486–493.

Navy. 2000. Overview of Screening, Risk Ratio, and Toxicological Evaluation. Procedures for Northern Division Human Health Risk Assessments. May.

North Carolina Department of Environment and Natural Resources (NC DENR), 2010. Division of Waste Management, Inactive Hazardous Sites Program, *Soil Remediation Goals, January*.

OHM Remediation Services Corps (OHM). 2000. Final Closeout Report for Remediation of Site 85, The Camp Johnson Battery Dump, Marine Corps Base Camp Lejeune, Jacksonville, North Carolina. December.

Richardson, Duane. 2008a. Personal Communication with Duane Richardson, Camp Lejeune Range Safety Officer. September 3.

Richardson, Duane. 2008b. Personal Communication with Duane Richardson, Camp Lejeune Range Safety Officer. November 13.

9-2 ES080210002430WDC

Shaw Environmental (Shaw). 2007. Final Interim Remedial Measure Implementation Report for SWMU 46, MCB Camp Lejeune, North Caroline. September.

Texas Council of Environmental Quality. 2006. *Update to Guidance for Conducting Ecological Risk Assessments at Remediation Sites In Texas*, RG-263 (Revised). Remediation

Thiboutot, S.; Ampleman, G.; Hewitt, A. D. 2002. Technical Report ERDC/CRREL TR-02-1, Division. January. *Guide for Characterization of Sites Contaminated with Energetic Materials*. US Army Corps of Engineers, Engineer Research and Development Center. February.

Water and Air Research Inc. 1983. *Initial Assessment Study for MCB Camp Lejeune, North Carolina*.

Weatherreports.com. Accessed August 2010

Weaver, R.M., and M.F. Hochella. 2003. The reactivity of seven Mn-oxides with Cr3+aq: A comparative analysis of a complex, environmentally important redox reaction. *Amer. Mineralogist* 88:2016-2027

Whitehead, D.C. 2000. Macronutrient cations: potassium, sodium, calcium, and magnesium *in* Nutrient Elements in Grassland: Soil-Plant-Animal Relationships. University Press, Cambridge.

ES080210002430WDC 9-3



# **Archival Records Search Report Camp Johnson Construction Area**

## Marine Corps Base Camp Lejeune Jacksonville, North Carolina

Task Order 011 January 2009

Prepared for

Department of the Navy Naval Facilities Engineering Command Atlantic

Under the

Multi-Media Contract N62470-07-D-0501

Prepared by



Charlotte, North Carolina

## Contents

| Acronyms and Abbreviations |                                          |     |
|----------------------------|------------------------------------------|-----|
| 1                          | Introduction, Purpose, and Scope         | A-1 |
| 2                          | Site Information                         | A-3 |
|                            | 2.1 Facility Information                 | A-3 |
|                            | 2.1.1 Climate and Meteorology            | A-3 |
|                            | 2.1.2 Topography, Geology, and Hydrology |     |
|                            | 2.2 Ownership and Operational History    |     |
|                            | 2.2.1 Camp Lejeune Ownership History     |     |
|                            | 2.2.2 Camp Johnson Operational History   |     |
| 3                          | References                               | A-9 |
| Figur                      | res                                      |     |
| A-1                        | Former Ranges and IR Site Boundaries     |     |
| A-2                        | Existing Conditions Map - 1945           |     |
| A-3                        | Existing Conditions Map - 1953           |     |
| A-4                        | Historical Aerial - 1962                 |     |
| A-5                        | Existing Conditions Map - 1964           |     |
| A-6                        | Existing Conditions Map - 1979           |     |
| A-7                        | Historical Aerial - 1989                 |     |
| A-8                        | Existing Conditions - 2008               |     |
| A-9                        | Range Overlay Map - 1946                 |     |
| A-10                       | Range Overlay Map - 1951, 1953, 1954     |     |
| Attac                      | chments                                  |     |
| 1                          | Resource Review Summary                  |     |
| 2                          | Property Map for Area A - 1941           |     |
| 3                          | Small Arms Ammunition Data Sheets        |     |

1

## **Acronyms and Abbreviations**

ASR Archives Search Report

BAR Browning automatic rifle

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CTO Contract Task Order

CSI Confirmatory Site Investigation

°F degrees Fahrenheit

EE/CA Engineering Evaluation/Cost Analysis

EPA United States Environmental Protection Agency

ft feet

IR Installation Restoration
IRM Interim Remedial Measures

MC munitions constituents

MCCSSS Marine Corps Combat Service Support Schools

MCB Marine Corps Base

MEC munitions and explosives of concern

MILCON military construction
MOS military occupation skills
MRP Munitions Response Program

msl mean sea level

NARA National Archives and Records Administration

NAVFAC Naval Facilities Engineering Command

NCGWQS North Carolina Groundwater Quality Standards

NC Hwy North Carolina Highway

NFA DD No Further Action Decision Document

PA Preliminary Assessment
PCB polychlorinated biphenyl
PRG preliminary remediation goal

RCRA Resource Conservation and Recovery Act of 1976

RFA RCRA Facility Assessment RFI RCRA Facility Investigation RI Remedial Investigation

SI Site Inspection SSL Soil Screening Level

SVOC semivolatile organic compound SWMU Solid Waste Management Unit TCRA time critical removal action

US United States

USACE United States Army Corps of Engineers

UXO unexploded ordnance

VOC volatile organic compound

WWII World War II

## Introduction, Purpose, and Scope

The United States Marine Corps and the Naval Facilities Engineering Command (NAVFAC) are conducting an investigation of former ranges and Installation Restoration (IR) sites within the boundaries of a proposed military construction (MILCON) project in the area known as Camp Johnson at Marine Corps Base (MCB) Camp. The proposed MILCON area encompasses approximately 240 acres within Camp Johnson (**Figure A-1**). A munitions response program (MRP) Preliminary Assessment (PA)/Site Inspection (SI) is being conducted on a 35-acre area within the MILCON area within former range boundaries as shown in **Figure 1-1** in the *Site Specific Work Plan Addendum Preliminary Assessment/Site Inspection Camp Johnson MILCON Area* (CH2M HILL, 2009).

The results of the PA/SI will determine if any impacts to soil and groundwater have occurred at Camp Johnson due to past range activities. To support site investigation efforts, this archival records search report has been prepared to provide a narrative of the historical activities at Camp Johnson that may have resulted in environmental contamination with munitions and explosives of concern (MEC) or munitions constituents (MC).

The archival records search is an investigative review of existing information about the site and its surrounding area, with an emphasis on obtaining information from personnel and historical resources that might indicate a potentially hazardous release to the environment. The scope of this report includes:

- A review of existing information about the site (including MCB Camp Lejeune maps, drawings, and reports, and interviews with MCB Camp Lejeune personnel)
- Collection of additional information about the site

A complete listing of resources identified and investigated for this report is provided in **Attachment 1**. **Attachment 1** also includes details concerning the reviews of the historical information from the Marine Corps Library at Quantico, National Archives and Records Administration (NARA) map and text files, and MCB Camp Lejeune base files.

## Site Information

## 2.1 Facility Information

MCB Camp Lejeune is located on the Atlantic coast in Jacksonville, North Carolina. The city of Jacksonville in Onslow County is the principal support community for the base. MCB Camp Lejeune occupies 153,000 acres including more than 450 miles of roads, approximately 6,800 buildings and facilities, and 14 miles of beach on the Atlantic Ocean for amphibious training. Approximately 14,000 acres of land have been developed for administrative, maintenance, logistics, and personnel support facilities. Originally established in 1941, the base is home to several tenant commands including II Marine Expeditionary Force, 2nd Marine Division, and 2nd Marine Logistics Group, two Navy commands, one Coast Guard command, and several Marine Corps formal schools. MCB Camp Lejeune supports a total population of approximately 150,000 people, including active-duty military and dependents, retirees, and civilian employees (Global Security, 2008).

#### 2.1.1 Climate and Meteorology

The climate at MCB Camp Lejeune is characterized by mild winters and hot humid summers. Winters are usually short and mild with occasional and short-duration cold periods. Summers are long, hot, and humid. Average annual net precipitation is approximately 50 inches. Ambient air temperatures generally range from 33 to 53 degrees Fahrenheit (°F) in the winter months, and 71°F to 88°F during the summer months. Winds are generally south-southwesterly in the summer, and north-northwesterly in the winter (Water and Air Research, 1983). The hurricane season in the area surrounding MCB Camp Lejeune begins on June 1 and continues through November 30. Storms of nontropical origins such as frontal passages, local thunderstorms, and tornadoes are more frequent and can occur year-round.

## 2.1.2 Topography, Geology, and Hydrology

The land surface at MCB Camp Lejeune has been alternately exposed and submerged over time by water and marine deposits from an ancient inland sea. These deposits were laid down to form the weakly dissected alluvial plane. The deposits are mostly sands layered with clay and marine shells. Elevations range from sea level at the waterways to 72 feet (ft) above mean sea level (msl) between the New River and United States (U.S.) Route 17. MCB Camp Lejeune consists of both broad, level flatlands and gently rolling hills.

Southeastern North Carolina and MCB Camp Lejeune are within the Tidewater region of the Atlantic Coastal Plain Physiographic Province. The Tidewater region is generally swampy and of low relief, with elevations averaging about 20 ft above msl. The MCB Camp Lejeune area is underlain by an eastward thickening sediment wedge of marine and nonmarine origins ranging in age from early Cretaceous to Holocene. The eastward thickening wedge of sediment begins at the western boundary of Atlantic Coastal Plain

physiographic province, known as the Fall Line, and dips southeastward towards the coast. Along the coastline, several thousands of feet of interlayered, unconsolidated sediment are present consisting of gravel, sand, silt, clay deposits, calcareous clays, shell beds, sandstone, and limestone that were deposited over pre-Cretaceous crystalline basement rock. These sediment units are often distinguished by minor amounts of detrital carbonate shells and secondary minerals such as glauconite, siderite, and chlorite (Cardinell, Berg, and Lloyd, 1993).

Fluctuations in sea level on a subsiding continental margin in marine and near-shore environments are believed to have controlled Historical Coastal Plain sedimentation and deposition (Winner and Coble, 1989). Confining units associated with specific aquifers within the Coastal Plain region are composed of less-permeable beds of clay and silt. Within the MCB Camp Lejeune area, approximately 1,500 ft of a sedimentary sequence overlie the crystalline basement rock. This sedimentary sequence composes seven aquifers and their associated confining units including the Surficial, Castle Hayne, Beaufort, Peedee, Black Creek, and Upper and Lower Cape Fear aquifers (Cardinell, Berg, and Lloyd, 1993).

Interstream areas generally provide the recharge of aquifers within the Coastal Plain region. Recharge to the aquifers has been estimated to have a yearly range of 5 to 21 inches of rainfall (Heath, 1989). In general, natural discharge of groundwater from the Coastal Plain aquifer system is into streams, swamps, and lakes. Evapotranspiration from the soil zone and upward leakage through confining units into streams, estuaries, swamps, and even the ocean also contribute to groundwater discharge. The New River estuary serves as the principal discharge area for groundwater from the Castle Hayne aquifer within the vicinity of MCB Camp Lejeune (Harned, Lloyd, and Treece, 1989).

## 2.2 Ownership and Operational History

### 2.2.1 Camp Lejeune Ownership History

The history of the land now occupied by Camp Lejeune is documented primarily through land records and maps. Following the start of World War II (WW II), the War Department began purchasing tracts of land in 1941 from local residents to meet the need for an East Coast amphibious training facility. Prior to occupation by the Marine Corps, the land had been occupied by white and African-American communities and farms since the Colonial era. The land contained plantation houses, cabins, farm buildings, tobacco barns, stores, and various cemeteries (Global Security Website, 2008).

The initial land transferred to the government was acquired in 14 different transactions between April and October 1941 and totaled 173.8 square miles or 111,155 acres, of which there were 85,155 land acres and about 26,000 acres under water (Loftfield, 1981; Louis Berger Group, 2002). The individual tracts of land were grouped into various "areas" for consolidation. The facility was initially referred to as the Marine Barracks New River, which was changed to MCB Camp Lejeune in 1942 (Global Security Website, 2008).

The Camp Johnson MILCON area is located within Area A, which is bounded to the north and northeast by North Carolina Highway 24 (NC Hwy 24), to the south and southeast by Northeast Creek, and to the west by New River. Area A consists of 65 tracts of land acquired by the government in 1941 by area landowners. The Camp Johnson MILCON area overlaps

two full parcels (A38 and A47) and partially overlaps four parcels (A14, A32, A41, and A44) as shown in the 1941 Property Map for Area A (Bureau of Yards and Docks, 1941) supplied as **Attachment 2**.

### 2.2.2 Camp Johnson Operational History

The Camp Johnson MILCON area is located off Montford Landing Road within the Camp Johnson area of the Base. The site is located on Montford Landing Road and is bounded by U.S. Highway 17 by-pass to the north, the New River to the west, Wilson Road and Coolidge Road to the southwest, and an unnamed road to the north. Camp Johnson, formerly named Montford Point Camp, was the original training center for African-American Marines during the period of military segregation. Between 1941 and 1949, approximately 20,000 African-American Marines were trained at Montford Point. In 1949, the military was fully integrated and the area continued to be used for schools and training. Montford Point was renamed Camp Johnson in 1974. Camp Johnson currently houses the Marine Corps Combat Service Support Schools (MCCSSS), which serve as training facilities for various duties within the Marine Corps. The MCCSSS consists of four military occupation skills (MOS) schools, four tenant schools, and the Navy's Field Medical School. Approximately 10,000 students per year are trained at Camp Johnson (MCB Camp Lejeune Website, 2008).

Portions of the MILCON area are composed of two former ranges: the 1,000-inch range and the A-1 50-ft .22 caliber range. In addition, the site encompasses IR Site 15 (Solid Waste Management Unit [SWMU] 46) the Montford Point Dump Site, IR Site 17 (SWMU 47) the Montford Point Rip-Rap area, and IR Site 85 (SWMU 241) the Camp Johnson Battery Dump. **Figure A-1** shows the former range and IR Site boundaries. Site histories and previous investigations are discussed below.

#### **Historical Site Use**

A review of base maps showing existing conditions from 1945 to 2008 indicated that the Camp Johnson MILCON area has not contained any buildings with the exception of two pump houses and deep wells (M-243 and M-244) and tennis and racquetball courts, all of which first appear on the 1945 existing conditions map shown in **Figure A-2** (MCB Camp Lejeune, 1945). The pump houses and wells appear on all maps including 1979 but do not appear on the 2005 existing conditions map. Existing conditions maps from 1980 through 2004 are not available. The tennis and racquetball courts appear on all available existing conditions maps. In 1953, Hoover Road, on the east side of the Camp Johnson MILCON area, was extended toward Montford Landing Road, **Figure A-3**. Additionally, an unnamed road running perpendicular to Hoover Road appeared on the 1953 existing conditions map and all later maps.

The 1962 historical aerial (**Figure A-4**) shows the same roads appearing on the existing conditions maps as well as some additional small roads or paths that traverse the Camp Johnson MILCON area. The area is primarily wooded with a cleared area north of Coolidge Road and west of Wilson Road. A path running parallel to the unnamed road from **Figure A-3** corresponds to an obstacle course labeled S-M-257 on the 1964 existing conditions map (**Figure A-5**). A cleared area with no vegetation is shown south of the

unnamed road and Hoover Road intersection on the eastern side of the Camp Johnson MILCON area, which appears to correspond to IR Site 15, the Montford Point Dump Site.

Two additional pump houses (labeled as M-629 and M-630) appear on the 1979 existing conditions map along the obstacle course path (**Figure A-6**). The 1989 historical aerial photo (**Figure A-7**) shows the three roads that traverse the Camp Johnson MILCON area on the existing conditions maps (Hoover Road and the two unnamed roads perpendicular to it) as well as some additional small roads that are also found in **Figure A-1** and 2008 existing conditions (**Figure A-8**). The northern portion of the Camp Johnson MILCON area appears to be grassy rather than wooded like the majority of the MILCON area. There also appears to be a small cleared area with no vegetation in the northwest area between the two unnamed roads, which does not correspond with any known uses of the area.

#### **Historical Range Review**

A review of historical range overlay maps (Plates 1-22) from the *Draft Range Identification and Preliminary Range Assessment* (USACE, 2000) indicated that two ranges intersected the Camp Johnson MILCON Area that will be investigated in the PA/SI. The first range to appear in the Camp Johnson MILCON Area was the 1,000-Inch Range at Montford Point (1946, Plate 4) and identified in the *Final Archives Search Report: Range Identification and Preliminary Range Assessment* (USACE, 2001) as Archives Search Report (ASR) number 2.32. The A-1 50-ft .22 Caliber Range (ASR 2.87) appears in different locations (as shown on **Figure A-1**) on the following Plates: Plate 5 (1951), Plate 6 (1953), and Plate 8 (1954). The boundaries for these ranges are based on the range overlay maps (provided as **Figure A-9** for the 1,000-inch Range and **Figure A-10** for the A-1 50-ft .22 Caliber Range).

#### 1,000-inch Range at Montford Point (ASR 2.32)

The 1,000-inch Range at Montford Point operated from 1946 to the mid-1950s. Camp Training Order Number 5-1946 identified this range as a Familiarization Range for .30 Cal Browning automatic rifle (BAR) (USACE, 2000). The range was used for small arms (Rifles from the M1 up to the BAR) (Richardson, 2008). The 1,000-inch Range appears on one range overlay map that indicates the firing position and direction of fire but does not give a fan or area that may be impacted by this range (**Figure A-9**). Due to the nature of small arms, unexploded ordnance (UXO) is not likely to be encountered; however, lead contamination in the impact berm may be present (Richardson, 2008).

#### A-1 50-ft .22 Caliber Range (ASR 2.87)

The Former A-1 .22 Caliber Range appears on three range overlay maps in 1951, 1953, and 1954 (**Figure A-10**). The shape and location of the range varies slightly and it is in a similar location as the 1,000-inch Range. The range was used as a small-arms firing range during the 1950s and is believed to have been inactive since 1957 (USACE, 2000). The name of the range suggests that .22 caliber weapons were used; however, available documentation does not specify the type of small arms. An excerpt on small-arms ammunition (USACE, 2000) is provided in **Attachment 3**. UXO is not likely to be encountered but lead contamination may be present in the impact berms (Richardson, 2008).

#### **Previous Environmental Investigations**

In addition to the two historical ranges in the Camp Johnson MILCON area, there are three IR Sites (15, 17, and 85) that have undergone environmental investigations. Figures and a more detailed history of each of these sites may also be found in the *Site Specific Work Plan Addendum, Preliminary Assessment/Site Inspection, Camp Johnson MILCON Area* (CH2M HILL, 2009).

#### Site 15 (SWMU 46)

Site 15, also known as SWMU 46, is the former Montford Point Dump. The site operated between 1946 and 1958 and was reportedly used to dispose sewage treatment sludge, litter, asphalt, and sand (CH2M HILL/Baker, 2005) .The disposal area is approximately 2 acres and consists of open areas surrounded by vegetation.

The Final Resource Conservation and Recovery Act of 1996 (RCRA) Facility Assessment (RFA) for Camp Lejeune (EnSafe, 1996) identified No Further Action was warranted at Site 15/SWMU 46. However, Baker conducted a Confirmatory Site Investigation (CSI) in 1997 and a Phase II CSI in 2002 at the site after it became evident that additional waste had been disposed at the site. The investigations included a geophysical survey to identify the location of the buried waste as well as soil and groundwater sampling. The results of the investigations indicated several metals were present in soils across the site. Lead was detected in one groundwater sample at a concentration above base background criteria and North Carolina Groundwater Quality Standards (NCGWQS). In addition, the geophysical survey indicated a significant anomaly consistent with a small landfill near the central portion of the investigation area. The boundaries of the landfill were not determined during the field events due to limitations to the geophysical survey (Baker, 2001 and Baker, 2002).

In 2004, Baker conducted a RCRA Facility Investigation (RFI) to further identify the waste locations and evaluate potential contamination. The RFI consisted of additional geophysical testing, test trenches, surface and subsurface soil samples, and sampling of one groundwater monitoring well. The trenches exposed landfill material such as glass, metal debris, ceramic, ash, and other burned debris (CH2M HILL and Baker, 2005).

The RFI concluded that surface soil had high metals content, particularly in soil mounds located in the southeast portion of the site. In addition, subsurface soil within the landfill trenches exhibited elevated concentrations of metals, semivolatile organic compounds (SVOCs), and pesticides with some contaminants exceeding regulatory criteria. Pesticide concentrations measured in subsurface soil samples collected from the landfill exceeded the base background levels, indicating the concentrations could be attributed to past disposal activities and not basewide pesticide use. One monitoring well was installed as part of the RFI. No metal constituents were detected in the groundwater sample collected from the well; therefore, no additional monitoring wells were installed. It was recommended that surface mounds and contaminated surface soil should be managed as RCRA waste, and the landfill waste within the disposal site should be managed as Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) waste as part of IR Site 15 (CH2M HILL and Baker, 2005).

In 2006, CH2M HILL conducted soil mound and surface soil sampling to analyze for volatile organic compounds (VOCs), SVOCs, pesticides, polychlorinated biphenyls (PCBs), and

RCRA metals. VOCs, SVOCs, and PCBs were either not detected or concentrations were lower than the screening criteria (North Carolina Soil Screening Levels [SSLs], United States Environmental Protection Agency [EPA] Region IX industrial preliminary remediation goals [PRGs], and base background for metals). Surface soil and mounds with pesticides and metals that exceeded screening criteria were identified for removal (CH2M HILL, 2006). An Interim Remedial Measures (IRM) implementation was completed in March 2007 at which time three soil mounds and five designated surface soil areas were excavated (Shaw, 2007). A total of 1,039 tons of soil were removed from the site and disposed at the MCB Camp Lejeune landfill.

Buried landfill debris and contaminated soil remain in the subsurface. The debris area has been delineated, although the waste depth is only estimated. Groundwater has not been fully characterized. Because of the high concentrations of pesticides in the subsurface soil, it is anticipated that pesticides may also be present in groundwater.

#### Site 17 (SWMU 47)

Site 17, also known as SWMU 47, contains inert concrete rip-rap along the shoreline of Montford Point. The site was originally evaluated during the Initial Assessment Study (Water and Air Research, 1983) at the Base. During the initial assessment, it was determined that the inert nature of the concrete found at Site 17 did not require further investigation.

#### Site 85 (SWMU 241)

Site 85, the Camp Johnson Battery Dump, encompasses approximately 4.5 acres in the Camp Johnson support operations area of the Base. Site 85 was used as a battery dump during the 1950s. In 1992, decomposed batteries, which were used in military communication equipment during the Korean era, were unearthed as a roadway was being widened. Military personnel using this area also discovered discarded charcoal canisters from old air purifying respirators. The discarded battery packs and charcoal canisters were observed in piles, randomly located throughout a 2-acre to 3-acre area (Baker, 1998).

A Pre-RI screening study was conducted at Site 85 from 1995 to 1998. Field activities included soil and groundwater sampling for metals. Analytical results indicated that soil near the battery disposal piles was contaminated by metals leaching from the batteries. A baseline risk assessment, completed as part of the Pre-RI, identified potential risks to current military personnel due to exposure to metals in surface soil. Potential risks to future child and adult residents were also identified due to exposure to surface soil and groundwater. As a result of the findings in the Pre-RI, it was recommended that an Engineering Evaluation/Cost Analysis (EE/CA) be completed to evaluate remedial alternatives for soil contamination at the site (Baker, 1998).

The EE/CA recommended removal of the soil and battery packs through a time critical removal action (TCRA) followed by re-evaluation of site groundwater. The TCRA was completed from October to December 1999, and included the excavation and removal of 158 tons of contaminated soil and debris (OHM, 2000).

## References

Baker Environmental, Inc. (Baker). 1998. *Final Pre-Remedial Investigation Study: Sites 12, 68, 75, 76, 84, 85 and 87*. MCB Camp Lejeune, North Carolina. Prepared for Naval Facilities Engineering Command (NAVFAC), Atlantic Division, Norfolk, Virginia. November.

Baker Environmental, Inc. (Baker). 2001. *Phase I - SWMU Confirmatory Sampling Report*, MCB Camp Lejeune, North Carolina. Prepared for the NAVFAC, Atlantic Division, Norfolk, Virginia. November.

Baker Environmental, Inc. (Baker). 2002. *Phase II - SWMU Confirmatory Sampling Report*, MCB Camp Lejeune, North Carolina. Prepared for the NAVFAC, Atlantic Division, Norfolk, Virginia. April.

Bureau of Yards and Docks. 1941. Marine Barracks, New River North Carolina, Property Map Area A, April 5.

Cardinell, A.P, S.A. Berg, and O.B. Lloyd, Jr. 1993. *Hydrogeologic Framework of U.S. Marine Corps Base at Camp Lejeune, North Carolina*. U.S. Geological Survey: Water Resources Investigations Report 93-4049.

CH2M HILL and Baker. 2005. Final SWMU 46 RCRA Facility Investigation Report. MCB Camp Lejeune, North Carolina. August.

CH2M HILL. 2006. *Technical Memorandum: Site Reconnaissance and Soil Sampling Activities, SWMU 46*, MCB Camp Lejeune, North Carolina. September.

CH2M HILL. 2009. Site Specific Work Plan Addendum, Preliminary Assessment/Site Inspection, Camp Johnson MILCON Area. MCB Camp Lejeune, North Carolina. January.

Global Security Website. 2008. *Camp Lejeune Facility*, Accessed: August 2008. http://www.globalsecurity.org/military/facility/camp-lejeune.htm

Harned, D.A., O.B. Lloyd, Jr., and M.W. Treece, Jr. 1989. *Assessment of Hydrologic and Hydrogeologic Data at Camp Lejeune Marine Corps Base, North Carolina*. U.S. Geological Survey Water-Resources Investigations Report 89-4096.

Heath, R. 1989. Basic Groundwater Hydrology. U.S. Geological Survey WSP 2220.

Loftfield, Thomas C. 1981. Principal Investigator, University of North Carolina, Wilmington, *Archeological and Historical Survey of USMC Base, Camp Lejeune*, Naval Facilities Engineering Command Norfolk, Coastal Zone Resource Corps, Vol. II, Contract # N62470-79-C-4273. August.

Louis Berger Group, Inc. 2002. Semper Fidelis: A Brief History of Onslow County, North Carolina and MCB, Camp Lejeune, 2002, U.S.M.C., Lt. Col Lynn J. Kimball (USMC, Ret.), consulting historian.

Marine Corps Base Camp Lejeune (MCB Camp Lejeune). 1945. "Map of Montford Point Camp and Vicinity," Camp Lejeune, North Carolina. Showing Conditions on June 30, 1945.

MCB Camp Lejeune. 1953. "Map of Montford Point Camp and Vicinity," Camp Lejeune, North Carolina. Showing conditions on June 30, 1953.

MCB Camp Lejeune. 1964. "Map of Montford Point Area and Vicinity," Camp Lejeune, North Carolina. Showing conditions on June 30, 1964.

MCB Camp Lejeune. 1979. "Map of Montford Point Area and Vicinity," Camp Lejeune, North Carolina. Showing conditions on June 30, 1979.

MCB Camp Lejeune. 2008. "Camp Johnson Existing Conditions – B4," Camp Lejeune, North Carolina. Showing conditions on August 29, 2008.

MCB Camp Lejeune Website. 2008. Marine Corps Combat Service Support Schools (MCCSSS) Official Website. <a href="www.lejeune.usmc.mil">www.lejeune.usmc.mil</a> accessed December 28.

OHM Remediation Services, Inc. 2000. *Final Closeout Report for Remediation of Site 85 The Camp Johnson Battery Dump.* MCB Camp Lejeune, North Carolina. Prepared for the NAVFAC, LANTDIV, Norfolk, Virginia. December.

Richardson, 2008. Personal Communication with Duane Richardson, Camp Lejeune Range Safety Officer. October 3.

Shaw Environmental. 2007. Final Interim Remedial Measure Implementation Report for SWMU 46, MCB Camp Lejeune, North Carolina. September.

United States Army Corps of Engineers (USACE), St. Louis District. 2000. *Draft Range Identification and Preliminary Range Assessment*, MCB Camp Lejeune, Onslow, North Carolina. February.

USACE, St. Louis District. 2001. *Final Archives Search Report: Range Identification and Preliminary Range Assessment*, MCB Camp Lejeune, North Carolina. December.

Water and Air Research, Inc. 1983. *Initial Assessment Study of Marine Corps Base, Camp Lejeune. North Carolina*. Prepared for Naval Energy and Environmental Support Activity.

Winner, M. and R. Coble. 1989. *Hydrogeologic Framework of the North Carolina Coastal Plain Aquifer System*. U.S. Geological Survey Open File Report 87-690.























# **Resource Review Summary**

The following table provides a summary of the specific references identified for review, interview, or contact for the archival report.

| Resource                                                          | Actions Completed                                                                                                      |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Quantico, Virginia, Marine Corps Library,<br>Gray Research Center | Reviewed all available file folders related to Camp Lejeune – Made copies of relevant historic maps. No files to copy. |  |  |
| US National Archives (NARA II) Historical Files                   | Reviewed text and drawing files from Text and Cartographic Divisions. Made copies of relevant files and maps.          |  |  |
| Deborah Edge/National Archives Text File                          | See US National Archives Files Review                                                                                  |  |  |
| Camp Lejeune Technical Records files                              | Reviewed and copied all relevant documents related to historical land use for each site.                               |  |  |
| Ca                                                                | mp Lejeune Personnel                                                                                                   |  |  |
| Linda Futrell/ Realty Specialist                                  | Contacted and interviewed                                                                                              |  |  |
| Dennis Dunham/ Technical Records                                  | Contacted and interviewed                                                                                              |  |  |
| Duane Richardson/ Base Range Safety Officer                       | Contacted and interviewed                                                                                              |  |  |

# Marine Corp Library Review

#### **Text Division**

Contact: Gregory Cina

Site Visit: October 7, 2008

File review at Marine Corps Base, Quantico, Virginia, Gray Research Center, Marine Corps Archives and Special Collections.

Several historic maps were digitally copied; however, no pertinent text documents were obtained from the file review.

# List of Documents Obtained from Marine Corp Library

- "Camp Lejeune, New River, North Carolina," August 1943.
- "Combat Training Chart, United States East Coast, North Carolina, Approaches to New River," December 26, 1987.
- "New River," 1972.
- "Jacksonville South Quadrangle," NW/4 New River 15' Quadrangle, USGS, 1952.
- "North Carolina, Approaches to New River," November 1950.

### National Archives and Records Administration Review

#### **Text Division**

Contact: Ms. Deborah Edge, 301-837-1687 Site visits on September 15 - 18, 2008

Reviewed 12 boxes of files associated with the Marine Corps, 1939-1950

- Record Group 127 (USMC), Office of the Commandant, General Correspondence, January 1939-June 1950, 1275/70-800 (10/45-1/47) to 1275/70-727 (1/44-12/47), Box 218.
- Record Group 127 (USMC), Office of the Commandant, General Correspondence, January 1939-June 1950, 1275/70-800 (10/44-1/45) to 1275/70-800 (7/45-9/45), Box 219.
- Record Group 127 (USMC), Office of the Commandant, General Correspondence, January 1939-June 1950, 1275/70-800 (10/44-1/45) to 1275/70-800 (7/45-9/45), Box 220.
- Record Group 127 (USMC), Office of the Commandant, General Correspondence, January 1939-June 1950, 2295-10 Brooklyn to 2285-10 Camp Lejuene, Box 1570.
- Record Group 127 (USMC), Office of the Commandant, General Correspondence, January 1939-June 1950, 2295-10 Camp Lejuene to 2285-10 Camp Lejuene, Box 1571.
- Record Group 127 (USMC), Office of the Commandant, General Correspondence, January 1939-June 1950, 2295-10 Camp Lejuene to 2285-10 Camp Lejuene, Box 1572.
- Record Group 127 (USMC), Quartermaster, General Correspondence, January 1940, 215-3, Box 144.
- Record Group 127 (USMC), Quartermaster, General Correspondence, January 1940, 215-3, Box 145.
- Record Group 127 (USMC), Quartermaster, General Correspondence, January 1940, 215-3, Box 146.
- Record Group 127 (USMC), Quartermaster, General Correspondence, January 1940, 215-3, Box 147.
- Record Group 127 (USMC), Quartermaster, General Correspondence, January 1940, 215-3, Box 148.
- Record Group 127 (USMC), Records of the USMC, Division of Public Information, General Correspondence, 1942- 1950, Box 1 of 1.

The boxes contained information primarily related to basic activities and events occurring at Camp Lejeune, as well as general ordnance orders and supply issues. Several historic maps were found showing the French Creek area.

#### List of Documents Obtained from National Archives

- "Camp Lejeune General Area Map," February 12, 1942.
- "Camp Lejeune General Area Map," March 11, 1947.
- "Danger Zones in Navigable Waters," Document, June 3, 1947
- "Index Sheet to Accompany Annual Report Maps, Camp Lejeune, North Carolina," June 30, 1947.
- "Montford Point Camp and Vicinity Map," June 30, 1947.
- "Training Facilities, Regulations Governing Use of." Document, March 6, 1946.
- "Training Facilities, Regulations Governing Use of." Document, March 6, 1947.

# MCB Camp Lejeune Base Site Visit and Records Review

Base Contact: Ms. Linda Futrell, Public Works Division, 910-451-2818 x3257

File reviews of records in the base Technical Records office were conducted during the site visit. Additionally, interviews were conducted with Dennis Dunham/Technical Records, and Duane Richardson/EOD Base Range Safety Officer.

### List of Documents Obtained from Camp Lejeune

#### **Base Real Estate Office**

- "Montford Point Camp and Vicinity," June 30, 1943.
- "Montford Point Camp and Vicinity," June 30, 1945.
- "Montford Point Camp and Vicinity," June 30, 1949.
- "Montford Point Camp and Vicinity," June 30, 1952.
- "Montford Point Camp and Vicinity," June 30, 1956.
- "Montford Point Camp and Vicinity," June 30, 1963.
- "Montford Point and Camp Knox Areas," July 31, 1984.
- "Montford Point Area," July 31, 1984.
- "Montford Point Area," 1985.
- "Existing Conditions Map," Grid A4, December 17, 2004.
- "Existing Conditions Map," Grid A4, August 29, 2008.
- "Existing Conditions Map," Grid A5, December 17, 2004.
- "Existing Conditions Map," Grid A5, August 29, 2008.
- "Existing Conditions Map," Grid B3, December 17, 2004.

- "Existing Conditions Map," Grid B3, August 29, 2008.
- "Existing Conditions Map," Grid B4, December 17, 2004.
- "Existing Conditions Map," Grid B4, August 29, 2008.
- "Existing Conditions Map," Grid B5, December 17, 2004.
- "Existing Conditions Map," Grid B5, August 29, 2008.

### Base Library

- Louis Berger Group, Inc. Under USCOE, Wilmington District Contract DACWS4-99-C-0004, Semper Fidelis: A Brief History of Onslow County, North Carolina and MCB, Camp Lejeune, 2002, United States Marine Corps, Lt. Col Lynn J. Kimball (USMC, Retired) Consulting Historian.
- Lotfield, Thomas, C. Principal Investigator. UNCW, August 1981. *Archeological and Historical Survey of USMC Base, Camp Lejeune; Naval Facilities Engineering Command Norfolk, Coastal Zone Resource Corp., Vol. II, Contract No. N62470-79-C-4273.*







## SMALL-ARMS AMMUNITION



Figure 1. Typical cartridge (sectional)

General. Small-arms ammunition, as used herein, describes a cartridge or families of cartridges intended for use in various types of hand-held or mounted weapons through 30 millimeter. Within a caliber designation, these weapons may include one or more of the following: rifles (except recoilless), carbines, pistols, revolvers, machineguns and shotguns. For purposes of this publication, small-arms ammunition may be grouped as cartridges intended primarily for combat or training purposes (API, HEI, tracer or ball); for training purposes only (blank or dummy); or for special purposes (rifle grenade or spotter-tracer). Refer to TM 9-1306-200 for more detailed information on small-arms ammunition.

Cartridges. In general, a small-arms cartridge is identified as an assembly of a cartridge case, primer, a quantity of propellant within the cartridge case, and a bullet or projectile. Blank and rifle grenade cartridges are sealed with paper closure disks in lieu of bullets. Dummy cartridges are composed of a cartridge case and a bullet. Some dummy cartridges contain inert granular materials to simulate the weight and balance of live cartridges. A typical cartridge and the terminology of its components are shown in figure 1.

Case. Although steel, aluminum, zinc and plastic materials have been used experimentally, brass, a composition of 70 percent copper and 30 percent zinc, is the most commonly used material for cartridge cases. Steel, as well as brass, is an approved material for caliber .45 cartridge cases. Brass, paper and plastic are used for 12 gage shotshell bodies and aluminum is used for military-type .410 gage shotshell bodies.





TRACER (NATO)



ARMOR-PIERCING (NATO)

Figure 2. 7.62 mm bullets (sectional)



5.56 MM BALL





CALIBER .50, SPOTTER TRACER

Figure 3. 5.56mm and caliber .50 spotter tracer bullets (sectioned).







TRACER



ARMOR-PIERCING INCENDIARY

Figure 4. Caliber .30 bullets (sectional).



Figure 5. 7.62mm cartridges



weights of propellant. This is to impart sufficient velocity (within safe pressures) to the projectile to obtain the required ballistic performance. These propellants are either of the single-base (nitrocellulose) or double-base (nitrocellulose and nitroglycerine) type. The propellant grain configuration may be cylindrical with a single, lengthwise perforation, spheroid (ball) or flake. Most propellants are coated with a deterrent (to assist in controlling the rate of combustion) and with a final coating of graphite (to facilitate flow of propellant and eliminate static electricity in loading cartridges).

Propellant. Cartridges are loaded with varying

Primer. Small-arms cartridges contain either a percussion or electric primer. The percussion primer consists of a brass or gilding metal cup that contains a pellet of sensitive explosive material secured by a paper disk and a brass anvil. The electric primer consists of an electrode button in contact with the priming composition, a primer cup assembly and insulator. A blow from the firing pin of the weapon on the center of the percussion primer cup base compresses the primer composition between the cup and the anvil. This causes the composition to explode. The function of the electric primer is accomplished by a firing pin with electrical potential, which contacts the electrode button. This allows current to flow through the energy-sensitive priming composition to the grounded primer cup and cartridge case, exploding the priming composition. Holes or vents in the anvil or closure cup allow the flame to pass through the primer vent in the cartridge case and ignite the propellant. Rimfire ammunition, such as the caliber .22 cartridge, does not contain a primer assembly. Instead, the primer composition is spun into the rim of the cartridge case and the propellant is in intimate contact with the composition. On firing, the firing pin strikes the rim of the cartridge case, compressing the primer composition and initiating its explosion.

Bullet. With few exceptions, bullets through caliber .50 are assemblies of a jacket and a lead or

.

Figure 6. 5.56mm cartridges



Figure 7. Caliber .30 cartridges



Figure 8. Caliber .30 carbine and caliber .45 cartridges

steel core. They may contain other components or chemicals which provide the terminal ballistic characteristics of the bullet type. The bullet jacket may be either gliding metal, gliding-metal clad steel, or copper plated steel. Caliber .30 and 7.62mm frangible bullets are molded of powdered lead and a friable plastic which pulverizes into dust upon impact with the target. The pellets used in the shotgun shells are spheres of lead alloys varying from 0.08 inch to 0.33 inch in diameter



Figure 9. Caliber .50 cartridges

Ball Cartridge. The ball cartridge is intended for use in rifles, carbines, pistols, revolvers and/or machineguns against personnel and unarmored targets. The bullet, as designed for general purpose combat and training requirements, normally consists of a metal jacket and a lead slug. Caliber .60 ball bullet and 7.62-mm, ball M59 bullet contain soft steel cores.

Tracer Cartridge. By means of a trail of flame and smoke, the tracer cartridge is intended to permit visible observation of the bullet's in-flight path or trajectory and the point of impact. It is used primarily to observe the line of fire. It may also be used to pinpoint enemy targets to ignite flammable materials and for signaling purposes. The tracer element consists of a compressed, flammable, pyrotechnic composition in the base of the bullet. This composition is ignited by the propellant when the cartridge is fired. In flight, the bullet emits a bright flame which is visible to the gunner. Trace burnout occurs at a range between 400 and 1,600 yards, depending upon the caliber of ammunition.

Match Cartridge. The match cartridge is used in National and International Match Shooting competitions. The bullet consists of a gliding-metal jacket over a lead slug. The cartridges are identified on the head face with the designation NM (National Match) or Match.

Armor-Piercing Cartridges. The armor-piercing cartridge is intended for use in machine-guns or rifles against personnel and light armored and unarmored targets, concrete shelters, and similar bullet-resisting targets. The bullet consists of a metal jacket and a hardened steel-alloy core. In addition, it may have a base filler and/or a point filler of lead.

Armor-Piercing-Incendiary Cartridge. The armor-piercing-incendiary cartridge is used in rifles or machineguns as a single combination cartridge in lieu of separate armor-piercing and incendiary cartridges. The bullet is similar to the armor-piercing bullet, except that the point filler is incendiary mixture instead of lead. Upon impact with the target, the incendiary mixture

burst into flame and ignites flammable material.

Armor-Piercing-Incendiary Tracer Cartridge. The bullet of the armor-piercing- incendiary-tracer cartridge combines the features of the armor-piercing, incendiary, and tracer bullets and may be used to replace those cartridges. The bullet consists of a hard steel core with compressed pyrotechnic mixture in the cavity in the base of the core. The core is covered by a gilding-metal jacket with incendiary mixture between the core point and jacket. This cartridge is for use in caliber .50 weapons only.

Duplex Cartridge. The duplex cartridge contains two special ball type bullets in tandem. The front bullet is positioned partially in the case neck, similarly to a standard ball bullet. The rear bullet, positioned completely within the case, is held in position by a compressed propellant charge. The base of the rear bullet is angled so that in flight, it follows a path slightly dispersed from that of the front bullet

Spotter-Tracer Cartridge. The spotter-tracer cartridge is intended for use in coaxially mounted caliber .50 spotting rifles. The bullet trajectory closely approximates that of 106mm projectiles. Thus, this cartridge serves as a fire control device to verify weapon sight settings before firing 106mm weapons. The bullet contains an impact detonator and incendiary composition which identify the point of impact by flash and smoke.

Blank Cartridge. The blank cartridge is distinguished by absence of a bullet. It is used for simulated fire, in training maneuvers, and for saluting purposes. It is fired in rifles and machineguns equipped with blank firing attachments.

Grenade Cartridge. The grenade cartridge is used to propel rifle grenades and ground signals from launchers attached to rifles or carbines. All rifle grenade cartridges are distinguished by the rose petal (rosette crimp) closure of the case mouth.

Frangible Cartridge. The caliber .30 frangible cartridge, designed for aerial target training purposes, is also used in rifles and machineguns for target shooting. Caliber .30 and 7.62mm frangible cartridges are used in tank machineguns, firing single shot, for training in tank gunnery. At its normal velocity, the bullet, which is composed of powdered lead and friable plastic, will completely disintegrate upon striking a 3/16-inch aluminum alloy plate at 100 yards from the muzzle of the gun. These cartridges are not to be used on any but well ventilated indoor ranges to preclude buildup of toxic bullet dust. Inhalation of bullet dust may be injurious to health

Incendiary Cartridge. The incendiary cartridge was designed for aircraft and ground weapon use to ignite combustible targets (e.g., vehicular and aircraft fuel tanks). The bullet contains a compressed incendiary mixture which ignites upon impact with the target. The incendiary cartridge has been superseded by the API and APIT cartridges because of their improved terminal ballistic effects



Figure 11. Caliber .22 cartridges



Figure 12. Caliber .38 cartridges.



Figure 13. 12 gage shotgun shells.

Target-Practice Cartridge. The 20mm target-practice cartridge is the conventional steel shell with steel nose plug. It is used primarily for training purposes. This is not a combat cartridge; hence, no fuze is used in the assembly.

#### Special Purpose Cartridge.

Cartridges of various calibers. (fig. 11 through 13), which consist of different types of projectiles and bullets, are used for training and special purposes. They include the following:

- (1) Caliber .22 long rifle and caliber .38 and .45 wad-cutter cartridge for target shooting.
- (2) Caliber .45 blank cartridges fired in exercises to condition dogs to gun fire.
- (3) Caliber .22 hornet and .410 shotgun cartridges for firing in Air Force combination (survival) weapons for hunting purposes.
- (4) Caliber.45 line-throwing cartridges for firing in caliber .45 line-throwing rifles. The Navy uses these for throwing lines from ship-to-ship. The Army Signal Corps uses these for projecting signal wires over elevated terrain
- (5) Shotshells containing the designated shot sizes as required for the following:
  - (a) 12 gage #00 Buck for guard duty
  - (b) 12 gage #4 Buck for guerrilla purposes.
  - (c) 12 gage #6, 71/2 and 8 shot for clay target shooting for training purposes."
  - (d) .410 gage #7 shot for caliber .22/.410 survival weapons maintained by aircraft.



Figure 14. Linked 7.62-mm cartridge

Special purpose cartridges. These also include the following types of military cartridges:

- (1) Dummy. The dummy cartridge is used for practice in loading weapons and simulated firing to detect flinching of personnel when firing weapons. It consists of a cartridge case and a ball bullet. Cartridge identification is by means of holes through the side of the case or longitudinal corrugations in the case and by the empty primer pocket.
- (2) Dummy inert-loaded. This cartridge consists of a cartridge case, a ball bullet and inert granular material in the case simulating the weight and balance of a live cartridge. The exterior of the cartridge is identified by a black chemical finish and by the absence of a primer. This cartridge is used by installations for testing weapon function, linkage and feed chutes.
- (3) High-pressure test. High-pressure test ammunition is specially loaded to produce pressures substantially in excess of the maximum average or individual pressures of the corresponding service cartridge. This cartridge is not for field issue. It is used only by armorers and weapons mechanics for proof firing of weapons (rifles, pistols, machine guns) at place of manufacture, test and repair. Because of excessive pressures developed by this type of ammunition, and the potential danger involved in firing, proofing of weapons is conducted only by authorized personnel from fixed and shielded rests by means of a lanyard or other remote control methods.

#### Metallic Links and Clip.

Metallic links. (fig. 14 and 15) are used with caliber .30, caliber .50, 5.56mm, 7.62mm and 20mm cartridges in machine guns. The links are made of steel, surface treated for rust prevention. They are used to assemble cartridges into linked belts of 100 to 750 cartridges per belt. The links must meet specific test and dimension requirements to assure satisfactory ammunition feed and functioning in the machine gun under all training and combat service conditions.

Different configurations of cartridge clips. These permit unitized packages of ammunition. This facilitates transfer of cartridges to appropriate magazines for caliber .30, 7.62mm and 5.56mm rifles. The caliber .30 eight-round clip feeds eight cartridges as a unit into the receiver of the rifle. The caliber .45 clip feeds three cartridges as a unit into the revolver cylinder. Five-round and eight-round clips are used with caliber .30 cartridges; five-round clips with 7.62mm cartridges; ten-round clips with caliber .30 carbine and 5.56mm cartridges; and three-round clips with caliber .45 cartridges



Figure 15. Links for caliber .30 and caliber .50 ammunition



Figure 16. Cartridges in 20-round cartons in ammunition box

#### Packing and Identification Marking.

Packing. These containers and methods for packing military small-arms ammunition are specified in drawings, specifications or, as required, in the procurement contract. Military containers presently being manufactured have been limited to a few standard types designed to withstand all conditions commonly encountered in handling, storage and transportation of ammunition. Military cartridges, except 20mm, are packed in metallic ammunition boxes, over- packed in wooden wire-bound crates. Twenty millimeter cartridges are packed in ammunition boxes only. When commercial cartridges are not packed in a military pack, they are packed in accordance with standard commercial practices.

Identification Markings. Each outer shipping container and all inner containers are fully marked to identify the ammunition. Wire-bound boxes are marked in black and ammunition boxes are painted olive drab, with markings in yellow. When linked ammunition is functionally packed, component lot numbers are replaced by a functional lot number. Typical packing and identification markings are illustrated in figures 17 and 18.



Figure 17. Cartridges, link belt, cartons, bandoleers and ammunition box.

### Care, Handling and Preservation.

Small-arms ammunition is comparatively safe to handle. It is packed to withstand transportation, handling and storage conditions normally encountered in the field. However, consideration should be given to general handling precautions pertaining to ammunition and explosives.

Reference: This data is a reprint of Chapter 3, TM 9-1300-200, Ammunition General, October 1969, excluding information on 20mm and 30mm ammunition.

Appendix B Soil Boring Logs, Test Pit Logs, Well Construction Diagrams, and Temporary Well Abandonment Records

PROJECT NUMBER 377812 BORING NUMBER

SHEET

/ OF /

### **SOIL BORING LOG**

PROJECT CTC-0! LOCATION CJCA COMP Leicune, NC
ELEVATION Not SUV Veyed DRILLING CONTRACTOR SAE DACCO
DRILLING METHOD AND EQUIPMENT POWER Probe 9500 VTR
WATER LEVELS 9 695 START 7/26/09 1340 FINISH 7/26/09 1400 LOGGER D. Brown / CLT

| ŠF                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                     |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                         |
| -                           | o-41     | 00-1               | Z <sup>'</sup>   |                                                   | U-2' No Recovery 2-4' silty sand (SM) Black, Moist, 1005e, fine grained                                                     | Hand Auger cleared<br>0-5' bgs                                                                                               |
| S -                         | 4-8'     | DP-2               | 3'               |                                                   | 4-5' No Recovery  5-10' Sound (SP)  light grey/white, Moist,  loose, fine grained                                           | water table @ 9'bgs                                                                                                          |
| 0 -                         | B-12'    | OP-3               | y'               |                                                   | 10-14' Clay (CL) Darkgrey, wet, stiff 14-16' Sand (SP) wet, same as 5-10'                                                   | Collected Sample  CJCA-5801-2-7-09C                                                                                          |
| 5 -                         | 12-16    | DRY                | y'               |                                                   | End of Boring 16'b95                                                                                                        | Construction details for CJCA-Twol  "Prepacted screen I bag of #2 sand screen; 8-18' bgs Sand! 8-18' bgs Bentonite; 7-8' bgs |
|                             |          |                    |                  |                                                   |                                                                                                                             | Priller could not drill beyond 16' 695.                                                                                      |
|                             |          |                    |                  |                                                   | -                                                                                                                           |                                                                                                                              |

| PROJECT NUMBER | BORING NUMBER   | SHEET ! | OF ! |
|----------------|-----------------|---------|------|
|                | SOIL BORING LOG |         |      |

| PROJEC                      | т        | (A)                | 11-(             | CSCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOCATION —                                                                                                                  | Camp Lyeune, NC                                                                      |
|-----------------------------|----------|--------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| ELEVATION                   |          |                    |                  | The second secon | _ DRILLING CONTRACTOR _ 3 REDA CLU                                                                                          |                                                                                      |
| DRILLING                    | G METH   | IOD ANI            | 4                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOT WIGEOPYSHE SYNT                                                                                                         |                                                                                      |
| WATER L                     | EVELS    |                    | 6.               | bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | START 0925 7-29-0 FINISH 0940                                                                                               | 7/29/09 LOGGER S Beville                                                             |
| §€                          |          | SAMPLE             |                  | STANDARD<br>PENETRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | 0-4      | 26-1               | 3                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-1 No Recovery<br>1-5 Sulty Sand (SM), black, -<br>moist, in dense, vfg, no odor<br>5-8 Sand (SP), gray, wet,              | XRF 4-6" ND -                                                                        |
| -                           | 4-8      | De-2               | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dense, vfg                                                                                                                  | Maren @ 60' bes                                                                      |
| 10 -                        |          |                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Baring computed 38' bgs                                                                                                     | Sample:  CSCA 5602-2-6-09C  C3CA-5602-2-6-09C-5D                                     |
|                             |          |                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             | -<br>-<br>-<br>-<br>-<br>-                                                           |

PROJECT NUMBER

BORING NUMBER

SHEET

OF /

#### **SOIL BORING LOG**

PROJECT CTC-O! LOCATION CTCA CAMP Lejeune, NC

ELEVATION Not Surveyed DRILLING CONTRACTOR SAE DACCO

DRILLING METHOD AND EQUIPMENT Power Probe 9500 UTR

WATER LEVELS 10' 695 START / 126/09 0735 FINISH 7/126/09 1015 LOGGER DIBYCUM / CLT

|                             | 1        | CAMPIC             | -                |                                    | March St.                                                                                                                   | OGGER DISTORTIVE                                                                     |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| OF.                         |          | SAMPLE             | _                | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
|                             | 0-41     | 09-1               | 2'               |                                    | 0-2' No Recovery  2-4' Peat (PT)  Black, loose, Moist  4-5' No Recovery                                                     | Hand Auger Cleared 0-5' bgs                                                          |
| 5-                          | 4-81     | DP-2               | 3'               |                                    | 5-9.5' Clarey Sand (SC)  Brown/grey, Moist,  Medium dense, fine grained  9.5-10.5' Silty Sand (SM)                          |                                                                                      |
| 10 -                        | 8-12     | DP-3               | 4'               | -                                  | light grey, Moist, loose, fine grained wet (a) lo' bg 5  lo.5-15' Sand (SP)                                                 | water table 60 10' bgs .<br>XRF No Detections .                                      |
| 15 -                        | 12-16    | DP-4               | 4'               |                                    | fine grained  15-16' Clay (CL)  Parkgrey, wet, stiff                                                                        | Driller could not drill past 16' bgs                                                 |
| 20-                         |          |                    |                  |                                    | End of Boring 16' b95                                                                                                       | Details for CSCA-TWO2  1" Prepacked Screen  1 bag # 2 Sand (5016)  Screen: 8-18' bgs |
| -                           |          |                    |                  |                                    | -<br>-<br>-                                                                                                                 | Sand: 8-18' bgs Bentonite: 7-8' bgs Collected Sample                                 |
| -                           |          |                    |                  |                                    | -<br>-<br>-                                                                                                                 | CJCA-5803-2-7-09C<br>@ 1030                                                          |
| -                           |          |                    |                  |                                    | -                                                                                                                           |                                                                                      |

| - |      | _ | _ | <br>  |   |
|---|------|---|---|-------|---|
|   |      |   | - |       |   |
|   | 1000 | - |   |       |   |
| C |      | ~ |   | <br>- | _ |

PROJECT NUMBER
317812

BORING NUMBER
SHEET | OF |
SOIL BORING LOG

| PROJECT      | CIO     | 11-6  | CJCA    |     |                       | _ LOCATION     | Camp       | Leieure  | NC    |
|--------------|---------|-------|---------|-----|-----------------------|----------------|------------|----------|-------|
| ELEVATION _  |         |       |         |     | _ DRILLING CONTRACTOR | SAEDAS         |            | 3        |       |
| DRILLING MET | THOD AN | D EQU | IPMENT_ | MAB | DPT W/Geogrape 54     |                |            |          |       |
| WATER LEVEL  | .s      | -     | -7      |     | START 0255 7/25       | 1/09 FINISH 09 | 00 7/29/09 | LOGGER - | South |

| ŠF           |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                   | COMMENTS                                                                             |
|--------------|----------|--------------------|------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| 54           | 0-4      | 1-30               | 3                |                                                   | 0-1 No Recovery  1-4 Sulty Sand (SM), gray w1 - Some black, moit, loops, vfg,-                                     |                                                                                      |
| 5 -          | 4-8      | 78-2               | 4                |                                                   | no odor<br>4-6 Sand w/ Clay (SP-SC), gray,<br>mout: dense, ufg  6-8 Sand (SP), It gray, nout.                      | KRF 4-6: 56 158 ppm                                                                  |
| 10 -         |          |                    |                  |                                                   | Boring completed @ 8' bg)                                                                                          | Sample:<br>[CSCA-5604-4-7-09C]                                                       |
|              |          |                    |                  | 1                                                 |                                                                                                                    |                                                                                      |

PROJECT NUMBER
377812

BORING NUMBER
5605/TW05

SHEET | OF |

### SOIL BORING LOG

| PROJECT CTO-11 CJCA     | LOCATION Camp Lejeune, NC                               |
|-------------------------|---------------------------------------------------------|
| ELEVATION (NOT SMITTERS | DRILLING CONTRACTOR SAEDACLO                            |
|                         | HA F DET W/ Geoprobe GOLD DT                            |
| WATER LEVELS 12' has    | START 1435 7/2400 FINISH 1515 7/26/09 LOGGER S. Beville |

| >            | ,                     | CAMP! 5            |                  | OTANICI DO                      | START 1435 172409 FINISH 1515                                                                                               | September of the Control of the Cont |
|--------------|-----------------------|--------------------|------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ŞE.          |                       | SAMPLE             |                  | STANDARD<br>PENETRATION<br>TEST | SOIL DESCRIPTION                                                                                                            | COMMENTS  DEPTH OF CASING, DRILLING RATE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SURFACE (FT) | INTERVAL              | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | 6"-6"-6"<br>(N)                 | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 0-4                   | 1-90               | 3                |                                 | 0-1 No Recovery<br>1-3.5 Clayery Sand (SC), gray, -<br>moist, dense, vfg littlesitt -                                       | NRF 2-41 : 6)D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ラー<br>-<br>- | 4.8                   | 26-3               | 4                |                                 | 35-8 Sand white (sp.sm),                                                                                                    | XRF 4-6" ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - qp         | 8-12                  | 78-3               | 2                |                                 | 10-18 SCA (35-8) 14-18 Suty Vary (CL), d.gray, _                                                                            | 12 / has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5 -          | 12-160                | 26-11              | И                |                                 | 18-20 Sand wisht (sp.sm).                                                                                                   | water @ 12' bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | - 1620                | b0-5               | 4                |                                 |                                                                                                                             | Sample:<br>[CJCA-5605-2-7-09C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20 =         |                       |                    |                  |                                 | Boring completed @ 201 bgs.                                                                                                 | well construction:<br>10-20': I" screen<br>0-10': I" puc coging<br>9-20': Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | -<br>-<br>-<br>-<br>- |                    |                  |                                 |                                                                                                                             | 7-9': Bentanite chips<br>PVC stick up:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | -                     |                    |                  |                                 |                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

PROJECT NUMBER
377812

BORING NUMBER
5606

SHEET OF I

| PROJECT    | C10-11 | CTCA     | LOGITICA COMO A LANGUA NIC                         |    |
|------------|--------|----------|----------------------------------------------------|----|
|            |        | Surveyed | DRILLING CONTRACTOR SAEDACCO                       |    |
|            |        |          | HRJ DIT W/ Geoprobe 54DT                           |    |
| WATER LEVE | LS     | -        | START 0945 7/29/09FINISH 1000 7/29/09 LOGGER S BEN | Me |

| <u> </u>     | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                   | COMMENTS                                                                             |
|--------------|--------------------|------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| SURFACE (FT) | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6*-6*-6*<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -            | D(-1               | 4                |                                                   | 0-4 Suty Sand (SM), grays -<br>tan, dry, loose, vfg -<br>4-8 Sand (SP), lt tan, moists                             | XXF 2-4": ND                                                                         |
| 4.8          | 08-2               | 4                |                                                   | - , , ,                                                                                                            | KRF 4-6: ND                                                                          |
|              |                    |                  |                                                   | Busing completed @ 8' bgs -                                                                                        | Sample:<br>CJCA-3606-2-7-09C                                                         |
|              |                    |                  |                                                   | -                                                                                                                  |                                                                                      |

PROJECT NUMBER 377812

SGOT/TWOH

SHEET |

OF

## **SOIL BORING LOG**

| PROJEC                      | т        | 70-11              | 0                | LA                                 | LOCATION _C                                                                                                                 | amp Lejeune, NC                                                                      | _ |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---|
| ELEVAT                      | ION      | Not .              | SMAN             | usd                                | DRILLING CONTRACTOR SAEDA CLO                                                                                               |                                                                                      |   |
|                             |          |                    |                  |                                    | & DPT W/Geoprobe 661077                                                                                                     | -7/21/20 5 Graville                                                                  | - |
| WATER                       | LEVELS   | - 1                | bas              |                                    | START 1025 7/26/09 FINISH 1055                                                                                              | LOGGER JANKE                                                                         | = |
| ðF.                         |          | SAMPLE             |                  | STANDARD PENETRATION               | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |   |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |   |
|                             | 0.4      | HA-1               | 0                |                                    | 0.45No Recovery (HA)<br>45-9 Sand (SP) H. gray. Moit                                                                        |                                                                                      | - |
| 5-                          |          |                    |                  |                                    | to dry, loose, ufg -<br>9-14 Sand W/Silt (SPSM), gray -<br>wlorange moiet to wet vfg.                                       | xrf 4-6': ND                                                                         |   |
|                             | 4-8      | D6 /               | 35               |                                    | m. dense<br>14.15 Sandy Clay (CL), a                                                                                        | XRF 6-7" ND                                                                          | - |
| 10                          | 8-12     | D1-2               | E4               |                                    | gray, wot, soft, ofg                                                                                                        | water@10' bgs                                                                        | - |
|                             | 12-16    | 708-3              | 4                |                                    | moist, dense, vfg                                                                                                           | - Sample:                                                                            | - |
| 15 -                        | -        |                    |                  |                                    | boring completed @ 10' bgs .                                                                                                | Well construction                                                                    | - |
| 20 -                        | -        |                    |                  |                                    |                                                                                                                             | 6-16' 1" Screen<br>0-6': PVC caring (1")<br>5-16' Sand                               | - |
|                             |          |                    |                  |                                    |                                                                                                                             | 4.5' Bentunite Chips<br>PVC Stilling.                                                | - |
|                             | -        |                    |                  |                                    |                                                                                                                             | -                                                                                    | - |
|                             | -        |                    |                  |                                    |                                                                                                                             | -                                                                                    | - |

| CH | 21              | /IH | 111 |   |
|----|-----------------|-----|-----|---|
|    | Contract of the |     |     | _ |

PROJECT NUMBER
377812 BORING NUMBER
5608 SHEET OF I

### SOIL BORING LOG

| PROJECT      | CTO-11 CJCA           | LOCATION Camp Leizure NC                         |
|--------------|-----------------------|--------------------------------------------------|
| ELEVATION _  | Not surveyed          | DRILLING CONTRACTOR SACRACCO                     |
| DRILLING MET | THOD AND EQUIPMENT LA | & DPT w/ Geoprobe 54DT                           |
| WATER LEVEL  |                       | START 0830 7/29/08-11-150/09 - 150/09 - 3 600 11 |

| VATER LEVELS                |          |                    |                  |                                                   | START 0830 7/23 09 FINISH 0840                                                                                              | TIZA OA LOGGER DENULL                                                                |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| §€                          |          | SAMPLE             |                  | STANDARD<br>PENETRATION                           | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | 0-4      | D 6-1              | 3                |                                                   | 1-4 Sulty Sand (SM), gray, dry,                                                                                             | XRF 2-4" : ND                                                                        |
| -                           | 4.8      | 76.2               | 4                |                                                   | loose, vfg, trace class -<br>4-7 Sand (SP). It gray, dry, -<br>dense, little clay, vfg                                      | KRF 4-6: 100                                                                         |
|                             |          |                    |                  |                                                   | 7-8 Sand (SP), It gray will - orange, dry, loose, Ag  Baring computed @8' bgs                                               | Sample:<br>[C5CA-SB08-2-7-09C]                                                       |
|                             |          |                    |                  |                                                   |                                                                                                                             | -                                                                                    |
| _                           |          |                    |                  |                                                   | -                                                                                                                           |                                                                                      |
| -                           |          |                    |                  |                                                   |                                                                                                                             |                                                                                      |

PROJECT NUMBER

377812

BORING NUMBER

5609 TW05 SHEET OF

SOIL BORING LOG

| PROJECT CTU-II, CICA              | LOCATION Camp Legens. NC                                |
|-----------------------------------|---------------------------------------------------------|
| ELEVATION Not surveyed            | DRILLING CONTRACTOR SAEDACO                             |
| DRILLING METHOD AND EQUIPMENT _ H | A r DPT W/ Geoprobe 6610 DT                             |
| WATER LEVELS 14' bas              | START 0820 7/26/09 FINISH 0920 7/26/09 LOGGER 5 Beville |

| SF L         | SAMPLE   |                    |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                             |  |
|--------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                 |  |
|              | 9-4      | D6-1               | 15               |                                                   | 0-2.5 No Recovery<br>2.5.4 Sand Willay (SP-SC)<br>d tan, dry, m. dense, fog, wille                                          |                                                                                                                      |  |
| 5            | 4-8      | DP-2               | 25               | u                                                 | 4-5.5 No Recovery                                                                                                           | XRF 4-6: ND                                                                                                          |  |
| 10           | 8-12     | 78-3               | 4                |                                                   | dry to moist, losse, vfg, trace sut =<br>H-20 Sitty Sand (SM), gray wil -<br>orange, wet, m. dense, vfg, trace -            |                                                                                                                      |  |
| 15 –         | 12-14    | .96-rt             | 4                |                                                   | 20-24 No Recovery                                                                                                           | water @ 14' bys                                                                                                      |  |
| 20           | 16 20    | DP-5               | н                |                                                   |                                                                                                                             | Sample:<br>[CJCA-3609-2-4-09C]<br>[CJCA-5609D-2-4-09C]                                                               |  |
| -            | 20-24    | -96-10             | 0                |                                                   |                                                                                                                             | 10,611 300 10 2 1 0 101                                                                                              |  |
| 25 -         |          |                    |                  |                                                   | Boring completed@ 24' begs                                                                                                  | Well construction:  12.22': I" screen  0.12': I" PVC caring  11.22': Sand  9-11': Bentonite chip:  PVCstuleup ~ 1.5' |  |

PROJECT NUMBER
377712

BORING NUMBER
5610

SHEET | OF |

| POJEC                       | т        | CT                 | 11-6             | CJCA                                      | 200/11/01/                                                                                                                           | amp leveure NC                                                                       |
|-----------------------------|----------|--------------------|------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| ELEVATI                     |          |                    | 3UNUE            |                                           | DRILLING CONTRACTOR SAEDA CCO                                                                                                        |                                                                                      |
| DRILLIN<br>WATER            |          |                    | EQUIP            | MENT HA                                   | START 1645 7/29/19 FINISH 1700                                                                                                       | 7/23/09 LOGGER 3 Berille                                                             |
|                             |          | SAMPLE             |                  | STANDARD                                  | SOIL DESCRIPTION                                                                                                                     | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION TEST<br>RESULTS  6"-6"-6" (N) | SOIL DESCRIPTION  SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | 0-4      | D8-1               | 4                |                                           |                                                                                                                                      | 1.6F 2-41: ND -                                                                      |
| 5-                          | 4-8      | ne-2               | 4                |                                           | 2-7 Sand (SP), gray, Moist, _<br>loose, vfg                                                                                          | XRF 4-6: ND -                                                                        |
| 10 -                        |          |                    |                  |                                           | gray, wet, M denre, vfg. = little Silt - Boring completed @ 8' bgs -                                                                 | Sample: - [CJCA-3610-2-6-09C]                                                        |
| -                           |          |                    |                  |                                           |                                                                                                                                      |                                                                                      |
|                             | -        |                    |                  |                                           |                                                                                                                                      |                                                                                      |

PROJECT NUMBER
377812 BORING NUMBER
5611 FTW06 SHEET OF 1

## SOIL BORING LOG

| PROJECT     | CTO-11 CJCA        | LOCATION Camp Legeune, NC                             |
|-------------|--------------------|-------------------------------------------------------|
| ELEVATION   | Not gurraged       |                                                       |
| DRILLING ME | THOD AND EQUIPMENT |                                                       |
| WATERIEVE   | is n' mas          | START 1235 7/2/04 TANGE (215 7/2/109 LOGGER 5 BENILLS |

| SE L         | S        | AMPLE              | -                | STANDARD                                | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                               |
|--------------|----------|--------------------|------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION TEST<br>RESULTS<br>6"-6"-6" | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION  WE measurements in ppm |
| -            | >-4      |                    | 2                |                                         | 0-2 No Recovery 2-4 Silty Sand (SM), tan, dry, - m. dense, ofg. trace day -                                                 | XRF 2-4" : 100                                                                                         |
| 5 - 4        | 4-8      | DP-2               | Ч                |                                         | Loose, vfg, travesite                                                                                                       | XRF 4-6" ND                                                                                            |
| 10-8         | i-12     | DP-3               | ц                |                                         | gray wlorange, on dense, ifg, _                                                                                             | water @ iv bas                                                                                         |
| 15-16        | 2.16     | 170 .11            | ц                |                                         |                                                                                                                             | Sample:<br>[CSCA-SGII-2-7-09C]                                                                         |
|              | 16 20    | b(·5               |                  |                                         |                                                                                                                             |                                                                                                        |
| 0            |          |                    |                  |                                         | Boring completed @ 201 bgs.                                                                                                 | Well construction:<br>6-16': I" Screen                                                                 |
|              |          |                    |                  | *                                       |                                                                                                                             | 5-16' Sand<br>4-5' Bentoute chips.<br>PVCStickup ~1'                                                   |
|              |          |                    |                  |                                         |                                                                                                                             | -                                                                                                      |

| THE RES | 1 - D 1 1 1 | ## E |     |  |
|---------|-------------|------|-----|--|
|         | 12N         |      | 11L |  |

| PROJECT NUMBER | BORING NUMBER |       |    |
|----------------|---------------|-------|----|
| 377812         | 5612          | SHEET | OF |

| PROJEC                      | т.      | C-                 | 10-11            | CJCA                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 0.00                                                                               |
|-----------------------------|---------|--------------------|------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| ELEVATION                   |         | Not                |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | emp legerme. NC                                                                      |
|                             | 3 METH  | OD ANI             | D EQUI           | PMENT NO                    | & DPT w/ Geoprobe 5407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |
| VATER L                     |         |                    |                  |                             | START 1030 7/29/09 FINISH 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/29/09 LOGGER 3 Beville                                                             |
| MF.                         |         | SAMPLE             |                  | STANDARD<br>PENETRATION     | SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | NTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6" | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| ΩÑ                          | ≤       | ZK                 | ж. <del>г.</del> | (N)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KRF results (ppm)                                                                    |
| -                           | 0-4     | D6-1               | 4                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-4': ND -                                                                           |
| 5-                          |         |                    |                  |                             | - 1 miles 1 mi | 4-6' ND -                                                                            |
|                             | 4-9     | 10.2               | Ч                |                             | 4.8 Sand (SP), It gray, dry, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67': ND -                                                                            |
| - 01                        |         |                    |                  |                             | Boring completed @ 8' bgs -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample:                                                                              |
| -                           |         |                    |                  |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [CJCA-S612-2-7-09C]                                                                  |
| -                           |         |                    |                  |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-                                                                               |
| -                           |         |                    |                  |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                    |
| -                           |         |                    |                  |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                    |
| -                           |         |                    |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
|                             |         |                    |                  |                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| -                           |         |                    |                  |                             | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                    |
| -                           |         |                    |                  |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                    |
| _                           |         |                    |                  |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                    |

PROJECT NUMBER 377812 BORING NUMBER 5813/TW07

SHEET

OF /

#### **SOIL BORING LOG**

PROJECT CTO-0!!

LOCATION CJCA CAMP Leieune, NC

ELEVATION Not Surveyed DRILLING CONTRACTOR GAEDACCO

DRILLING METHOD AND EQUIPMENT Power probe 9500 UTR

WATER LEVELS 15.5' 695 START 7/26/09 0800 FINISH 7/26/09 0825 LOGGER D. Brown /CL. T

| ŠF.                         |          | SAMPLE             | E                | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                 |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                     |
| 3                           | 0-4'     | DP-1               | 2'               |                                                   | 0-2' No Recovery 2-3' Silty Sand (SM) brown/black, Moist, loose, fine grained                                               | Hand Auger Cleared -<br>0-5' bg5                                                                                         |
| 5-                          | 4-81     | DP-2               | 4'               |                                                   | 3-5' Clayey Sand (sc) - light grey/tan, moist, - Medium dense - S-11' Sand (sp) -                                           | -                                                                                                                        |
| 10 -                        | 8-12     | DP-3               | 3'               |                                                   | white/four, crange streaks, -<br>Moist, medium dense<br>fine grained<br>!!-!4' No Recovery<br>!4-17' Clayer Sand (SC)       | XRF No Detections                                                                                                        |
| 15-                         | 12-16    | DP-4               | 2'               |                                                   | same as 3-s' wet at 15.5' 17-19' sand (sp) grey/orange, wet, louse, fine grained                                            | water table @15.5 bgs -                                                                                                  |
| 20-                         | 16-20    | DP-5               | ч'               |                                                   | 19-20' clayer sand (SC)  Some as 14-17'  End of Boring 20'bgs                                                               | Construction Details I" pre-packed screen 1/2 of so 16 bas #2 sand Screen: 10-20'bgs Sand: 10-20'bgs Bentonite: 9-10'bgs |
| -                           |          |                    |                  |                                                   | _                                                                                                                           | Collected Samples  CJCA-SBI3-2-7-09C  CJCA-SBI3-2-7-09C-MS  CJCA-SBI3-2-7-09C-SD  CJCA-SBI3-2-1-09C-SD  -                |

| CHOI | A //II |   | ш   |   |
|------|--------|---|-----|---|
| CH2  | W      | П | 11_ | _ |

| PROJECT NUMBER | BORING NUMBER | - T   |      |
|----------------|---------------|-------|------|
| 211817         | 1 3614        | SHEET | OF \ |

| PROJEC                      | r        | Cto                | -11              | CJCA                                                          | LOCATION                                                                                                                             | Camp Lejeune, NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ELEVATION                   |          |                    |                  | Y                                                             | DRILLING CONTRACTOR SAEDA CLOS  8 DAT W/GEODIOGE 54 DT                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| DRILLING<br>WATER L         |          |                    | EQUIF            | MENT NA                                                       | START 1610 7/28/09 FINISH 1/05                                                                                                       | 7/28/19 LOGGER 3 Bendle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                             |          |                    |                  | OTANDADD.                                                     |                                                                                                                                      | The state of the s |  |  |  |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | STANDARD<br>PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL DESCRIPTION  SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | COMMENTS  DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| -                           | 0-4      |                    | 4                |                                                               | 0-5 Suty Sand (SM), tan, -<br>dry, ordense; trace day -<br>5-8 Sand (SP), It gray,                                                   | XRF 2-41': ND -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 5-                          | 4.8      | 26.5               | 4                |                                                               | mourt, boote, vfg                                                                                                                    | KKS 6-1:100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 10 -                        |          |                    |                  |                                                               | Boring completed @ 81 bgs -                                                                                                          | Sample:<br>[C5(A-5614-2-7-09C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| -                           |          |                    |                  |                                                               |                                                                                                                                      | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| -                           |          |                    |                  |                                                               |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| -                           |          |                    |                  |                                                               |                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                             |          |                    |                  |                                                               |                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |

PROJECT NUMBER
377812 BORING NUMBER
5815/TW08 SHEET 1 OF 1

| PROJECT CTO-OII                                  | LOCATION COMPLETIEURE, NC                     |
|--------------------------------------------------|-----------------------------------------------|
|                                                  | OR SAEDACCO                                   |
| DRILLING METHOD AND EQUIPMENT fower probe 9500 U | TR                                            |
| WATER LEVELS 10' 695 START 7/25/0                | 1 650 FINISH 7/25/09 1715 LOGGER DI DVCWN/CLT |

| 0-4' 19-1 ]  O-3' No Recovery 3-4.5' Silty Sand (SM)  Grey/tan, Meist, lease, fine grained  4.5-5.0' Sand Y Clay (CL)  ovange/tan, Meist, stiff  S-6' Clayey Sand (SC)  tan/ovange, Moist, dense, fine grained  6-8' Sand (SP)  white/orange, Moist, lease, Medium grained  8-9' No Recovery  q-15' Same as 6-8' wet@ 10'  12-16' 19-4' 4'  15-16' Sandy Clay (CL) Crange/white, wet, Very stiff  End of bering 16'  Water table @ 10' bgs  Water table @ 10' bgs  Water table @ 10' bgs  VAFF 2-4' Nothing 6-7' Cu=14PPM  Callected Sample CJCA-5815-6-7-09C  Well Construction Details 1" Prepacted Screen  Va bag of #2 Sand Screen: 8-18' bgs  Sand: 8-18' bgs  Bentonite: 7-8' bgs  Well Set 6 18' bgs | 0-4' 18-1 1' 3-4.5' Silty Sand (SM)  grey/tan, Maist, loase, fine grained  4.5-5.0' Sand Y Clay (CL)  wange/tan, Maist, Stiff  5-6' Clayey sand (Sc)  tam/orange, Maist, dense, fine grained  6-8' Sand (SP)  white/orange, Maist, loase, Medium grained  6-8' Sand (SP)  white/orange, Maist, loase, Medium grained  6-7' Cu=14PPA  Zn=20PPM  Collected Sample  C | ₹F                          | S        | AMPLE              |                  | STANDARD                   | SOIL DESCRIPTION                                                            | COMMENTS                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|--------------------|------------------|----------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 0-4' 19-1 ]  O-3' No Recovery 3-4.5' Silty Sand (SM)  Grey/tan, Meist, lease, fine grained  4.5-5.0' Sand Y Clay (CL)  ovange/tan, Meist, stiff  S-6' Clayey Sand (SC)  tan/ovange, Moist, dense, fine grained  6-8' Sand (SP)  white/orange, Moist, lease, Medium grained  8-9' No Recovery  q-15' Same as 6-8' wet@ 10'  12-16' 19-4' 4'  15-16' Sandy Clay (CL) Crange/white, wet, Very stiff  End of bering 16'  Water table @ 10' bgs  Water table @ 10' bgs  Water table @ 10' bgs  VAFF 2-4' Nothing 6-7' Cu=14PPM  Callected Sample CJCA-5815-6-7-09C  Well Construction Details 1" Prepacted Screen  Va bag of #2 Sand Screen: 8-18' bgs  Sand: 8-18' bgs  Bentonite: 7-8' bgs  Well Set 6 18' bgs | 0-3' No Recevery 3-4.5' Silty sand (SM) grey/tan, Maist, loose, fine grained 4.5-5.0' Sand Y Clay (CL) orange/tan, Maist, stiff  S-6' Clayey sand (SC) tan/crange, Maist, dense, fine grained 6-8' Sand (SP) White/crange, Maist, loose, Medium grained 8-9' No Recevery 9-15' Same as 6-8' WetWood 10'  12-16' 19-4 4'  15-16' Sand Y Clay (CL) Orange/white, wet, Very stiff  End of bering 16'  What Auger Clears O-5' 695.  Water table @ 10' 695  XMF 2-4' Nothing G-7' Cu-14PPM Zn-20PPM Callected Sample CJCA-5815-6-7-09C Well Construction Details 1" Prepatited Screen 1/2 bag of #2 Sand Screen: 8-18' bgs Bentanite: 7-8' bgs Well Set 6 18' bgs  Willer could not drill deeper than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | RESULTS<br>6"-6"-6"        | MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,          | DRILLING FLUID LOSS,                                                              |
| S-4-8' DP-2 4'  S-6' Clayey sand (sc)  tan/avange, Maist, dense, fine grained  6-8' Sand (sp) white/arange, Maist, loose, Medium grained  8-9' No Re covery  9-15' Same as 6-8' wet@ 10'  15-16' Sandy Clay (CL) Crange/white, wet, Very stiff  End of bering 16'  S-6' Clayey sand (sc)  tan/avange, Maist, dense, tine grained  6-7' Cu-14PPA  2n-20PPA  Callected Sample  CJCA-5B15-6-7-09C  Well construction Details  1" Prepacted Screen 1/2 bag of #2 Sand Screen: 8-18' b95 Sand: 8-18' b95 Bentanite: 7-8' b95  Well Set 6 18' b95                                                                                                                                                                 | S-4-8' DP-2 4'  S-6' Clayey sand (sc)  tam/arange, Maist, dense, fine grained  6-8' Sand (sp) white/arange, Maist, loose, Medium grained  8-9' No Re covery 9-15' Same as 6-8' wet & 10'  15-16' Sandy Clay (cc) Crange/white, wet; Very stiff  End of bering 16'  Sound 16'  Sound 16'  Sound 16'  Sound 16'  Water table & 10' 69s  XRF 2-4' Nothing 6-7' Cu = 14PPM 2n = 20PPM  Callected Sample CJCA-5815-6-7-09C  (JCA-5815-6-7-09C  (JCA- | _                           | o-4' 1   | 19-1               | ,                |                            | 3-4.5' Silty Sand (SM) grey/tan, Moist, loose, fine grained                 |                                                                                   |
| 10 - 8-12'   10 - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10-8-12' DP-3 3 White/arange, Maistilase, Medium grained 8-9' No Receivery  9-15' Same as 6-8' Well construction Details  15-16' Sandy Clay (CL)  Crange/white, wet, Very stiff  End of boring 16'  Driller could not drill deeper than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5-                          | ૫-જ'     | DP-2               | 4'               |                            | 5-6' Clayey sand (sc)<br>tanlorange, Moist, dense,                          | i e                                                                               |
| Lister Sandy Clay (CL)  Well Construction Details  Clange/white, wet,  Very stiff  End of boring 16'  Screen: 8-18' b95  Sand: 8-18' b95  Bentonite: 7-8' b95  Well set 6 18' b95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15-16' Sandy Clay (CL)  Orange/white, wet,  Very stiff  End of boring 16'  End of boring 16'  Well construction Details  1" Prepacked Screen  1/2 bag of # 2 Sand  Screen: 8-18' b95  Sand: 8-18' b95  Bentonite: 7-8' b95  Well set 6 18' b95  Well set 6 18' b95  Driller could not drill deeper than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 -                        | 8-12'    | OP-3               | 3'               |                            | 6-8' Sand (SP) white/crange, Maistilesse, - Medium grained 8-9' No Recevery | 6-7' CU= 14 PPA<br>Zn= 20 PPA<br>Collected Sample<br>CJCA-SBIS-6-7-09C            |
| End of boring 16'  Screen: 8-18' b95  Sand: 8-18' b95  Bentonite: 7-8' b95  Well set 6 18' b95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | End of boring 16'  Screen: 8-18' b95 Sand: 8-18' b95 Bentonite: 7-8' b95 Well set 6 18' b95  Driller could not drill deeper than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>15-                    | 12-16'   | 0P-4               | Ч                |                            | Wet@10'<br>15-16' Sandy Clay (CL)<br>Orange/white, Wet,                     | Well construction Details I" Prepacked Screen 1/2 bag of # 2 Sand                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _ dvill deeper than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | **       |                    | IV 4             | <b>1 1 1 1 1 1 1 1 1 1</b> | End of boring 16'                                                           | Screen: 8-18' 695<br>Sand: 8-18' 695<br>Bentanite: 7-8' 695<br>Well set 6 18' 695 |

| CH | 21 | 71- | 411 | 1 |
|----|----|-----|-----|---|
|    |    |     |     | - |

PROJECT NUMBER BORING NUMBER OF 377812 SB16/TW09 SHEET 1

| PROJEC                      |         |                    |                  | CJUA                                              |                                                                                                                             | Camp Lejeune, NC                                                                                 |
|-----------------------------|---------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| ELEVAT                      | 2000    |                    | SWY              | PMENT HA                                          | & DPT W GROPPO'N GGOD M                                                                                                     | U                                                                                                |
| WATER                       |         |                    |                  |                                                   | START 1030 7/25/09 FINISH 1130                                                                                              | 7/25/09 LOGGER 5 Bevily                                                                          |
| §E                          |         | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                         |
| DEPTH BELOW<br>SURFACE (FT) | NTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION             |
| -                           | 0-4     | 26-1               | 3                |                                                   | 0-1 No Recovery<br>1-4 Clayery Sand (SC), fan,<br>moist, v. dense, vfg                                                      | xef 2-41: ND -                                                                                   |
| ち —<br>-                    | 4-8     | 21-5               | 4                |                                                   | dry , loose vfg, few orange -                                                                                               | XRF 4-6': ND                                                                                     |
| (o =                        | 8-12    | -D6-3              | 3                |                                                   | 95-12 Sand w/Silt (SPSM), lt -<br>ovange wet, m. dense, vfg -<br>12-15 No Recovery<br>15-16 SAA (9.5-12)                    | evadera 10' bgs                                                                                  |
| 15 -                        | 12 - 16 | 16-11              | ١                |                                                   | -                                                                                                                           | [C5CA-5616-2-7-09C]                                                                              |
| 25 -                        |         |                    | *1               |                                                   | Boring completed @ 16 bgs                                                                                                   | Well construction:  6-16': 1" screen -  0-6': 1" PVC caying -  5-16' Sand  1-5': Bentonite chips |
| -                           |         |                    |                  |                                                   |                                                                                                                             | PVC Stickup ~ 1.5                                                                                |

WATER LEVELS \_\_\_\_\_

PROJECT NUMBER BORING NUMBER 377812 3617 SHEET OF \ SOIL BORING LOG

LOCATION Camp Legeurs, NX PROJECT \_\_\_\_ CJU-11 CJCA DRILLING METHOD AND EQUIPMENT KAS DET W/GOODS 54DT START 1440 7/28/09 FINISH 1500 7/28/09 LOGGER 5 BEVULLE

| ŠF                          | SAMPLE   |                    | STANDARD         | SOIL DESCRIPTION                                  | COMMENTS                                                                                                                    |                                                                                      |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | ٥-ч      |                    | 7                |                                                   | 0-2 Sutty Sand (SM), d gray, -<br>dense, mout, ofg -<br>2-5- Clayery Sand (SC), tan,                                        | XRF 2-4: NE                                                                          |
| 5-<br>-                     | 4-8      | 06.5               | 4                |                                                   | dry. V derse _                                                                                                              | KRF 4-61: NF                                                                         |
| lo -                        |          |                    |                  |                                                   | Goving completed @ 8' bas -                                                                                                 |                                                                                      |
| -                           |          |                    |                  |                                                   |                                                                                                                             |                                                                                      |
| -                           |          |                    |                  |                                                   |                                                                                                                             |                                                                                      |
| -                           |          |                    |                  |                                                   |                                                                                                                             | -                                                                                    |
|                             |          |                    |                  |                                                   |                                                                                                                             | -                                                                                    |

| CI | 12 | M | HI | 11 |
|----|----|---|----|----|
|    |    |   |    |    |

PROJECT NUMBER
377812

BORING NUMBER
5618 TW10 SHEET | OF

|              |          | OD AN              | EQUIF            | MENT UA                            | 8 DPT W/ Geoprobe 6610                                                                                                       | log la 50 a ili                                                                      |
|--------------|----------|--------------------|------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 10000        | EVELS    |                    | 5' bg            | 5                                  | START 1310 7/25/09 FINISH 145                                                                                                | 0 1/25/0 LOGGER - 3 152001.                                                          |
| F            |          | SAMPLE             | -                | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                             | COMMENTS                                                                             |
| SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY.<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| J. 1         | 0.4      | D\$-1              | 3                | # N                                | 6-1 No Recovery<br>1-3 Peat (Pt), abrown, mount_<br>saity sand whom                                                          | ike 2-41 : ND                                                                        |
| ; -          | 4-8      | DE-2-              | Ч                |                                    | gray wlorange, moist, m -<br>dense, vfg                                                                                      | KRF 4-5': ND<br>Water @ 5' bgs                                                       |
| -            |          |                    |                  |                                    | 11-12 Silty Sand (SM), daray                                                                                                 | Sample.                                                                              |
| o —          | 8-12     | ₽6-3               | ч                |                                    | wet, on dense, little day -                                                                                                  | (C)CA S618-2-5-09C                                                                   |
| -            |          |                    |                  |                                    | _                                                                                                                            |                                                                                      |
| -            | ę.       |                    |                  |                                    | boing completed @ 12/1991 -                                                                                                  | Well construction:                                                                   |
| , C          | 8        |                    |                  |                                    | _                                                                                                                            | 2-12' 1" screen                                                                      |
| 5 –          |          |                    |                  |                                    |                                                                                                                              | 0-2" 1" PVCcasing                                                                    |
|              |          |                    |                  |                                    |                                                                                                                              | 1-12': Sand                                                                          |
| -            |          |                    |                  |                                    | ia.                                                                                                                          | 0-11: Bentonte chips                                                                 |
| -            |          |                    |                  |                                    | -                                                                                                                            | PVC Stickup ~ 1'                                                                     |
| o —          |          |                    |                  |                                    | _                                                                                                                            | ,                                                                                    |
|              |          |                    |                  |                                    |                                                                                                                              |                                                                                      |
|              |          |                    |                  |                                    | _                                                                                                                            | -                                                                                    |
| H            |          |                    |                  |                                    | -                                                                                                                            | -                                                                                    |
|              |          |                    |                  |                                    | _                                                                                                                            |                                                                                      |
|              |          |                    |                  |                                    | ¥ .                                                                                                                          |                                                                                      |
|              |          |                    |                  |                                    |                                                                                                                              |                                                                                      |

| CH2M | HIL | L |
|------|-----|---|
|------|-----|---|

PROJECT NUMBER
377812 BORING NUMBER
5619 SHEET 1 OF 1

|                             | ION      | Net                | Sur              | CJCA<br>Leved<br>PMENT KA                                     | DRILLING CONTRACTORSRENA CCO                                                                                                         | Camp Lejeune, NC                                                                         |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| WATER                       |          |                    | 7' 120           |                                                               |                                                                                                                                      | 7/27/89 LOGGER 5 Beville                                                                 |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | STANDARD<br>PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL DESCRIPTION  SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | COMMENTS  DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION |
| -                           | 0-4      | D6-1               | 3                |                                                               | 0-1 No Recovery<br>1-6 Sand (SP). It gray, dry, -<br>loose, vtg, trace Silt                                                          | KRF Z-4': NP -                                                                           |
| 5 -                         | 4-8      | 265                | 4                |                                                               | 68 Sand w/sitt (Sr.sm), It _<br>ovange, wet, m. dense _                                                                              | XXF 4-6: 100 -                                                                           |
| 10 -                        |          |                    |                  |                                                               | Boring completed @8' bgs -                                                                                                           | Sample:<br>[CJCA-SB19-2-7-09C]                                                           |
| -                           |          |                    |                  |                                                               |                                                                                                                                      | -                                                                                        |
|                             |          |                    |                  |                                                               | -                                                                                                                                    |                                                                                          |

| CH | 121 | VIII | -11 | 11 |
|----|-----|------|-----|----|
|    |     |      |     |    |

PROJECT NUMBER
3717812

BORING NUMBER
5020 / TWII SHEET | OF I

| PROJEC                      | т        | (10.               | 11,              | (JCA                               | LOCATION                                                                                                                    | amp legeune, NC                                                                      |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| ELEVAT                      |          |                    | 9                |                                    | DRILLING CONTRACTOR SAEDACLO                                                                                                | 1 3                                                                                  |
|                             |          |                    | -                | bas                                | 3 DPT W/ Geoprobe 6610 DT                                                                                                   | 710010                                                                               |
| WATER                       |          | -                  |                  | ng)                                | START 1600 7/25/09 FINISH 165                                                                                               | 175/09 LOGGER - Deville                                                              |
| §€                          |          | SAMPLE             |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | 0-4      | .06-1              | 4                |                                    | 0-2 Silty Sand (SM), a gray, -<br>moist, work, some OM, ifg -<br>2-4 Sandy Clay (CL), gray w/                               | XEF 2-4' NO -                                                                        |
| 5-                          | 4-8      | 702                | 4                |                                    | orange, moist, Stiff, vfg - 4-11 Sand (SP). It gray, dry,                                                                   | KRF 4-6' ATO                                                                         |
| -                           |          |                    |                  |                                    | @95'.                                                                                                                       | -                                                                                    |
| 10 -                        | 8-12     | D€-3               | Ч                |                                    | ovange, wet, dense, vfg _                                                                                                   | water@ 9.5' bas                                                                      |
|                             | 12-16    | DF.4               | 4                |                                    | 15-16 Sandy Clay (CL), d.gray, -<br>wet, soft, vfg, low plasticity                                                          |                                                                                      |
| 15 -                        |          |                    |                  |                                    | 16-20 No Recovery                                                                                                           | CJCA-5620-2-7-09C -                                                                  |
| -                           | 16-20    | DR-5               | 0                |                                    |                                                                                                                             | CJCA-56205-2-7-096                                                                   |
| 20-                         |          |                    |                  |                                    |                                                                                                                             |                                                                                      |
| -                           |          |                    |                  |                                    | Boring completed@ 20' bgs -                                                                                                 | Well construction -                                                                  |
| -                           |          |                    |                  |                                    | -                                                                                                                           | 0.8" 1" PVC caring -                                                                 |
| -                           |          |                    |                  |                                    | l-                                                                                                                          | 7-18: Sand -                                                                         |
| -                           |          |                    |                  |                                    |                                                                                                                             | G-7' Bentonite chips                                                                 |
|                             |          |                    |                  |                                    | -                                                                                                                           | PVC Studiup: ~1.5"                                                                   |
| _                           |          |                    |                  |                                    | -                                                                                                                           |                                                                                      |

| PROJECT NUMBER<br>377812 | BORING NUMBER   | SHEET \ | OF \ |
|--------------------------|-----------------|---------|------|
|                          | SOIL BORING LOG |         |      |

PROJECT \_\_\_\_\_CTO-11 CJCA Legenne, NC Camp LOCATION -ELEVATION Not surveine d DRILLING CONTRACTOR \_ SAEDA (CO DRILLING METHOD AND EQUIPMENT HAS DOT W/ GEODROGE 54 DT START 1130 7/28/09 FINISH 1140 7/28/09 LOGGER -5 Beville WATER LEVELS \_\_\_\_ STANDARD PENETRATION TEST RESULTS DEPTH BELOW SURFACE (FT) SAMPLE SOIL DESCRIPTION COMMENTS RECOVERY (FT) NUMBER AND TYPE DEPTH OF CASING, DRILLING RATE, SOIL NAME, USCS GROUP SYMBOL, COLOR, NTERVAL MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION 6"-6"-6" MINERALOGY (N) 0.3 Clayery Sand (SC) tan dry ... 1-90 0-4 XXF 2-4" NX 3-8 Sand (SP), It gray, dry, Loose, Ag XRF 9-6" NR 5 XXF 6-7 : PUR 4 DE-2 4-8 water @ 7' bas Jample: CJCA-5621-2-7-09C W

PROJECT NUMBER
377812

BORING NUMBER
5622 | TW12 SHEET | OF I

| PROJEC                      | т_(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TO-1               | 1 (              | JCA                                               | LOCATION                                                                                                                    | amp legennes Ni                                                                      |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| ELEVAT                      | COLUMN TO A STATE OF THE PARTY | -                  | SULLVE           | Y                                                 | DRILLING CONTRACTOR SAEDACCO                                                                                                | , J                                                                                  |
| DRILLIN                     | G METH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                  | MENTH                                             | A & DPT w/ Geographe (dol)                                                                                                  | -1051                                                                                |
| WATER                       | LEVELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 10' ba           | 5                                                 | START 0830 7/25/09 FINISH 0956                                                                                              | 1126/09 LOGGER -) Beville                                                            |
| <u></u> }∈                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | * D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                  |                                                   | 0-0.5 No Recovery                                                                                                           | -                                                                                    |
|                             | 0-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P6-1               | 3.5              |                                                   | 05-15 Peat (Pt), d. brown, moist<br>whilt & day, some OM -                                                                  | XCF 2-41-NA                                                                          |
| 5 -                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                  |                                                   | 1.5.4 Clayey Sand (SC), d.tan,                                                                                              | KRF 4-6'- Pb= 13                                                                     |
|                             | 4-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26-5               | 3.5              |                                                   | - Show in , and dish, and in                                                                                                | LEF 6-7'-96=11                                                                       |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                  |                                                   | loose-m. dense, trace sitt -                                                                                                |                                                                                      |
| 10 -                        | 8-13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DP-3               | 4                |                                                   | 9.5-17.5 SAR w/more sut, wet                                                                                                | mater @ 10, pdz                                                                      |
|                             | 12-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DP-4               | 1 14             |                                                   | 14. orange, wet, m. dense, vfg = 19.5-20 Silty Sand (Sm),                                                                   | -                                                                                    |
| 15 -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                  |                                                   | digray, wet, dance, utg                                                                                                     | _                                                                                    |
|                             | 11-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D8-5               | Д                |                                                   | frace clony                                                                                                                 | -                                                                                    |
| 20 -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                  |                                                   | -                                                                                                                           | -                                                                                    |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                  |                                                   | Boring completed @ 20' bgs.                                                                                                 | Well construction: _<br>8-18': 1" Screen -                                           |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                  |                                                   |                                                                                                                             | 0-8' i" PVC caring -                                                                 |
|                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                  |                                                   |                                                                                                                             | 7-18: Sand -                                                                         |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                  |                                                   |                                                                                                                             | 6-7 Bentonte chips -                                                                 |
|                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                  |                                                   |                                                                                                                             | prostickup. ~1.5'                                                                    |
|                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                  |                                                   |                                                                                                                             | Sample:<br>CTCA-9622-4-7-090                                                         |

PROJECT NUMBER
317812

BORING NUMBER
5623

SHEET | OF |

| ROJEC                       | т        | GT0-11             | C                | sca                            | LOCATION CO                                                             | ump Lejeune, NC                                         |
|-----------------------------|----------|--------------------|------------------|--------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|
| ELEVATION NOT SOLVENING ALL |          |                    |                  |                                | DRILLING CONTRACTOR SAEDACLO                                            | 1 J                                                     |
|                             | G METH   |                    | EQUIF            |                                | START 150 7-28-09 FINISH 1205                                           | 7-23-09 LOGGER 5. Perille                               |
|                             |          | SAMPLE             |                  | STANDARD                       | SOIL DESCRIPTION                                                        | COMMENTS                                                |
| DEPTH BELOW<br>SURFACE (FT) | 20       |                    | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS, |
| SURF                        | INTERVAL | NUMBER<br>AND TYPE | (FT)             | 6"-6"-6"<br>(N)                | OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY                           | TESTS AND INSTRUMENTATION                               |
| -                           |          |                    |                  |                                | 0-1 No Revovery                                                         |                                                         |
| -                           | 0.4      | 1-90               | 3                |                                | 1-4 Silty Sand (SM), daray, -<br>mout to each, m. dense, -              | KRF 2-31-101-                                           |
|                             |          |                    |                  |                                | vfa vfa                                                                 | water @ 3.5' bas                                        |
| 5-                          |          |                    |                  |                                | 4-5 No Recovery -                                                       |                                                         |
|                             | 4-8      | DR-2               | 3                |                                | 5-7 SAA (1-4)                                                           |                                                         |
| 10                          |          |                    |                  |                                | 7-8 Silty Sand Han, wet.                                                |                                                         |
|                             |          |                    |                  |                                | v. dense-dense, vfg: little day                                         |                                                         |
| ja -                        |          |                    |                  |                                | V. dence dence, vigi and say                                            | 2                                                       |
|                             | 1        |                    |                  |                                | Boring completed @ 8' bgs                                               | <u>u)</u>                                               |
|                             |          |                    |                  | 1                              |                                                                         |                                                         |
|                             | 1        |                    |                  |                                | -                                                                       |                                                         |
| -                           | 1        |                    |                  |                                |                                                                         |                                                         |
|                             |          |                    |                  |                                |                                                                         |                                                         |
|                             | -        |                    |                  |                                | -                                                                       |                                                         |
|                             | -        | -                  |                  |                                | -                                                                       | -                                                       |

| CH | 21 | VII- | 41 | LL |
|----|----|------|----|----|
|    |    |      |    |    |

PROJECT NUMBER

SB2H /TW13 SHEET | OF 1

377812 SOIL BORING LOG

| PROJECT                     | 10-1               | 1 (              | JCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             | Camp Legeuns, NC                                                                                        | _    |
|-----------------------------|--------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|
| ELEVATION _                 |                    | SMIN             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DRILLING CONTRACTOR SAEDACO                                                                                                 | 9                                                                                                       | _    |
|                             |                    | 40               | A CONTRACT OF THE PARTY OF THE | A & DPT W/ Geoprobe Go 10 DT                                                                                                | 7/00/-0 5 0-11.                                                                                         | _    |
| WATER LEVELS                | S                  | 1 1              | ) as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | START 0925 7/24/09 FINISH 1025                                                                                              | LOGGER J WANTE                                                                                          | _    |
| ð£                          | SAMPLE             |                  | STANDARD<br>PENETRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                |      |
| DEPTH BELOW<br>SURFACE (FT) | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                    |      |
| 0-4                         | 26-1               | 3                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gray, dry, vidense, vtg -                                                                                                   | XRF 2-4": Zn 299                                                                                        | - 1  |
| 5 - 4-8                     | hr-2               | 2-1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.5-6 Sand w/Silt (SP SM),<br>gray w/orange, dry, loose-m<br>dense, fg-vfg                                                  | XRF 4-6': ND                                                                                            |      |
| 10 - 8-12                   | . DP-3             | 1.5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6-9 SAR, Ltgray, wet -<br>9-95 Silty Sand (SM), black, wet, m. dense, vfg, tottle day                                       | water @ 7' bgs                                                                                          | -    |
| 15 - 12-16                  | DP.41              | ч                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.12 No Recovery<br>12-155 Sand (SP),<br>tan, wet, on dense, fg, little                                                    | Sample:<br>[CSCA-5624-2-4-09C]                                                                          | -    |
| 20-                         |                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Silt  15.5-16 Silty Sand (SM), d.gray, wet, v.dame, vfg: trace clay  Boring complete @ 16' logs.                            | Uell construction info<br>5-15': I" screen<br>0-5'' I" PVC casing<br>4-15' Sand<br>0-4' Bentonite chips | -    |
|                             |                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             | PVC strukup. ~1.3'                                                                                      | 10 m |

PROJECT NUMBER
317812 BORING NUMBER
3625 SHEET 1 OF 1

| PROJECT CTO-11 CSCA              |                     | LOCATION _C   | amo Levenin    | I NC       |
|----------------------------------|---------------------|---------------|----------------|------------|
| ELEVATION Not surveyed           | DRILLING CONTRACTOR |               | ,              |            |
| DRILLING METHOD AND EQUIPMENT HA |                     |               |                |            |
| WATER LEVELS                     | START 1320 7/29     | M FINISH 1330 | 7/28/09 LOGGER | 5. Beville |

| €F                          | 3        | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
|                             | 0-4      | 26-1               | 4                |                                                   | 0-4 Suty Sand (SM), tan, -<br>moist, dense, vfg -<br>4-8 Sandy Clay (CL), gray -<br>wlorange, moist, vistiff, vfg           | XXF 2-41: OVF                                                                        |
| 5-                          | 4-8      | DE-2               | 4                |                                                   | wlorange, moist, vistiff, vig_                                                                                              | XRF 4-6": NX<br>XRF 6-7": NR                                                         |
| 10-                         |          |                    |                  |                                                   | Boring computed @ 8'bgs                                                                                                     | Sample:<br>[C5CA-5625-6-7-09C]                                                       |
|                             | -        |                    |                  |                                                   |                                                                                                                             | -                                                                                    |

PROJECT NUMBER
377812

BORING NUMBER
5626/TW14 SHEET | OF 1

| PROJECT     | CTD-11 CJCA          |                         | LOCATION CAM | p Lejeune NC |  |
|-------------|----------------------|-------------------------|--------------|--------------|--|
| ELEVATION _ | Not surveyed         | DRILLING CONTRACTOR _   |              | 1 3          |  |
| DRILLING ME | THOD AND EQUIPMENT _ | HA & DPT W/ Geoprobe Go | 610 DT       |              |  |

| il' bas          | START 1655 7/23/09 FINISH 5845                                             | 7/24/09 LOGGER 5 Beville                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DENET            |                                                                            | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RECOVERY<br>(FT) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY    | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                  |
| 1.5              | 2.5-6 Clayery Sand (SC), gray -<br>worange, moust, m.dense, vfq            | XRF 2-4": None detected                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ц                | 6-7 Sandy Clay (CL), gray -<br>wlorange moist, Stiff<br>8-95 No Recovery   | XRF 6-71 : RS= 13                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.5              | 95-12 Sand W/Sut (SP-SM),<br>gray, wit; on dense, vfg-fg                   | water@111 bgs                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                | 14-18 SAA (9.5-12)<br>18-20 Silty Sand (SM), d gray;<br>wet, m. dense, vfg |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4                |                                                                            | Sample:<br>[CSCA-SB26-4-7-09C]                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | Boring completed @ 20 bgs                                                  | well construction:                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                                                                            | 0-10': I" PVC caying<br>9-20: Sand<br>8-9': Bentonite chips<br>PVC Stickup ~ 1'                                                                                                                                                                                                                                                                                                                                                                       |
|                  | STANDAI PENETRAL TEST RESULT  6°-6°-6 (N)                                  | STANDARD PENETRATION TEST SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  1.5  0-2.5 No recovery  2.5-6 (Lagry Sand (SC), gray wistangs, mout, m.dense, vfg  6-7 Sandy (Lay (W), gray wistangs, mout, stiff  8-9.5 No Recovery  9.5-12 Sand wish (St-Sm),  gray, wit; m dense, vfg-fg  12-14 No Recovery  14-18 SAA (9.5-12)  18-20 Sidty Sand (Sm), d gray;  west, m. dense, vfg |

PROJECT NUMBER

BORING NUMBER

SHEET

OF

| PROJEC                      | т       | CTO.               | 11 (             | SICA                        | LOCATION                                                                                                                    | amp Legennes NC                                                                |
|-----------------------------|---------|--------------------|------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| ELEVATI                     |         | 201012             |                  | veged                       | DRILLING CONTRACTOR SAEDACLO                                                                                                | - ν - δ                                                                        |
|                             |         |                    | EQUI             | PMENT HA                    | 3 DFT W/Geoprobe 54 DT<br>START 1340 7/28/09 FINISH 1350                                                                    | 7/2/M 5 6 . 11                                                                 |
| WATER                       | LEVELS  |                    | =                | 1                           | START 1910 1/28/09 FINISH 1350                                                                                              | 7/28/M LOGGER 5 Beville                                                        |
| Ş€                          | -       | SAMPLE             |                  | STANDARD<br>PENETRATION     | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                       |
| DEPTH BELOW<br>SURFACE (FT) | NTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6" | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION |
| 300                         | Z       | ZA                 | 品币               | (N)                         |                                                                                                                             |                                                                                |
| -                           |         |                    |                  |                             | 0-3 Silty Sand (SM), gray.                                                                                                  | -                                                                              |
| -                           | 0-4     | D6-1               | Н                |                             | moit, dense, vfg. trace day-                                                                                                | XRF 2-41: AJR -                                                                |
| -                           | 1       |                    |                  |                             | 3-8 Clayey Sand (SC),<br>gray wlorange, mout,<br>v. Stiff, vfg, trace silt                                                  | -                                                                              |
|                             |         |                    | -                |                             | gray wlorange, mout                                                                                                         | XRF 4-6" NR -                                                                  |
| 5-                          |         |                    | 4                |                             | v. Stiff, vfg, trace get -                                                                                                  |                                                                                |
| -                           | 4-8     | 46.5               | 4                |                             | 3,                                                                                                                          | XRF 6-71: NR                                                                   |
| 1                           | 1       |                    |                  |                             |                                                                                                                             | -                                                                              |
| 1                           |         |                    |                  |                             | Boving completed @ 8' by                                                                                                    | Sample: -                                                                      |
| 10-                         | -       |                    |                  |                             | _                                                                                                                           | (C3CA-5827-4-7-09C) -                                                          |
|                             | -       |                    |                  |                             | -                                                                                                                           | 10091982111010                                                                 |
| 1                           | -       |                    |                  |                             | -                                                                                                                           | -                                                                              |
|                             | -       |                    |                  |                             | -                                                                                                                           | -                                                                              |
|                             | -       |                    | 1                |                             | -                                                                                                                           | 1 -                                                                            |
| -                           | -       |                    |                  |                             | _                                                                                                                           | 1 -                                                                            |
|                             | 1       |                    |                  | 1                           | -                                                                                                                           | 1 -                                                                            |
|                             | 1       |                    |                  |                             | •                                                                                                                           | 1 -                                                                            |
|                             | -       |                    |                  |                             |                                                                                                                             | 1 -                                                                            |
|                             | 1       |                    |                  |                             |                                                                                                                             | 1 1                                                                            |
| -                           |         |                    |                  |                             | _                                                                                                                           | 11                                                                             |
|                             |         |                    |                  |                             |                                                                                                                             | 1 1                                                                            |
|                             | 1       |                    |                  |                             |                                                                                                                             |                                                                                |
|                             |         |                    |                  |                             |                                                                                                                             | ] 1                                                                            |
|                             | 1       |                    |                  |                             |                                                                                                                             | ] 1                                                                            |
|                             |         |                    |                  |                             |                                                                                                                             | ] 7                                                                            |
|                             | 1       |                    |                  |                             |                                                                                                                             | ] 1                                                                            |
|                             |         |                    |                  |                             |                                                                                                                             | ] 1                                                                            |
|                             | ]       |                    |                  |                             |                                                                                                                             |                                                                                |

PROJECT NUMBER
317812 BORING NUMBER
S628 /TW15 SHEET | OF |

| PROJEC                      | TC                | 10-11              | , ()             | CA                              | LOCATIONC                                                                                                                   | amp Lejeune, NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------|-------------------|--------------------|------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELEVAT                      |                   |                    | Sun              |                                 | DRILLING CONTRACTOR SAEVACLO                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             | IG METH<br>LEVELS |                    | DEQUIF           |                                 | * DPT W/ Geographe (6010 DT                                                                                                 | 71:102 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                   |                    |                  |                                 | START 1415 7/23/09 FINISH 1450                                                                                              | a State of the Control of the Contro |
| JE.                         |                   | SAMPLE             |                  | STANDARD<br>PENETRATION<br>TEST | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL          | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | 6*-6*-6*<br>(N)                 | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                           |                   |                    |                  |                                 | 0-1 Peat (Pt) d. brown , dry                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                           | 4-6               | 1.9(1              | ч                |                                 | 5 andy<br>1-7 Clayey Sand (SC), gray -                                                                                      | XRF 2-4 : AS: 12, Pb: 17 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5 -                         |                   |                    |                  |                                 | Worange, moist, v. dense, vfq -                                                                                             | XRF :1-0: None detected -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                           | 4-8               | Df 2               | 4                |                                 | 7-15 Silty Sand (SM) gray. moist, dense, ufg. Nittle day, percent silt decreases ~ 13:                                      | XRE 6-71: AS: 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 -                        | 8-12              | 263                | ٦                |                                 | 15-115 Clayery Sand (Sc), d. gray, -<br>wet, dense, trace gith                                                              | water @ 10' bgs _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15 -                        | 12-14             | 26-4               | 4                |                                 | tan, wet, loose, fg                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                           | 16-20             | 118-5              | ц                |                                 | -                                                                                                                           | Sample -<br>[CJCA-5623-2-4-09C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 -                        |                   |                    |                  |                                 | Borng completed @ 20' bag -                                                                                                 | Well construction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                           |                   |                    |                  |                                 |                                                                                                                             | 8-18': 1" Screen - 0-8': 1" PVC caring - 7-18' Sand _ 6-7': Bentonite chips _ PVC Stukep: ~ 1.5' ags _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

PROJECT NUMBER

BORING NUMBER 5829

74

SHEET | OF |

| PROJECT _ CO-11 CSC           | A     |             |          | LOCATION   | Camo        | Lejeures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10   |
|-------------------------------|-------|-------------|----------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| ELEVATION Not Surveyed        |       | ORILLING CO | NTRACTOR | SAEDALLO   |             | The state of the s | 100    |
| DRILLING METHOD AND EQUIPMENT | THA : | DPT W       | (Geopra) | ae 540T    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| WATER LEVELS -                |       |             |          | 8/19-11-11 | 115 7/28/20 | 1,00000 5 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See it |

| SF           |          | SAMPLE STANDARD SOIL DESCRIPTION |                  |                                                   |                                                                                                                    | COMMENTS                                                                             |
|--------------|----------|----------------------------------|------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE               | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -            | 0-4      | D8-1                             | 3                |                                                   | 0-1 No Recovery -<br>1-82 Sitty Sand (5M), d -                                                                     | XRS 2-41: Pb 15                                                                      |
| 4 -          |          | D8-5                             | 4                |                                                   | gray, mout, little on, -                                                                                           | XXF 4-6": As 9, En 20                                                                |
| - 8          | 4-8      |                                  |                  |                                                   | 2-8 Sandy Clay (SC), gray-<br>wlovange, moist, v. stiff, vtg -                                                     | KRF 6-7: 20:13                                                                       |
| -            |          |                                  |                  |                                                   | Boving completed @ 8' bgg -                                                                                        | Sample:                                                                              |
| -            |          |                                  |                  |                                                   |                                                                                                                    | CJCR-5629-2-7-09C                                                                    |
| _            |          |                                  |                  |                                                   | _                                                                                                                  |                                                                                      |
| 1 1 1        |          |                                  |                  |                                                   | -                                                                                                                  | <u>s</u>                                                                             |
| _            |          |                                  |                  |                                                   | _                                                                                                                  |                                                                                      |
| _            |          |                                  |                  |                                                   | _                                                                                                                  | e.                                                                                   |
| _            |          |                                  |                  |                                                   | -                                                                                                                  |                                                                                      |
| -            |          |                                  |                  |                                                   | -                                                                                                                  |                                                                                      |
| -            |          |                                  |                  | 2                                                 | _                                                                                                                  | ×                                                                                    |

PROJECT NUMBER

317812

BORING NUMBER

5630 / WILL SHEET | OF |

|          | 01.4               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      | LOCATION                                                                                                                    | Camp Legenne, NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | START 1205 7/23/19 FINISH 1240                                                                                              | 7/23/09 LOGGER S.Beville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | SAMPLE             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STANDARD                                                                                             | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEST<br>RESULTS<br>6"-6"-6"<br>(N)                                                                   | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION XRF readwas in com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0-4      | ₽6.1               | ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      | 1-4 Chayey Sand (SC), gray -                                                                                                | XRF 2-41: Zn 21, Pb 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.8      | N-2                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      | 4-7.5 Sandy Clay (CL), gray                                                                                                 | XRF 4-6: 20 19, Pb 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8-12     | DP 3               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      | trace sitt  7.5- 9 Clayer Sand (SC), gray, moist, m. dense little sitt, vfg                                                 | ivater @ 9.5' bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12.16    | D8 4               | ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      | 9-16 Sand with Sitt (SPSM);<br>It gray, wet, M. dense,<br>vfg. fg. Color is d.gray @                                        | Sample:<br>CSCA S630-2-7-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | Boring completed @ 16 bys                                                                                                   | Well construction: 7-17': I" Screen 6-17': Sand 0-7': I" PVC casing 5-6': Bentocide chips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                                             | prostuling ~8"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | INTERVAL           | SAMPLE SAMPLE NUMBER AND TYPE | IG METHOD AND EQUIP<br>LEVELS 4.51<br>SAMPLE<br>VAND TYPE<br>AND TYPE<br>AND TYPE<br>AND TYPE<br>(F) | SAMPLE SAMPLE SAMPLE  STANDARD PENETRATION TEST RESULTS  6'-6'-6' (N)  4-8 N.2 4                                            | DRILLING CONTRACTOR SAEDACLO  IGNETHOD AND EQUIPMENT HAS DET WIGEOPOOL GOLD TO  LEVELS 9.5' bys START 1245 7/13/19 FINISH 1240  SAMPLE STANDARD PENETRATION TESTIS RESULTS SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  MINERALOGY  Del 4 Clayey Sand (SC), gray  Worange, dry to mouth, v.  dence, vfg  4-7.5 Sandy Clay to mouth, v.  dence, vfg  4-7.5 Sandy Clay (CL), gray  Worange moust, v.stiff,  trace silt  7.5 9 Clayey Sand (SC), gray  moist, m. dence, little silt, vfg  9-16 Sand widh Silt (SP-Sm);  It gray, wet, m. dence,  vfg-fg, Color is d.gray @  14-16' |

PROJECT NUMBER
377812 BORING NUMBER
5631 SHEET | OF |
SOIL BORING LOG

| PROJECT .                   |          | 10-11    |                  | ICA                                | LOCATION                                                                                                                                                     | amp Lyeune, NC                                                                       |
|-----------------------------|----------|----------|------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| ELEVATION                   |          |          |                  |                                    | DRILLING CONTRACTOR                                                                                                                                          | *                                                                                    |
| DRILLING N                  | METHO    | D AND    | EQUIF            | MENT HA                            | is DPT w/buprobe                                                                                                                                             | 9 4 11                                                                               |
| WATER LEV                   | VELS _   |          |                  |                                    | START 0930 7/23/09 FINISH 0950                                                                                                                               | 1/23/09 LOGGER - Beville                                                             |
| §F.                         | SA       | MPLE     |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                                                             | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY                                  | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -0                          | -4 D     | 8-2      | 4                |                                    | 0-2 Sitty Sand (SM), gray w/ - ovange, dry, dense, vfg, trace dry, 2-8 Clayery Sand (SC), gray w/ - ovange, mout, v. dense, vfg trace Silt - increased depth | XRF 4-6'- Pb 16 - XRF 6-7'- 22.55                                                    |
|                             |          |          |                  |                                    | Boring completed @ 8' bgs                                                                                                                                    | Jample:<br>CJCA-5631-4-7-09C<br>CJCA-56310-4-7-09C                                   |
|                             |          |          |                  |                                    |                                                                                                                                                              |                                                                                      |

PROJECT NUMBER
377812

BORING NUMBER
5632 / TWIT SHEET | OF 1

| PROJECTCTO:11 CTCA       | LOCATION Camp Lyonne No        |
|--------------------------|--------------------------------|
| ELEVATION _ Not surveyed | DRILLING CONTRACTOR _ SAEDACCO |
|                          | - DPT W/ PaverProbe 9500 VTR   |
| 11/ ha                   | 1115 - 1201                    |

| SF.          | SAMPLE STANDARD PENETRATION |                    |                  |                                                   | SOIL DESCRIPTION                                                                                                              | COMMENTS                                                                             |
|--------------|-----------------------------|--------------------|------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| SURFACE (FT) | INTERVAL                    | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETHATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY   | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
|              | 0-4                         | DP-1               | 3.5              |                                                   | 6 round surface - Pine needles<br>i cleared vegetation -<br>O-1 Peat (Pt), black, dry,<br>Sandy, OM                           | (RF 2-4": Zn 17, As 40, Pb= 10                                                       |
| 5 —<br>-     | 4.8                         | ₩2                 | 4                |                                                   | 1-7 Clayer Sand (SC), gray w/ _<br>orange, dry, v. dense vfg _<br>7-8 Silty Clay (U), gray w/orang                            | XRF 4-6: 2n. 29, As 12, Portuin                                                      |
| 10 -         | 8-12-                       | D8-3               | 3                |                                                   | mout: 5tiff; little sand -<br>8-9 No Recovery -<br>9-11 SAA (7-81)                                                            | water @ 11' bgs                                                                      |
| -<br>-<br>-  | 12:16                       | W.11               | ч                |                                                   | 11-18 Sitty Sand (SM), gray<br>wet, m. dange, trace day, vfg -<br>18-20 Clayey Sand (SC), d<br>brown, wet, loope, vfg, little |                                                                                      |
| -            | 1620                        | D85                | 4                |                                                   | ₹illt                                                                                                                         | Sample:<br>[CJCA-3632-2-7-09C]                                                       |
|              |                             |                    |                  |                                                   | Boring completed @20' bys -                                                                                                   | well construction:<br>9-19: I" Sureen                                                |
| -            |                             |                    |                  |                                                   | -                                                                                                                             | 8-19': Sand<br>7-8': Bentonite chips<br>0-9': 1" PVC casing<br>PVC Stick up ~ 2'     |
| -            |                             |                    |                  |                                                   | _                                                                                                                             |                                                                                      |

| PROJECT NUMBER<br>377812 | BORING NUMBER   | SHEET \ | OF |
|--------------------------|-----------------|---------|----|
| 71                       | SOIL BORING LOG |         |    |

PROJECT CTO-11 CT(A Camp LOCATION ELEVATION NOT SULVEYED DRILLING CONTRACTOR \_ SAEDACIO DRILLING METHOD AND EQUIPMENT HA & DOT W/ GEOPGODE START 0320 7/23/09 FINISH 0845 7/23/09 LOGGER 5 Gentle WATER LEVELS 10' 643 STANDARD PENETRATION DEPTH BELOW SURFACE (FT) SAMPLE SOIL DESCRIPTION COMMENTS RECOVERY (FT) TEST DEPTH OF CASING, DRILLING RATE. NUMBER AND TYPE SOIL NAME, USCS GROUP SYMBOL, COLOR, NTERVAL DRILLING FLUID LOSS, MOISTURE CONTENT, RELATIVE DENSITY TESTS AND INSTRUMENTATION OR CONSISTENCY, SOIL STRUCTURE, 6"-6"-6" (N) MINERALOGY Ground surface - pine needles 1-Small trees 15 XRF 2-41: Zn=19 ppm 0-4 DP-1 0-25 No Rewvery Drilling rate = 41/4 min 2.5- 6 Clayery Sand (SC), tan, dry. v. dense, vfg KRF 4-6: 21= 25 ppm 5 Ph: 19 ppm D8-7 4 6-10 Sandy Clay (CL), gray w 4-8 \* XRF 6-7' Pb: 1700m orange + ved v. stiff, vfq. dry to Drilling vate: 81/10 min moist 10-12 Suty Sand (SM), gray, De 3 8-12 water @ 10' bas 4 10 wet, m. dense, vfg Boring completed @ 12' bgs. sample: CJCA-5833-4-6-09C 15 20

PROJECT NUMBER
377812 BORING NUMBER
5634 SHEET OF

| PROJECT CTO-11 CJCA           |                     | OCATION —   | Camp    | Legenne. NC      |
|-------------------------------|---------------------|-------------|---------|------------------|
| ELEVATION Not Surveyed        | DRILLING CONTRACTOR |             |         | 1                |
| DRILLING METHOD AND EQUIPMENT |                     |             |         |                  |
| WATER LEVELS                  | START 1025 1/27/09  | FINISH 1040 | 7/28/09 | LOGGER 5 Bev 110 |

| ŠF                                      | SAMPLE             |                  | STANDARD SOIL DESCRIPTION                         |                                                                                                                             | COMMENTS                                                                             |
|-----------------------------------------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT)<br>INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                                       | 26-1               | 4                |                                                   | 2-4 Clayey Sand (SC), gray -                                                                                                | xef 2-4: Pb 20                                                                       |
| 5-4-8                                   | ne 2               | 4                |                                                   | 4-8 Silty Sand (SM), orange.                                                                                                | XRF 4-6: ND                                                                          |
| 10                                      |                    |                  |                                                   | Boring completed @ 8' bgs -                                                                                                 | Sample:<br>[CJCA-S634-2-4-09C]                                                       |
|                                         |                    |                  |                                                   |                                                                                                                             |                                                                                      |

PROJECT NUMBER

SB35/TW18

SHEET

OF

#### **SOIL BORING LOG**

| Š€                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                           |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                               |
| -                           | 0-41     | DP-1               | 3                |                                                   | 0-1' No Recovery  1-2' Silty Sand (SM)  black/brown, Moist, loose, -  Medium grained  2-4' Clayey Sand (SC)                 | Hand Auger Cleared 0-5' bgs                                                                                                        |
| 5-                          | 4-81     | DP-2               | 4                |                                                   | White/grey, Moist, dense,<br>fine grained<br>4-7' Sandy Clay (CL)<br>grey with crange Streaks, -<br>Moist, Stiff            | water table at 9,5' bgs                                                                                                            |
| [6 -                        | 8-12     | 10p-3              | ч′               |                                                   | 7-8' Clayey sand (Sc) Same as 2-4' bas 8-10' Silty sand (SM) tan/grey, Maist, loose,                                        | XRF<br>2-4' Pb=19PPM Zn=12PPM<br>AS=10PPM (u: 30PPN<br>4-6' Pb=10PPM Zn=3PPM                                                       |
| ls -                        | 12-16'   | DP-4               | ч′               |                                                   | Medium grained,  Wet 6) 9,5'  10-16' Sand (SP)  gver/crange, Wet, Medium _  dense, Medium grained                           | AS- 2PPM CU= 11 PPM - 6-7' Pb= 3PPM Cu= 7PPM - 2n = SPPM - Cellected Sample CJCA- SB3S - 2-4-09C-MS CJCA-SB3S-2-4-09C-SD - O 0840. |
| -                           |          |                    |                  |                                                   | -                                                                                                                           | Lastruction Details  well set at 19' b9s.  Using 1' prepacted Screen_  1/2 bag # 2 Sand  Screen 9-19' b9s                          |
| -                           |          |                    |                  |                                                   | -                                                                                                                           | Sand 9-19' b95  Bentonite 7-9' b95  Driller could not drill - deeper than 16' b95,  -                                              |

PROJECT NUMBER
377812 BORING NUMBER
5636 SHEET OF

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL BORII                                                              | NG LOG                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|
| JECT CTO-11, CJUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOCATION                                                                | amp lejeune, NC                                         |
| VATION Not Surveyed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DRILLING CONTRACTOR SAEDACCO                                            | , J                                                     |
| LING METHOD AND EQUIPMENT HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | > DPT W/Geoprobe 54DT                                                   |                                                         |
| ER LEVELS 7 bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | START 0905 7/28/09 FINISH 0920                                          | 7/28/09 LOGGER 5 BEVILLE                                |
| SAMPLE STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL DESCRIPTION                                                        | COMMENTS                                                |
| SURFACE (FT)  SURFACE (FT)  SURPLE STANDARD PENETRATION TEST RESULTS  RECOVERY (N)  SURPLE STANDARD PENETRATION TEST RESULTS  OF 4-6-9-6" (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS, |
| NTER SOLUTION OF S | OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY                           | LRF measurements in pom                                 |
| 0 = 24 LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13-3 Sin S 1/500 -1500                                                  | ALL MERCHENERI DE PAN                                   |
| 4 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-3 Sitty Sand (SM), gray, _                                            |                                                         |
| 0-4 80-1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mout, denge, vfg                                                        | XRF 2-4' 100                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-4 Clayey Sand (SC), gray                                              |                                                         |
| ; -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | worange, moist, v. dense, vfg                                           | XXF 4-6' 325, Pb 18                                     |
| 4-8 08-2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-7 Sandy Clay (CL), gray -                                             | WRS 6-7' AS 8                                           |
| 19-017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wlarange, moist, Stiff, ufg -                                           | water @ 7 bag                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-8 Silty Sand (SM), gray,                                              | S. I                                                    |
| s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | wet, in dense, if _                                                     | Sample Company Hart 1991                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 111 0 01                                                              | [CJCA-S036-4-7-09C]                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Borns comploted @ 8, pos.                                               | -                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                       | -                                                       |
| 4 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | -                                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                       | -                                                       |
| ]     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |                                                         |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         | 1                                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         | -                                                       |
| 4 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | -                                                       |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                       |                                                         |
| 7 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         | 1                                                       |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         | - 10                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |                                                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                       | -                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                       |                                                         |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                                                      | -                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                       | -                                                       |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                       |                                                         |

PROJECT NUMBER 377812 BORING NUMBER 5837/TW19

SHEET

OF /

| PROJECT    | CTO-011      |                  | - LOCATION Camp Leseune, NC                |
|------------|--------------|------------------|--------------------------------------------|
| ELEVATION  | Not Surveyed |                  | SEADACCO                                   |
|            |              | Power probe 9500 |                                            |
| WATER LEVE | LS 11,5' 695 | START 7/24/09    | 915 FINISH 7/24/09 0945 LOGGER D. BYCWI/CL |

| ŠF.                         |                                                                                                                                              | SAMPLE |                                                    | STANDARD | SOIL DESCRIPTION                                                                                                       | COMMENTS                                                                                                                         |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | PENETRATION TEST RESULTS  SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY |        | INTERVAL<br>NUMBER<br>AND TYPE<br>RECOVERY<br>(FT) |          | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                   |                                                                                                                                  |
| -                           | 0-41                                                                                                                                         | DP-1   | 2'                                                 |          | 0-2' No Recevery 2-4.5' Silty Sand (SM) Grey/brown, weist, 1005e, Medium grained                                       | Hand Auger cleared<br>0-5' b95                                                                                                   |
| 5 -                         | 4-81                                                                                                                                         | 19-2   | 4'                                                 |          | 4.5-5.5' Clayey sand (SC) - tan/grey, Maist, Medium - dense, fine grained - 5.5-8' Sandy Clay (CL) Grey/crange, Maist, |                                                                                                                                  |
| 10-9                        | 8-12                                                                                                                                         | DP-3   | 2′                                                 |          | Stiff<br>8-10' No Recovery -<br>10-10.5' Sandy Clay (CL) -<br>Some as 5.5-8' -                                         | water table @11.5 695                                                                                                            |
| 15 -                        | 12-16                                                                                                                                        | 92-4   | 2                                                  |          | 10.5-11' (layey sand (sc) - Same as 4.5-5.5' -  11-14' Sand (sp) -  White with crange streams  Moist, Medium dense,    | XRF<br>2-4' Pb= 12 PPM<br>Zn= 7 PPM<br>Cu= 17 PPM                                                                                |
|                             |                                                                                                                                              |        |                                                    |          | medium grained.  wet at 11.5'  14-16' No Receiry                                                                       | U-6' Pb= 73 PPM<br>ZN= S PPM<br>CU=12 PPM AS= 2 PPM<br>6-7' Pb= 123 PPM<br>AS= 31 PPM                                            |
| 20-                         |                                                                                                                                              |        |                                                    | *        | Oriller could not fush<br>further with hecovery<br>End of Boring Log 16'                                               | Zn = 17 ppM<br>Cu = 43 ppM<br>well construction                                                                                  |
|                             |                                                                                                                                              |        |                                                    |          | Collected Sample<br>CJCA-5837-6-7-09C<br>@ 0950                                                                        | set well Tw19 using 1" pre facted screen I bag cf Sand Screen; 8-18' bgs Sand: 8-18' bgs Bentonite: 6-8' bgs Well set at 18' bgs |
| -                           |                                                                                                                                              |        |                                                    |          | _                                                                                                                      |                                                                                                                                  |

WATER LEVELS 1/A

PROJECT NUMBER 377812 BORING NUMBER

SHEET

OF /

#### SOIL BORING LOG

START 7/24/00 0845 FINISH 7/24/09 0850 LOGGER D. 138 CLUS /CLT

| PROJECT     | CTO      | 7-011    |                     | LOCATION | Cant | Leseune, NC |  |
|-------------|----------|----------|---------------------|----------|------|-------------|--|
| ELEVATION _ | Not      | Surveyed | DRILLING CONTRACTOR |          |      |             |  |
| DRILLING ME | THOD AND |          | verprobe 9500 VTK   |          |      |             |  |

DEPTH BELOW SURFACE (FT) SAMPLE STANDARD PENETRATION SOIL DESCRIPTION COMMENTS RECOVERY (FT) TEST NUMBER AND TYPE SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY DEPTH OF CASING, DRILLING RATE. NTERVAL DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION OR CONSISTENCY, SOIL STRUCTURE. 6"-6"-6" (N) MINERALOGY No Recevery 0-21 Hand Auger Cleared 2-3' Silty Sand (SM) 0-5' 695 2' 0-41 01-1 Black, weist, logse, Medium grained 3-5.5' Cluyer Sound (SC) light everylaringe, Moist, Medium dense, fine grained 5 4-81 11-2 5.5-8' Sandy Clay (CC) light grey with crange Streats, Moist, Stiff End of Boving 8' Collected Sample CJCA-5838-2-4-09C @6850 XRF Pb= 173 PPM ZN= 105 PPM AS = 10 PPM (u = 79 PPM 4-6' Pb= 73PPM 2n= 21 PPM AS= 12 PPM Cu= 23 PPM 6-7' Pb = 3c PPM 2n = 18 PPM AS = > PPM Cu= 17 PPM

PROJECT NUMBER 377812

BORING NUMBER
SB 39/TW 20 SHEET

OF !

#### SOIL BORING LOG

PROJECT CTO-OIL

LOCATION CAMP Lejeune, NC

ELEVATION Not Surveyed DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT Power Probe 9500 UTR

WATER LEVELS 10'695 START 7/23/69 (640 FINISH 7/23/69 1700 LOGGER D. Brown / CLT

| 8F                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                            |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                |
| -                           | 0-41     | 09-1               | 4'               |                                                   | 0-0.5 Silty Sand (SM) brown/black, Moist, Medium clense, Medium grained 0.5-1.5' clayer Sand (Sc) light grey/crange, Moist, | Hand Auger Cleared<br>0-5' b95,                                                                     |
| 5 –<br>-<br>-               | 4-8'     | DP-2               | ų'               |                                                   | dense, fine grained<br>lis-7' Sandy Clay (CL) —<br>grey/black, Moist, Stiff -<br>7-8' Clayey Sand (SC) —                    |                                                                                                     |
| 0_                          | 8-12     | DP-3               | ų′               |                                                   | light grey/white, Mcist, Medium dense, wedium grained. 8-12' Silty Sand (SM) white/grey, Mcist, Icose, Medium grained.      | Water touble @ 10' 695  XAF 2-4' Pb=7PPM As=1PPA                                                    |
| -<br>-<br>- کا              | 12-16    | рр-ч               | 3'               |                                                   | 12-13' No Recovery 13-14' Clayey Sand (Sc) white/grey, wet, Stiff                                                           | 2n=12PPM<br>4-6' Pb= 3PPM As=2PPM<br>Cu=12PPM<br>6-7' Cu= 15 PPM<br>Pb= 2 PPM                       |
| -                           |          | *1                 |                  |                                                   | 14-16' Sand (SP) Grey, wet, lcose, Medium grained.                                                                          | well Construction For CJCA - Tw 20 well set at 17' b95 using 1" pre packed screen Screen: 7-17' b95 |
| -                           |          |                    |                  |                                                   | Collected Sample  CJCA-5B39-2-4-096  @ 1700                                                                                 | Sand: 6.5-17' bgs Bentonite: 4.5-6.5' bgs Used I bag of Sand.                                       |

PROJECT NUMBER BORING NUMBER 377812 SHEET OF (

| PROJECT CTO-II CJCA           | LOCATION                     | Camp Legenne, NC             |
|-------------------------------|------------------------------|------------------------------|
| ELEVATION (Vot Surveyed       | DRILLING CONTRACTOR SAEDACCO |                              |
| DRILLING METHOD AND EQUIPMENT |                              |                              |
| WATER LEVELS                  |                              | 00 7/27/09 LOGGER S. BENILLE |
| SAMPLE STAN                   | IDARD SOIL DESCRIPTION       | COMMENTS                     |

| 3                   |          | SAMPLE             |                  | STANDARD                                   | SOIL DESCRIPTION                                                                          | COMMENTS                                  |
|---------------------|----------|--------------------|------------------|--------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------|
| SURFACE (FT)        | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6" | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION      |                                           |
| S                   | Z        | ZA                 | H.F.             | (N)                                        | MINERALOGY                                                                                | KRF measurements in ppm                   |
|                     | 0-4      | 761                | 3                |                                            | 0-1 No Recovery<br>1-2 Clayer Sand (Sc), gray, -<br>moist, dense, vfg -                   | KRF 2-4" ND                               |
| 5 <del>-</del><br>- | 4-8      | DP-2               | 4                |                                            | 2-7 Sandy Clay (CL), gray -<br>wlorange, mour, stiff, vfg -<br>7-8 Sitty Clay (CL), gray. | XRF 4-6 Za19, 1014<br>XRF 6-71 Za14, Pb23 |
| 10                  |          |                    |                  |                                            | moist, m. Stiff, trace Sand -                                                             | Sample:                                   |
| -                   |          |                    |                  |                                            | -                                                                                         |                                           |
|                     |          |                    |                  |                                            |                                                                                           |                                           |
| -                   |          |                    |                  |                                            |                                                                                           |                                           |
| -                   |          |                    |                  |                                            | -                                                                                         |                                           |
|                     | -        |                    |                  |                                            |                                                                                           | -                                         |
|                     | +        |                    |                  |                                            |                                                                                           | -                                         |

PROJECT NUMBER 377812 BORING NUMBER

5841/TW21 SHEET

OF

#### SOIL BORING LOG

CTO-Oll PROJECT

SAEDACCO

Camp Lejeune, NC

Not Surveyed \_ DRILLING CONTRACTOR \_

DRILLING METHOD AND EQUIPMENT POWER Probe 9500 UTR
WATER LEVELS 10.5' 695 START 7/23/09 1500

START 7/23/09 1500 FINION 7/23/09

|                             | LEVELS   |                    |                  | 1                                  |                                                                                                                             | 19 193 LOGGER P. DICUM/CLT                                                                                                     |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| ØE                          |          | SAMPLE             |                  | STANDARD PENETRATION               | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                       |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                           |
| -                           | оч'      |                    | 3'               |                                    | 0-1' No Recovery  1-2' Silty Sand (SM)  brown/black, Moist,  medium dense, medium                                           | Hand Auger cleared<br>0-5' bgs                                                                                                 |
| 5 -<br>-                    | ų-8'     | 09-2               | 4'               |                                    | grained.  2-5' Clayer sand (SC)  lightgrey/moist, dense,  Medium grained,  5-9' Sandy Clay (CL)                             | Water table @ 10.5' bgs                                                                                                        |
| 0 -                         | 8-12     | DP-3               | 4'               |                                    | 9rey/crange, Moist,<br>Stiff<br>9-11' Clayey Sand (sc)<br>grey/white, Moist, dense,<br>Medium grained                       | water table of 1013 bys                                                                                                        |
| 5 –                         | 12-16    | DP-4               | 41               |                                    | ll-16' silty sand (5M) grey/white, wet, loose, - Medium grained.                                                            | XRF and low                                                                                                                    |
| -                           |          |                    |                  |                                    | -                                                                                                                           | RRF<br>2-4' Cu= 1c PPM<br>4-6' Ph= 1c PPM As=4 PPM<br>Cu=17 PPM Zn=12 PPM<br>6-7' Pb=3 PPM As=4 PPM<br>Zn=11 PPM Cu=7 PPM      |
| -                           |          |                    |                  |                                    | Collect Sample -<br>CJCA-SB41-4-6-09C -<br>@ 1525                                                                           | well construction Details used I" Pre Packed Screen screen; 6-16' bgs Sand: 6-16' bgs Bentonite: 4.5-6' bgs used I bag of Sand |

PROJECT NUMBER
377812

BORING NUMBER
5642

SOIL BORING LOG

PROJECT CTO-11 CSCA LOCATION Camp Ligiture NC

ELEVATION Not Surveyed DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT HA & DET WI Geograph 54DT

WATER LEVELS START 0815 7/23/09 FINISH CG30 7/28/09 LOGGER 5. Geville

| &F                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| 1-                          | 0-4      | D(-1               | 3.5              |                                                   | 0-05 No Recovery<br>0.5-4 Clayery Sand (SC), gray,-<br>dry, v. danse, vfg                                                   |                                                                                      |
| 5 -                         | 4-8      | N-7                | 4                |                                                   | 4-8 Clay (CL), gray worrage<br>most, v. stiff, trace sult is and                                                            | XRF 4-6' Zn 25, Plo 19<br>XRF 6-7' Zn 26, Plo 22                                     |
| <i>to</i> -                 |          |                    |                  |                                                   | Boring completed @ 8' bgs                                                                                                   | Jample [CJCA-J642-2-7-09C]                                                           |
| -                           | -        |                    |                  |                                                   |                                                                                                                             |                                                                                      |

PROJECT NUMBER
377812 BORING NUMBER
5643/TW22 SHEET OF 1

SOIL BORING LOG

| PROJECT     | CTU-11 | CICA     | LOCATION Camp Lycums N                          | ıc      |
|-------------|--------|----------|-------------------------------------------------|---------|
| ELEVATION _ | Not    | Surveyed | DRILLING CONTRACTOR SAEDA CCO                   |         |
|             |        |          | HA + DET W/ PowerPiuse 9500- VTR                |         |
| WATER LEVE  | LS13   | bas      | START 1555 7/22/04 FINISH 1655 7/22/09 LOGGER 5 | Berille |

| OF.                         | -       | SAMPLE             |                  |                                    | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |  |
|-----------------------------|---------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| DEPTH BELOW<br>SURFACE (FT) | NTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6*-6*-6*<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |  |
| ۵ω                          | =       | Z∢                 | E.F.             | (14)                               | Ga 15 (See See 1)                                                                                                           | KRF measurements in ppm                                                              |  |
|                             | 0-4     | D(-1               | 3                |                                    | Groundsurface- Small regetation  0-1 No recovery  1-4 Sand (SP), tan, dry,  v. dense, vfg-fa                                | XRF 2-41: Zn 18                                                                      |  |
| 5 -                         | 4-8     | Df-2               | 4                |                                    | 4.14 Sandy Clay (CL), gray w/ _<br>ovange, moist, v. stiff, sand _<br>content developes w/depth _                           | XRF 6-7 - 2018, Pb17                                                                 |  |
| - 04                        | 8-12    | 3,63               | 4                | ,                                  | 11-13 Sitty Clay (a), tan, wet<br>m. 5tiff, Some Sand -<br>13-15 Sitty Sand (SM), gray, wet                                 | Sample:<br>(C)(A-SBA3 G-7-09C)                                                       |  |
| (5 -                        | 12-16   | De-4               | ч                |                                    | m. dense, vfg<br>15-17 Sity Sand (SM), black, wet.<br>dense, & Little clay, some<br>wood fragments                          | water @ 13' bgs                                                                      |  |
|                             | 1630    | 26.2               | 4                |                                    | d.gray, wet, little sitt, loose _<br>20:22 Sand w/Sitt (SP SM)<br>gray, wet, loose, vfg -                                   |                                                                                      |  |
| 20 -                        | 20-22   | DP-6               | 2                |                                    |                                                                                                                             |                                                                                      |  |
|                             |         |                    |                  |                                    | Boring completed @ 22' bgs -                                                                                                |                                                                                      |  |
|                             |         |                    |                  |                                    |                                                                                                                             | ž y                                                                                  |  |

PROJECT NUMBER BORING NUMBER 377812 5644 SHEET \ OF \

| PROJECT _   | GO-11    | CJCA       |          |                  | LOCATION     | Camo     | Lejeune, NC        |
|-------------|----------|------------|----------|------------------|--------------|----------|--------------------|
| ELEVATION   | Not      | Surveyed   | DRILL    | ING CONTRACTOR _ |              |          | )                  |
| DRILLING ME | THOD AND | EQUIPMENT_ | HA - DPT | w/ besprobe      |              |          |                    |
| WATER LEVE  | LS       | 7.5' hg    |          | START 0905 7/12  | IDA FINISH O | 20 7/23/ | 1 LOGGER 5 Beville |

| NATER LEVELSSTANDAR         |          |                    |                  | 1                                  | START 0905 7/23/09 FINISH 092                                                                                               | ARPARES CONTROL                                                                      |  |  |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| OF.                         |          |                    |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |  |  |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |  |  |
| -                           | 0-4      | D8-1               | 2.5              |                                    | 0-15 No Recovery<br>15-4 Silty Sand (SM). dgray<br>moist, dense-v.dense. vfg.                                               | ilf 2-41- None detected                                                              |  |  |
| -                           | 4-8      | DR 2               | 4                |                                    | 4-7.5 Suby Clay (CL), gray w/ - orange moist, vfg, tracesand                                                                | XRF 4-6-None detected                                                                |  |  |
| _                           |          |                    |                  |                                    | 7.5-8 Silty Sand (SM), gray, wet, vfg, m. dense                                                                             | XRF 6-7- Pb22, 7,22<br>Sample:                                                       |  |  |
| -                           |          |                    |                  |                                    | Bonny completed @ 8' bgs                                                                                                    | (SCA-SB44-6-7-09C)                                                                   |  |  |
| _                           |          |                    |                  |                                    |                                                                                                                             |                                                                                      |  |  |
| -                           |          |                    |                  |                                    | -                                                                                                                           |                                                                                      |  |  |
| -                           |          |                    |                  |                                    | -                                                                                                                           |                                                                                      |  |  |
| -                           |          |                    |                  |                                    | -                                                                                                                           |                                                                                      |  |  |
| _                           |          |                    |                  |                                    | -                                                                                                                           | 10                                                                                   |  |  |
| -                           |          |                    |                  |                                    |                                                                                                                             |                                                                                      |  |  |
|                             |          |                    |                  |                                    |                                                                                                                             |                                                                                      |  |  |
| -                           |          |                    |                  |                                    | -                                                                                                                           |                                                                                      |  |  |

| <b>H2</b> | MA | ш | 11 |  |
|-----------|----|---|----|--|
|           | W  |   | -  |  |

PROJECT NUMBER
377812 BORING NUMBER
5645/ TW23 SHEET 1 OF 1

| DRILLIN        | ON _ A | Oot Susver | Y                       | DPT W/ Power Probe 9500            | amp Lejeune. NC               |
|----------------|--------|------------|-------------------------|------------------------------------|-------------------------------|
| WATER          |        | -          | )2                      | START 1435 7/22/69 FINISH 1500     | 1/22/09 LOGGER J. Beville     |
| ELOW<br>E (FT) | _      | SAMPLE     | STANDARD<br>PENETRATION | SOIL DESCRIPTION                   | COMMENTS                      |
| ш <u></u>      | _1     | _ w   £    | TEST                    | SOIL NAME LISCS GROUP SYMBOL COLOR | DEPTH OF CASING DRILLING DATE |

| SAMPLE SAMPLE               |          |                    | DENETRATION      |                                                   | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |  |  |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |  |  |
| -                           | 0-4      | D(-1               | 2.5              |                                                   | Ground Surface - Pine needles, _<br>debris from veg cheavance _<br>0-15 No Recovery _                                       | XRF 2-41: 20 21, PbTT                                                                |  |  |
| 5 -<br>-<br>-               | વેશ      | 76.2               | 3                |                                                   | 15 4 Clayey Sand (SC), gray with<br>4.5 No Recovery<br>5.1055ilty Sand (SM), It gray.                                       | range dry, v. danse, vfg<br>XRF 4-5 En 36, Pb 14                                     |  |  |
| -<br>-<br>-                 | 8-12     | B6 3               |                  | -                                                 | wet: M. dense: vfg-fg -  10.5-12 Sand w/(lay (5P-SC): -  gray: wet: dense, vfg-fg -                                         |                                                                                      |  |  |
| -                           |          |                    |                  |                                                   | Boring complete @ 12/bgs -                                                                                                  | iž:                                                                                  |  |  |
| -<br>, –                    |          |                    |                  |                                                   | -<br>-                                                                                                                      |                                                                                      |  |  |
| -                           |          |                    |                  |                                                   | -                                                                                                                           |                                                                                      |  |  |
| -                           |          |                    |                  | я                                                 | -                                                                                                                           |                                                                                      |  |  |
|                             |          |                    |                  |                                                   |                                                                                                                             |                                                                                      |  |  |

| CH | 27 | ML  | -  |   |
|----|----|-----|----|---|
|    | 41 | 715 | 71 | _ |

PROJECT NUMBER
377812

BORING NUMBER
5646

SHEET | OF |

| PROJECT     | (TO-11     | CJCA     |    |                   | LOCATION | Carro     | Leighere | NV.    |
|-------------|------------|----------|----|-------------------|----------|-----------|----------|--------|
| ELEVATION _ | Not so     | wenty    | DI | RILLING CONTRACTO |          |           | 1        |        |
| DRILLING ME | THOD AND E | QUIPMENT |    | DPT W/GEODY       |          |           |          |        |
| WATER LEVE  | 9          |          |    | START 1510        | 167/19 : | cos -16-1 | n4       | 500.11 |

| §F                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
|                             | 0-4      | D&-1               | 3                |                                                   | 0-1 No Recovery<br>1-4 Clayey Sand (SC), gray -<br>Warange, moist, v. dense, for -                                          | KRF 2-41: NO                                                                         |
| 5 -                         | 4.8      | D(-2               | 1-1              |                                                   | 4-7.5 SAA<br>75-8 Sand (SP), It gray, moist,<br>m. dense, ifg, little sit                                                   | KREF 4-6": En 18, As 18                                                              |
| /b -                        |          |                    |                  |                                                   | Boring completed @ 81 bas -                                                                                                 | Sample:<br>C3CA-3846-4-7-09C                                                         |
| -                           |          |                    |                  |                                                   | -                                                                                                                           |                                                                                      |

PROJECT NUMBER 377812 BORING NUMBER

5847/ TW24

SHEET

OF /

| PROJEC         | TCTC         | 0-011                |                                             | - LOCATION C | amp lejeune, uc               |
|----------------|--------------|----------------------|---------------------------------------------|--------------|-------------------------------|
| ELEVAT         |              | (4)                  | _ DRILLING CONTRACTOR _<br>expecte 9500 UTR | SAEDACC      |                               |
|                | LEVELS 8 695 |                      |                                             |              | 09 1015 LOGGER DIBYOUM/CL     |
| ELOW<br>E (FT) | SAMPLE       | STANDARD PENETRATION | SOIL DESCRIPTION                            |              | COMMENTS                      |
| 1 7            | _ <u> </u>   | TEST                 | SOIL NAME USCS GROUPS                       | SYMBOL COLOR | DEPTH OF CASING DRILLING BATE |

| ŠF                          | SAMPLE  |                                |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                            |
|-----------------------------|---------|--------------------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | NTERVAL | INTERVAL<br>NUMBER<br>AND TYPE |                  | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                |
|                             | 0-41    |                                | RECOVERY<br>(FT) | .,,                                               | 0-1' No Recovery 1-2' Clayer Sand (Sc) 9ver/black, maist, loose, Medium grained 4-8' Sandy Clay (CL)                        | Hand Auger Cleared<br>0-5' 695<br>Wet @ 8' 695                                                      |
| 5 -                         | ų-8'    | DP-2                           | ų′               |                                                   | 9reylorange, Moist, Stiff 8-12' Sand (SP) light grey/block, wet, loose, Malium grained.                                     | XRF<br>2-41 Pb=7PPM As=2PPM<br>Cu=13PPM 2n=11PPM                                                    |
| [ <i>0</i> –                | 8-12    | 0P-3                           | u *              |                                                   | End of being @ 12' bgs -                                                                                                    | 4-6' Pb = 20 PPM<br>Cu = 7 PPM 2n = 15 PPA<br>6-7' Pb = 21 PPM AS = 3 PPA<br>Cu = 17 PPM 2n = 7 PPA |
| -                           |         |                                |                  |                                                   | -                                                                                                                           | Collected Sample<br>CICA-SB47-6-7-096<br>@ 1010                                                     |
| -                           |         |                                |                  |                                                   | -                                                                                                                           | Well construction details  6 (veen: 6-16' bas  5 and! 5.5-16' 695  Bentonite: 4-5.5' 695            |
| _                           |         |                                |                  |                                                   | -                                                                                                                           | 1" pre-packed screen  Oriller Could not drill                                                       |
| -                           |         |                                |                  |                                                   |                                                                                                                             | Past 12' 695.                                                                                       |
|                             |         |                                |                  |                                                   | -                                                                                                                           |                                                                                                     |

PROJECT NUMBER
3717812 BORING NUMBER
5648 SHEET OF

| PROJEC                      | т(                 | 30-11              |                  | JCA                                               | LOCATION _                                                                                                         | emp Lejeune, NC                                                                      |
|-----------------------------|--------------------|--------------------|------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| ELEVATI                     | Decree of the last |                    | SWIN             |                                                   | DRILLING CONTRACTOR _ SAEDACCO                                                                                     |                                                                                      |
| DHILLIN<br>WATER I          |                    |                    | D EQUIP          | MENI NO                                           |                                                                                                                    | 7/27/09 LOGGER 5 Beville                                                             |
|                             |                    | STANDARD           | SOIL DESCRIPTION | COMMENTS                                          |                                                                                                                    |                                                                                      |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL           | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | 0.4                | D6-1               | 3                |                                                   | 0-1 No Recovery<br>1-3.5 Silty Sand (SM), orange-<br>tan, moist, loose, fg-vfa,                                    | XRF 2-4" ND -                                                                        |
| 5 —<br>-                    | 4-8                | 00-2               | 4                |                                                   | 35 8 Sandy Clay (CL), gray -                                                                                       | KRF 6-71: 20 14 -                                                                    |
| 10 -                        |                    |                    |                  |                                                   | boring completed @8' bgs -                                                                                         | Sample: -<br>(CSCA-SP48-4-6-09C)                                                     |
| -                           |                    |                    |                  |                                                   |                                                                                                                    | -                                                                                    |
| -                           |                    |                    |                  |                                                   | -                                                                                                                  | -<br>-<br>-                                                                          |
| -                           |                    |                    |                  |                                                   | ,                                                                                                                  |                                                                                      |
| -                           |                    |                    |                  |                                                   |                                                                                                                    | -                                                                                    |
| -                           |                    |                    |                  |                                                   |                                                                                                                    | -                                                                                    |

PROJECT NUMBER 377812 BORING NUMBER

5049/TW25 SHEET

OF

| PROJECT<br>ELEVATION _ | CTO-Oll             |                     | LOCATION     | Camp     | Lejeune    | , uc          |  |
|------------------------|---------------------|---------------------|--------------|----------|------------|---------------|--|
| ELEVATION              | Not Surveyed        | DRILLING CONTRACTOR |              |          |            |               |  |
|                        | ETHOD AND EQUIPMENT | RowerProbe 9500     |              |          |            |               |  |
| WATERIEVE              | 15 12 695           | START 7/25/09 1     | 505 FINION 7 | 125/09/1 | SOO LOCCER | D. Brown Icl. |  |

| SAMPLE STANDARD PENETRATION TEST RESULTS  SAMPLE STANDARD PENETRATION TEST RESULTS  OF CONTRACTOR OF |                    |                             | STANDARD                                                             | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| INTERVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NUMBER<br>AND TYPE | RECOVERY<br>(FT)            | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N)                    | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 0-4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00-1               | 3'                          |                                                                      | 0-1' No Recovery 1-2' Silty Sand (SM) brown/blact, Meist loose, Medium grained 2-3' Clayer Sand (SC)                        | U-s' bgs Cleared by<br>Hand Auger.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 4-8'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DP-2               | u'                          |                                                                      | Medium dense, fine grained.  3-4.5' Sandy Clay (CL)                                                                         | Water 6) 12' 695                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 8-121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09-3               | 3'                          |                                                                      | 4.5-5.0' Clayer sand (50) _<br>Same as z-3'<br>5-8' Sandy Clay (CL) —<br>Same as 3-4.5' —                                   | XRF 2-4' Pb= SPPM<br>Cu = 12 PPM<br>U-6' Nothing                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 12-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OP-4               | 3                           |                                                                      | 9-12' Sand (SP)  light grey, Moist, loose, -  medium grained, -  12-13' No Recovery -                                       | Collect Sample  EJCA - SB49-2-4-096  O1600  Contractor Could not                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                             |                                                                      | 15-16 same as 4-12<br>but wet.                                                                                              | well construction details  Screen: 8-18' 695  Sand: 8-18' 695                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                             |                                                                      | -                                                                                                                           | Bentonite: 7-8' 695 Well set at 18' 695 I"Pre-pactred screen 1/2 bay # 2 Sand                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                             |                                                                      | -<br>-                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12-8,              | 2-12 1-3<br>NUMBER AND TYPE | 2-12, 06-3<br>1-4, 06-1<br>1-4, 06-1<br>3, 1-4, 06-1<br>3, 1-4, 06-1 | PERTATION RESULTS  19-7 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                             | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  OP-1 3 SILTY Sand (SM)  brown/blacty, moist lease, medium grained  2-3 Cluyey Sand (Sc)  light grey/orange, Mc1st, Medium dense, fine grained.  3-4.5 Sandy Clay (CL)  light grey, maist, stiff  4.5-5.0 Clayer Sand (Sc)  Same as 3-4.5  8-9 Ne Recovery  1-12 Sand (SP)  light grey, maist, loose, Medium grained  12-16 Op-4 3  12-16 Same as 9-12  but wet. |  |  |  |

PROJECT NUMBER
377312 BORING NUMBER
5650 SHEET OF

| PROJECTCTO-11, CJCA                             | LOCATION Camp Lejeune, NC                    |
|-------------------------------------------------|----------------------------------------------|
| ELEVATION ON Sureup DRILLING CONTRACTO          | 1 //                                         |
| DRILLING METHOD AND EQUIPMENT HAS DET W/ GEORGE |                                              |
| WATER LEVELS 7.5 bas START 1610                 | 1/27/09 FINISH 1620 7/27/09 LOGGER S Benille |

| ĕF                          |          | SAMPLE             |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | 0-4      | D8-1               | 3                |                                    | 0-1 No Recovery<br>1-4 Sitty Sand (5M), gray, -<br>moist, m. denge vfg, trace clay<br>4-7.5 Sandy Clay (CL), gray           | XXF 2-4" ND                                                                          |
| 5-                          | 4-8      | DF-2_              | 4                |                                    | Worange, moist, stiff, vfg _<br>7.5-8 Sand (SP), gray, wet                                                                  | XRF 6-71: ND                                                                         |
| [5]                         |          | ×                  |                  |                                    | Boring completed @ 8' bgs                                                                                                   | Sample:<br>(ScA-5850-4-6-09C)                                                        |
|                             |          |                    |                  |                                    |                                                                                                                             | -                                                                                    |

PROJECT NUMBER
377812
BORING NUMBER
SBS1/TW26 SHEET

#### SOIL BORING LOG

PROJECT CTO-Oll

ELEVATION Vot Surveyed DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT fower probe 95 00 UTR

WATER LEVELS 7 695

START 7/25/09 1145 LOGGER D. BICLIM / CLT

| SAMPLE                      |                    |                  | STANDARD                                                                                                                            | SOIL DESCRIPTION                                                                                                   | COMMENTS                                                                                                     |  |  |  |
|-----------------------------|--------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| DEPTH BELOW<br>SURFACE (FT) | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION TEST SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY |                                                                                                                    | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                         |  |  |  |
| -0-4                        | ' 00-1             | 3'               |                                                                                                                                     | 0-1' No Recevery 1-2' sitty Sand (SM) black/brown, Moist, Medium dense, Medium grained                             | Hand Auger Cleared<br>0-5' bgs                                                                               |  |  |  |
| 5 - 4-8                     | 1 DP-2             | 3                |                                                                                                                                     | 1.5-2' Clayey Sand (SC)  grey/crange, Moist, dense, fine grained  Z'-4' Sandy Clay (CL)  grey with crange Streets, | Water tuble @ 7'                                                                                             |  |  |  |
| 0 -8-1                      | 2' DP-3            | પ'               |                                                                                                                                     | Moist, stift<br>4-5' No Recovery -<br>S-6' Some as 2-4' -<br>6-7' Same as 1.5-2' -                                 | Driller Could not drill<br>Past 12' 695,                                                                     |  |  |  |
|                             |                    |                  |                                                                                                                                     | 7-8' Sand (SP)  grer, wet, loose, medium  grained 8-9' Clayey sand (Sc)  grey, wet, stiff                          | Collected Sample<br>[CJCA - SBSI - 2-7-09C]<br>XRF 2-4' Pb=17PPM<br>Cu = 3PPM<br>As=1PPN                     |  |  |  |
| -                           |                    |                  |                                                                                                                                     | 9-12' Silty Sand (SM)  light grey, wet, loose, -  Medium grained: -  12' end of boring                             | 4-6 Pb=13 ppm A5=2 ppm<br>Zn=15 ppm<br>6-7' Pb=14 ppm<br>A5=3 ppm                                            |  |  |  |
|                             |                    |                  |                                                                                                                                     | -                                                                                                                  | Cu=11 PPM  Construction Details  The packed screen                                                           |  |  |  |
|                             |                    |                  |                                                                                                                                     |                                                                                                                    | 1/2 bag # 2 sand<br>Screen: 6-16' bgs<br>Sand: 5.5-16' bgs<br>bentanite: 4.5-5.5' bgs<br>well set at 16' bgs |  |  |  |
| -                           |                    |                  |                                                                                                                                     | -<br>-                                                                                                             |                                                                                                              |  |  |  |

OF

PROJECT NUMBER
317812

BORING NUMBER
5652

SOIL BORING LOG

| PROJEC                      | т        | CTO                | -11              | CJCA                                              | LOCATION _C                                                                                                                 | amp Lejeune, NC                                                                      |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                             |          | Not o              | •                | MENT H                                            | DRILLING CONTRACTOR _ SAEDA CLO_                                                                                            | , ,                                                                                  |
| WATER                       |          |                    |                  |                                                   | START 1630 7/27/09 FINISH 1645                                                                                              | 7/27/19 LOGGER S. Beville                                                            |
| %F                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
|                             | 0-4      | Df-1               | 3                | ,                                                 | 1-6 Sity Sand (Sm), gray<br>moist, mdense, vfg                                                                              |                                                                                      |
| 5 -                         | 4-8      | DF-2               | 4                |                                                   | 6-8 Chayry Sand (60), gray whorange, moist, dense, vfg                                                                      | XRF 4-6-1 Pb 13 -                                                                    |
| 19 -                        |          |                    |                  |                                                   | Boving completed @8'bgs                                                                                                     | Sample:<br>CJCA-58552-4-6-09C                                                        |

PROJECT NUMBER
377812

BORING NUMBER
5853 / TW27 SHEET | OF |

| ROJEC                       | т_С      | TO-1               | C                | JCA                                | LOCATION —                                                                                                                  | Camp Lejeune, NC                                                                     |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| LEVATION                    |          |                    | Sur              |                                    | DRILLING CONTRACTOR SAEDACCO                                                                                                | ( )                                                                                  |
|                             |          |                    |                  |                                    | & DPT w/Powerprobe                                                                                                          | 2 10 20                                                                              |
|                             | EVELS    | -11                | . ) '            | 73                                 | START 0 100 1/22/09 FINISH \$950                                                                                            | 7/22/04 LOGGER - Beville                                                             |
| ĕ£                          |          | SAMPLE             |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           |          |                    |                  |                                    | Ground gurface pine readler,                                                                                                | Dilling rote 4' 15 min                                                               |
| -                           | 0-4      | D6-1               | 25               |                                    | 0-1.5 No Recovery                                                                                                           | XRF 2-41 None detected                                                               |
| _                           |          |                    |                  |                                    | 15-4 (1. S. A (SC) du                                                                                                       | XRF 4-6: None detected                                                               |
|                             | 4-8      | bP-2               | 3.5              |                                    | 4-4.5 No Resovery<br>45-80 Sandy Clay (CL), gray of                                                                         | KRF 6-7' Done detected                                                               |
|                             | 9.12     | TD(-3              | 3.5              |                                    | ovange moist, v. stiff, vfg  10-14 Silty Sand (SM), gray, _  moist to wet.                                                  | Drilling rate: 16/120 min                                                            |
|                             | 12-16    | 1-90               | 4                |                                    | 14-18 SAR. d. gray, wet Wood Fragments @ 15-15.2"                                                                           | water@ 11.5'bgs                                                                      |
| -                           |          |                    |                  |                                    | wet, m. danger rfg                                                                                                          |                                                                                      |
|                             | 10.30    | 78.5               | 3                |                                    |                                                                                                                             |                                                                                      |
| -                           |          |                    |                  |                                    |                                                                                                                             | Drilling rate 25'/35 min                                                             |
| -                           |          |                    |                  |                                    | Boring completed @ 20 bgs -                                                                                                 | Well construction:<br>10-20' 1" Screen                                               |
| -                           |          |                    |                  |                                    | (-                                                                                                                          | 8.20' Sand                                                                           |
| -                           |          |                    |                  |                                    | -                                                                                                                           | 7-8' Bentunite                                                                       |
|                             |          |                    |                  |                                    |                                                                                                                             | 2'ags - 10' 1" PVC caring -                                                          |
| -                           |          |                    |                  |                                    |                                                                                                                             | Jampulcomposite):                                                                    |
| -                           |          |                    |                  |                                    | **                                                                                                                          | For Select metals, pH                                                                |

PROJECT NUMBER 377812 BORING NUMBER SB 54

SHEET

OF /

#### **SOIL BORING LOG**

PROJECT CTO-011

LOCATION CAMP Leieune, NC

ELEVATION NOT SWVEYED DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT Geopyabe DPT 54 DT

WATER LEVELS 7.5' b95 START 712269 1035 FINISH 712269 1050 LOGGER D. BYCWN 1 CLT

| Š.C                         | SAMPLE   |                    |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| 22                          | 0-41     | 09-1               |                  |                                                   | 0-1' Silty Sand (SM)  Brown, Moist, loose, fine grained 1-4' Clayey Sand (Sc)                                               | Hand Auger Cleared  O-5' bgs.                                                        |
| 5-                          | 4-8'     | OP-2               | ų <sup>1</sup>   |                                                   | Grange/tan, Mcist, dense, _<br>fine grained<br>4-7,5' Sandy Clay (CL)<br>Grange/grey, Mcist, Stiff                          | ·                                                                                    |
| 10-                         | 8-12     | DP3                | 4'               |                                                   | 7.5'-12' Clayey Sand (Sc)  9rey with crange Streats,  wet, very dense, fine  9rained.                                       | XRF 2-4' Pb=19 PPM -<br>Cu=25 PPM -<br>Zn=6 PPM -                                    |
| 15-                         |          | 2                  |                  |                                                   | End of boring 12' bgs -                                                                                                     | 4-6' Pb= 18 ppm As= 7 ppm Cu= 15 ppm 2n= 11 ppm - Cu= 66 ppm Zn= 11 ppm              |
| -                           |          |                    |                  |                                                   |                                                                                                                             | Callected SampleS -<br>CJCA-SBS4-6-7-09C                                             |
| _                           |          |                    |                  |                                                   |                                                                                                                             | CTCA-SBS4-6-7-09C-MS -<br>CTCA-SB\$4-6-7-09C-SD -<br>@ 1050 -                        |

PROJECT NUMBER

377812

BORING NUMBER

58 55 SHEET | OF |

| PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CTO-011            |                |             | LOCATION  | Camp L     | e)eune,   | NC    |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-------------|-----------|------------|-----------|-------|------|
| Will the state of | Not Survey         | d DRILLING COM | NTRACTOR    |           |            |           |       |      |
| DRILLING ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | THOD AND EQUIPMENT | Geoprobe PPT   | 54 DT       |           |            |           |       |      |
| WATER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s 5' 695           | START          | 7/22/09 100 | FINISH 7/ | 12/09 1020 | LOGGER D. | Breun | ICLT |

| SF                 |          | SAMPLE             |                  | STANDARD                                          | COMMENTS                                                                                                                    |                                                                                      |  |  |
|--------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| SURFACE (FT)       | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6*-6*-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |  |  |
|                    | 0-4'     | 0P-1               | 2                |                                                   | 0-2' No Recovery 2-4' Silty Clay (CL)  Crange/grey, Moist, Stiff                                                            | Hand Auger Cleared<br>O-5' b95.                                                      |  |  |
| 5-                 | 4-8'     | DP-2               | ų1               |                                                   | 4-7' Clayey Sand (SC)  quey, Maist, Medium dense,  very fine grained.  wat at S'                                            | water table @ 5' bgs                                                                 |  |  |
| -<br>-<br>-01      | S-12'    | DP-3               | ų!               |                                                   | 7-8' Sandy Silt (ML)  gvey, wet, stiff  8-12' Silty Clay (CL)                                                               | -                                                                                    |  |  |
|                    |          |                    |                  |                                                   | orange larey, Mcist, Stiff -  End of boring 12'                                                                             | Collected Sample<br>CJCA-SBSS-4-6-09C<br>@) 1020                                     |  |  |
| .5-<br>-<br>-<br>- |          |                    |                  |                                                   |                                                                                                                             | XRF Readings<br>2-4' pb=131PM Zn=28PPM<br>Cu=4PPM                                    |  |  |
| 1 1 1              |          |                    |                  |                                                   | -<br>-<br>-                                                                                                                 | 4-6' Pb= SE PPM<br>ZN= 16 PPM<br>6-7' Pb= 14 PPM<br>As= 1 PPM<br>Cu= 13 PPM          |  |  |
| 1 1 1              |          |                    |                  |                                                   |                                                                                                                             | Zn=13 PPM                                                                            |  |  |

PROJECT NUMBER
517812 BORING NUMBER
5656 SHEET OF

| PROJECT CTO-11 CTCA           | LOCATION Camp Lejeune, NC                               |
|-------------------------------|---------------------------------------------------------|
| ELEVATION Not Survey &        | DRILLING CONTRACTOR SAEDACLO                            |
| DRILLING METHOD AND EQUIPMENT | IA & DPT W/ Geographe 54DT                              |
| WATER LEVELS                  | START 1250 7/27/09 FINISH 1250 7/27/09 LOGGER 5 Beville |

| SF.          |          | SAMPLE             |                  | STANDARD                                   | SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMMENTS                                                                             |
|--------------|----------|--------------------|------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6" | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| 200          | =        | ZK                 | E.F.             | (14)                                       | The state of the s | ARF cassurements in ppm                                                              |
| -            |          |                    |                  |                                            | 0-1 No Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
|              | 0-4      | 1-80               | 3                |                                            | 1-3 Sty Sand (SM), gray, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | XP. F 2-41: Pb 19                                                                    |
| _            |          |                    |                  |                                            | moist, danse, its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| 5 –          |          |                    |                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XRF 4-6': 20 22                                                                      |
| _            | 4-8      | 08-2               | 4                |                                            | workings moint, vidence, usg _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XAF 6-7 - 2085, ASI                                                                  |
| -            |          |                    |                  |                                            | 5.5-8 Sandy Clay (CL), gray -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |
|              |          |                    |                  |                                            | wlavange, mont, stiff, ifg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                                                                    |
|              |          |                    |                  |                                            | Boring completed to 8' box -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample                                                                               |
| ٥            |          |                    |                  |                                            | and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CJCA-3656-2-7-09C                                                                    |
|              |          |                    |                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
|              |          |                    |                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
|              |          |                    |                  |                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
|              |          |                    |                  |                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
|              |          |                    |                  |                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| -            |          |                    |                  |                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| -            |          | +                  |                  |                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| -            |          |                    |                  |                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| -            |          |                    |                  |                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| _            |          |                    |                  |                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| -            |          |                    |                  |                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| _            |          |                    |                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ii sat                                                                               |
|              |          |                    |                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
|              |          |                    |                  |                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
|              |          |                    |                  |                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| _            |          |                    |                  |                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| -            |          |                    |                  |                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) #                                                                                  |
| -            |          |                    |                  |                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| -            |          |                    |                  |                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| _            |          |                    |                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
|              |          |                    |                  |                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |

PROJECT NUMBER 377812 BORING NUMBER 9B 57/TW 29

SHEET

OF /

| DRILLIN                     | ION     | NOT ANI            | D EQUIP          | veyed                                                  | Dower Drobe, 9500 VTR                                                                                                                |                                                                                             |  |  |  |
|-----------------------------|---------|--------------------|------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
|                             | LEVELS  | 10                 | bg               | 5                                                      | START 7/23/09 1145 FINISH 7/23/0                                                                                                     | 9 1220 LOGGER D. Brewn /CLT                                                                 |  |  |  |
| DEPTH BELOW<br>SURFACE (FT) | NTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | STANDARD<br>PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6" | SOIL DESCRIPTION  SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | COMMENTS  DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION    |  |  |  |
|                             | 0-4'    |                    | <b>ユ</b> ′       |                                                        | 0-2' No Recovery 2-3' Silty Sand (SM) brown/black, Moist, medium dense, medium                                                       | U-s' Cleared with hand Auger,                                                               |  |  |  |
| 5-                          | 1 -8'   | 0P-2               | 4'               |                                                        | grained.  3-4.5' Clayer sand (Sc) —  light grey/white, Moist,  dense, Medium grained —                                               | water Table @ lo'bg5                                                                        |  |  |  |
| 10-                         | 8-12    | DP-3               | 41               |                                                        | 4.5-10' Sundy Clay (CL)  light grey/white, crange  Streaks present, Maist,  Stiff  10-11' Clayey Sand (Sc)                           | XRF<br>4-6' Pb=21 PPM<br>Zn=25 PPM<br>2-4' Pb= 1722 PPM                                     |  |  |  |
| 15-                         | 12-16   | DP-4               | 4'               |                                                        | light grey/white, wet, dense, medium grained.  [1-16' Silty sand (SM)  orange/grey, wet, lose  Medium grained.                       | 2n = 783 PPM<br>Cu = 1415 PPM<br>As = 372 PPM<br>6-7' Pb = 607 PPM<br>Zn = 208 PPA          |  |  |  |
| 5                           |         |                    |                  |                                                        | -                                                                                                                                    | Construction Details: I" Prepacted screen. I bag of sand. Screen: 6-16' b95 Sand: 6-16' b95 |  |  |  |
| _                           |         |                    |                  |                                                        | Collected Sample                                                                                                                     | bentanite; 4.5-6' b95 - CJCA-TW29 Set 16 ft, b95                                            |  |  |  |

PROJECT NUMBER
3 17812 BORING NUMBER
5658 SHEET OF

| PROJEC                                                                | T_C     | 10-11                  | C                | ich                     |                                                                                                               | amp Lejeunes NC                                                                      |  |  |  |
|-----------------------------------------------------------------------|---------|------------------------|------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| ELEVATI                                                               | ON      | Not                    | Surv             | eyed                    | _ DRILLING CONTRACTOR _SAEDA ((1)                                                                             | · J                                                                                  |  |  |  |
| WATER LEVELS START 1150 7/27/09 FINISH 1205 7/27/09 LOGGER 3. Beville |         |                        |                  |                         |                                                                                                               |                                                                                      |  |  |  |
| WATER                                                                 |         |                        |                  |                         | START 1150 1121/09 FINISH 1205                                                                                | 1/21/07 LOGGER - J. Daville                                                          |  |  |  |
| SE.                                                                   |         | SAMPLE                 |                  | STANDARD<br>PENETRATION | SOIL DESCRIPTION                                                                                              | COMMENTS                                                                             |  |  |  |
| DEPTH BELOW<br>SURFACE (FT)                                           | NTERVAL | NUMBER<br>AND TYPE     | RECOVERY<br>(FT) | TEST<br>RESULTS         | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE, | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |  |  |  |
| SURI                                                                  | NTE     | 250                    | SE.              | 6"-6"-6"<br>(N)         | MINERALOGY                                                                                                    | AC                                                                                   |  |  |  |
| 200                                                                   | _=      | -4                     |                  | 17.05                   | 0-1 Peat (Pt), d brown, moist,                                                                                | XXX mediument in ppn                                                                 |  |  |  |
| -                                                                     |         |                        |                  |                         |                                                                                                               | -                                                                                    |  |  |  |
| -                                                                     | 0-4     | $\mathcal{D}_{b^{-j}}$ | 4                |                         | U U                                                                                                           | XRF 2-41. 2016, AST -                                                                |  |  |  |
|                                                                       |         |                        |                  |                         | 1-4 Sitty Sand (8m), gray,                                                                                    |                                                                                      |  |  |  |
| 5-                                                                    |         |                        |                  |                         | mout, dense, ifa -                                                                                            | XXX 4-0 (n.16, H) 12                                                                 |  |  |  |
| -                                                                     | 4-8     | 00.2                   | 4                |                         | 4-8 Sandy Clay (CL), graywi -                                                                                 | KKF 6-7" = ND                                                                        |  |  |  |
|                                                                       |         |                        |                  |                         | arange, V. stiff, moist, vfg                                                                                  |                                                                                      |  |  |  |
| -                                                                     |         |                        |                  | ,                       | 3                                                                                                             | Sample: -                                                                            |  |  |  |
| 10-                                                                   |         |                        |                  |                         | Boring completed @ 8' bgs _                                                                                   | C3CA-5658-2-6-09C                                                                    |  |  |  |
|                                                                       |         |                        |                  |                         | -                                                                                                             | Cycli your Zab                                                                       |  |  |  |
|                                                                       |         |                        |                  |                         |                                                                                                               |                                                                                      |  |  |  |
|                                                                       | 1       |                        |                  |                         |                                                                                                               | 1                                                                                    |  |  |  |
|                                                                       | ]       |                        | -                |                         |                                                                                                               |                                                                                      |  |  |  |
|                                                                       |         |                        |                  |                         |                                                                                                               |                                                                                      |  |  |  |
|                                                                       |         |                        |                  |                         |                                                                                                               |                                                                                      |  |  |  |
|                                                                       | -       |                        |                  |                         |                                                                                                               |                                                                                      |  |  |  |
|                                                                       |         |                        |                  |                         |                                                                                                               |                                                                                      |  |  |  |
|                                                                       |         |                        |                  |                         |                                                                                                               | ]                                                                                    |  |  |  |
|                                                                       |         |                        |                  |                         |                                                                                                               |                                                                                      |  |  |  |
|                                                                       | 1       | 1                      |                  |                         |                                                                                                               | ]                                                                                    |  |  |  |
| 1                                                                     |         |                        |                  |                         |                                                                                                               |                                                                                      |  |  |  |
|                                                                       | 1       |                        |                  |                         |                                                                                                               | 1                                                                                    |  |  |  |
|                                                                       | 1       |                        |                  |                         |                                                                                                               | -                                                                                    |  |  |  |
| -                                                                     | 1       |                        |                  |                         | -                                                                                                             | 1                                                                                    |  |  |  |
|                                                                       | -       |                        |                  |                         |                                                                                                               | -                                                                                    |  |  |  |
|                                                                       | -       |                        |                  |                         |                                                                                                               |                                                                                      |  |  |  |
| 4 .                                                                   | -       |                        |                  |                         | ,                                                                                                             | -                                                                                    |  |  |  |
|                                                                       | 4       |                        | 1                |                         |                                                                                                               | -                                                                                    |  |  |  |
|                                                                       |         | 1                      |                  |                         |                                                                                                               |                                                                                      |  |  |  |

PROJECT NUMBER

BORING NUMBER

5859/TW30

OF

SHEET

#### SOIL BORING LOG

CTO-Oll LOCATION CAMP Lejeune, NC PROJECT ELEVATION Not Surveyed DRILLING CONTRACTOR SAEDACCO DRILLING METHOD AND EQUIPMENT Power probe 9500 UTR START 7/23/09 1335 FINISH 7/23/09 1350 LOGGER 0, Brown /CLT WATER LEVELS \_ !1' 695 DEPTH BELOW SURFACE (FT) SAMPLE STANDARD PENETRATION SOIL DESCRIPTION COMMENTS RECOVERY (FT) NUMBER AND TYPE SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE. NTERVAL RESULTS DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, 6"-6"-6" MINERALOGY 0-1' No Recovery Cleared 0-5' 695 1-2' Silty Sand (SM) with Hand Auger 0-4109-1 Brown/grey, Moist, loose Medium grained 2-2.5' clayey sand (SC) light grey/moist, medium dense, medium grained 4-81 09-2 u' 2.5-9.5' Sandy clay (CL) light grey with crange water table @ 11 bgs Streaks, Moist, Stiff 9.5-10.5 Clayer Sand (Sc) 8-12 DP-3 Same as 2-2,5' 10.5-12.5' Sund (SP) Pb=41 PPM 2-4/ grey/white, moist, loose, medium grained ZN=15 PPM Cu = 23 PPM 12-16 DP-4 4' Wet at 11' As= 10 PPM 12.5-13.0' Sandy Clay (CL). 15 -4-6' Pb = 32 PPM Same as 2,5'-9.5' 2n=17 PPM 13-16' Sand (SP) A5 = 2 PPM grey/dark brown, wet, Cu= 21 PPM loose, medium grained 6-7' Ph = 13 PPM Zn=3PPM Cu = 16 PPM Construction Details Set well Tw 30@ 16' 695 use I" pre poached screen Collected Sample Sand: 5.5-16'695 CJCA-5859-2-4-09C @ 1350 Screen: 6-16' 695 CJCA-SB59D-2-4-09C@1355 Bentonite: 4-5,5' 695 Set well @ 1400

PROJECT NUMBER 377812

BORING NUMBER

SHEET

OF /

#### SOIL BORING LOG

PROJECT CTO-011

ELEVATION Not Surveyed DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND FOLLIPMENT GREAT SAUT

DRILLING METHOD AND EQUIPMENT Geopyche DPT 540T

WATER LEVELS 9'695

START 7/12/09 1430 FINISH 7/12/09 1445 LOGGER D. BYCOM / CLT

| WAIEH                       | LEVELS   | ·                  | -/-              |                                    | START TIPICAL FINISH TITLE                                                                                                       | LOGGER P. DIELEN TEST                                                                                                |
|-----------------------------|----------|--------------------|------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Š€                          |          | SAMPLE             |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                                 | COMMENTS                                                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY      | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                 |
|                             | 0-41     | DP-1               | 4′               |                                    | O-115' Silty Sand (SM)  Brown, Moist, loose,  Dense, fine grained  1.5'-4' Clayey Sand (Sc)                                      | itand Auger cleared _<br>0-5' bgs                                                                                    |
| 5-                          | 4-8'     | OP-2               | ų'               |                                    | grey with avange streats,<br>Maist, dense, fine grained _<br>4-9' Sandy Clay (CL) _<br>Grey/tan, Maist, Stiff _                  |                                                                                                                      |
| -01                         | 8-12     | DP-3               | u¹               |                                    | orange staining at 7' -<br>9-10' Silty Sand (SM) -<br>Grey/crange, Wet, loose,                                                   | water table observed                                                                                                 |
| 15-                         |          |                    |                  |                                    | Medium dense, fine grained _<br>10-12' Poorly Graded Sand (SP) -<br>Grey/tan, wet, loose, —<br>Medium dense, medium -<br>grained | at 9'  XRF 2-4' Pb = 15 PPM - 4-6' Th = 18 PPM - 4-6' Th = 18 PPM - 6-7'- NO Detections - 4-6-09C - 4-6-09C - 6-1445 |
|                             |          |                    |                  |                                    | -                                                                                                                                | -                                                                                                                    |

PROJECT NUMBER 377812 SB61/TW31

SHEET

OF /

#### SOIL BORING LOG

| ELEVATION NOT SURVEYED DRILLING CONTRACTOR SAEDACCO | PROJECT   | CTO | -011     |                     | LOCATION | Camp | Le jeun e | NC |
|-----------------------------------------------------|-----------|-----|----------|---------------------|----------|------|-----------|----|
| ELEVATION /VUI JULIUS CONTRACTOR STEPTICE           | ELEVATION | Not | Surveyed | DRILLING CONTRACTOR | SAEDA    | CLO  |           |    |

WATER LEVELS 11' 695 START 7/2/69 0910 FINISH 7/2/69 0930 LOGGER D. BYCOM / CET

| WATER                       | LEVELS   | 3 11 1             | 093              |                                    | START 7/22/09 0910 FINISH 7/22/0                                                                                   | 9 0100 LOGGER PL DYCLUM / C                                                                                                     | 21 |
|-----------------------------|----------|--------------------|------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----|
| §€                          |          | SAMPLE             |                  | STANDARD                           | SOIL DESCRIPTION                                                                                                   | COMMENTS                                                                                                                        |    |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                            |    |
| -                           | 0-4'     | 09-1               | 3'               | =                                  | 0-1' Ne Recovery 1-5' Silty Sand (SM) Black, Moist, losse, Medium grained                                          | Cleared 0-5' b95<br>With Hand Auger,                                                                                            |    |
| 5-                          | 4-8'     | 0P-2               | 3'               |                                    | 5-6' Ne Recovery _<br>6-8' Silty Clay (CL) =<br>Black/grey, Mast, Stiff                                            |                                                                                                                                 | -  |
| 10-                         | 8-12     | DP3                | 1'               |                                    | 8-11' Ne Recovery  [1-12' Silty Sand (SM) -  Black, wet, loose,  Medium grained -                                  | Wet @ 11' hgs                                                                                                                   | -  |
| 15-                         |          |                    |                  |                                    | End of bering 12' has -                                                                                            | 2-4' Pb = 20 PPM<br>2n = 18 PPM<br>4-6' Pb = 6 PPM<br>Cu = 5 PPM<br>6-7' Pb = 6 PPM<br>/45 = 1 PPM<br>2n = 5 PPM<br>Cu = 25 PPM |    |
| -                           |          |                    |                  |                                    | -                                                                                                                  | Collected Sample<br>CJCA - 5861-2-4-09C                                                                                         | -  |
|                             |          |                    |                  | £                                  | -                                                                                                                  | 6 0930                                                                                                                          |    |

PROJECT NUMBER

377812

BORING NUMBER

5862

SHEET

#### SOIL BORING LOG

PROJECT CTO-011 LOCATION CAMP Lejeune, NC

ELEVATION Not Surveyed DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT Geoprobe DPT 540T

WATER LEVELS 705' 695 START 7/22/04 1300 FINISH 7/22/09 1320 LOGGER D. BYCHA / CET

| 30                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | 0-4'     | 09-1               | 3'               |                                                   | 0-1' No Recovery  1-2' Silty Sand (SM)  Brown, Moist, loose, fine grained                                                   | Hand Auger Cleared<br>O-S' b95                                                       |
| 5-                          | 4-8'     | 0P-2               | 3                |                                                   | 2-4' Clayey Sand [SC] — Orange/tan, Moist, — dense, fine grained —                                                          |                                                                                      |
| -<br>-01                    | 8-12'    | DP-3               | 4'               |                                                   | 4-5' Ne Recovery -<br>5-7' Sandy Clay (CL) -<br>Gangelgrey, Mast, Stiff -                                                   | water table at 7.5 bgs                                                               |
| -<br>-<br>-<br>15-          |          |                    |                  |                                                   | 7-10' Silty Sand (SM)  crange / grey, Moist,  Medium dense, Medium  grained,  Wet at 7.5' bgs  8-12' Same as S-7'           | XRF 6-7'- No Detections<br>4-6'- No Detections<br>24'-Pb 17PPM                       |
| -                           |          |                    |                  |                                                   | End of boring 12'                                                                                                           | Collected Sample<br>CJCA-5B62-2-4-09C                                                |
|                             |          |                    |                  |                                                   |                                                                                                                             |                                                                                      |
| (-                          |          |                    |                  |                                                   | -                                                                                                                           |                                                                                      |

OF /

PROJECT NUMBER 377812

BORING NUMBER
\$863/TW32

SHEET

OF

#### SOIL BORING LOG

CTO-11 Camp Lejeune, NC PROJECT SAEDACCO FLEVATION NOT SURVEYED DRILLING CONTRACTOR DRILLING METHOD AND EQUIPMENT GEOPTCHE DPT SYDT START 7/3/69 0940 FINISH 7/23/69 (035 LOGGER D. Brown/CLT WATER LEVELS 10 595 STANDARD PENETRATION TEST RESULTS DEPTH BELOW SURFACE (FT) SAMPLE SOIL DESCRIPTION COMMENTS RECOVERY (FT) NUMBER AND TYPE SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, NTERVAL MOISTURE CONTENT, RELATIVE DENSITY DRILLING FLUID LOSS. OR CONSISTENCY, SOIL STRUCTURE, TESTS AND INSTRUMENTATION 6\*-6\*-6\* MINERALOGY 0-11 No Recovery Hand Auger cleared 1-3' Silty sand (SM) 0-4' 0-5' 695 09-1 brown, Moist, medium dense, Medium grained. 3-5' Clayer sand (sc) lightgrey/white, Moist 5 4-81 medium den se, medium DP-2 grained 5-9' sandy clay (CL) light grey with ordinge Streaks, Moist, Stiff Water Table at 8-12 OP-3 10'695. 9-11' clayey sand (sc) grey/brown, Moist, dense, medium grained. 41 2-4' P6=150 PPM A5=138 PPM wet at 10' 12-16 109-4 2n=203 PPM Cu=304APA 11-16' Sand (SP) 15 orange larey, wet, loose, 4-6' Zn=19PPM (u= 36PPM medium grained. AS=10 PPM Pb=13 PPM End of Boring 16' 6-7' Pb=13PPM A5=2PPM CU=3PPM Zn=1ppm Construction Details " Pre pocked screen. Collected sample Screen: 6-16' bas Sand: 6-16' 495 CJCA-5863-2-4-09C Bentonite; 5-6'695 @ 1010

PROJECT NUMBER
377812 BORING NUMBER
5664 SHEET OF

| PROJECT _CTO-11 CSCA            | LOCATION Camp Leguns NC                                 |
|---------------------------------|---------------------------------------------------------|
| ELEVATION _ Not surreyed        | DRILLING CONTRACTOR SAE DACCO                           |
| DRILLING METHOD AND EQUIPMENT _ |                                                         |
| WATER LEVELS                    | START 1045 7/27/09 FINISH 1100 7/27/09 LOGGER 5 BEVILLE |
|                                 |                                                         |

| WATER                       | LEVELS   |                    |                  |                                                   | START 1045 7/27/09 FINISH 1100 -                                                                                   | 127/09 LOGGER - DEVILLE                                                        |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| %F                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                   | COMMENTS                                                                       |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION |
| -                           | 0-4      | D6.1               | Ц                |                                                   | 0-3.5 Silty Sand (SM), gray, _<br>mount, m. dense, vfg, littleday-<br>3.5.8 Sandy Clay (CL), gray                  | XRF 2-4'; (VD) -                                                               |
| 5 -                         | 4-8      | 08-2               | ч                |                                                   | 3.5-8 Sandy Clay (CL), gray who was not not stiff to v. stiff,                                                     | KRF 4-6': 2n: 23, No: 16 -                                                     |
| 10                          |          |                    |                  |                                                   | boring completed @ 8' bgs                                                                                          | Sample:<br>[CSCA-SBOH-4-7-09C]<br>CJCA-SBOH-4-7-09C]                           |
| -                           | -        |                    |                  |                                                   | -                                                                                                                  |                                                                                |

PROJECT NUMBER 377812

BORING NUMBER \$B65/TW 33 SHEET

OF

#### SOIL BORING LOG

PROJECT CTO-011

SAEDACCO

DRILLING METHOD AND EQUIPMENT Geoprobe DPT 540T
WATER LEVELS 11.5' 695 START 7/22/09 1650 FINISH 7/22/09 1715 LOGGER D. BYOWN / CLT

| ŠF                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
|                             | 0-41     | 09-1               | 3.5              |                                                   | 0-0.5 No Recovery 0.5-1.5 Silty Sand (SM) Black / Brown, woist, medium dense, fine                                          | Hand Auger cleared<br>0-5' bgs.                                                      |
| 5-                          | 4-81     | OP-2               | 4'               |                                                   | grained.  1.5-4.5' Clayer Sand (sc)  Grey with orange streats  Moist, dense, very                                           | -                                                                                    |
| 10-                         | 8-12     | DP-3               | 4'               |                                                   | fine grained. 4.5-9.5' Sandy Clay(cy)- grey/tan, Moist, Very Stiff                                                          | Water table at 11.5'                                                                 |
| 15-                         | 12-16    | OP-4               | 4'               |                                                   | 9.5-16' Sand (SP)  9rey/white, Maist, loose, Medium grained - Parly graded                                                  | XRF 2-4'<br>Pb=1448 Ppm<br>Zn=3927 Ppm                                               |
| -                           |          |                    |                  |                                                   | 10'-crange<br>11'-blach<br>11.s'- Wet<br>12'- crange<br>13'- blach                                                          | Cu = 7944 PPM<br>4-6' - No Detections<br>6-7' - No Detections                        |
|                             |          |                    |                  |                                                   | End of Boring 16'                                                                                                           | Collected Sample                                                                     |
|                             |          |                    |                  | 111                                               | Set CJCA-TW33 on _<br>7/23/09 @ 09/0<br>Prepacked Screen: 6-16' b95 -<br>Sand: 6-16' b95 -<br>Bentonite: 5-6' b95 -         | CTCA - 5B65 - 2-4-09C.                                                               |

PROJECT NUMBER

BORING NUMBER

SHEET

OF /

#### SOIL BORING LOG

PROJECT CTO-011 LOCATION COMP Leieune, NC
ELEVATION NOT SUR VEYED DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT Geopyche PPT 540T

WATER LEVELS M. 5'695

START 7/22/64 1550 FINISH 7/22/69 1630 LOGGER D. BYCOM / CLT

| ATER LE                     | VELS     | III                | 0/               |                                    | START TISTE TINISH TITLE                                                                                                    | 9 1630 LOGGER D. Brewn / CZ                                                                            |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| &F L                        | S        | AMPLE              |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                               |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                   |
| -                           | -4'      | 0P-1               | 3'               |                                    | 0-1' No Recovery  1-4.5' Silty Sand (SM)  Black, Moist, Medium  dense, fine grained                                         | Hand Auger Cleared<br>O-S' bgs.                                                                        |
| 5-4                         | -8'      | 0P-2               | ч'               |                                    | 4.5-lo.s' sandy clay (CL) —  9rey/tan with orange -  Streaks, Moist, Stiff -                                                | 1600- Driller loses spring<br>on drill rig.<br>1615- Driller Vesumes<br>Drilling                       |
| 10-8                        | -12'     | DP-3               | ч′               |                                    | 10.5-13' Silty Sand (SM) - grey/brown, Moist, — Medium dense, Medium - grained. Wet at 11.5'                                | water table @ 11.5' bgs                                                                                |
| 15-                         | 2-16     | PP-4<br>           | ч′               |                                    | 13'-16' foorly Graded Sond (SP) -  grey/brown, wet,  medium dense, medium -  grained -  End of boring 16' -                 | XRF 2-4' 16 Detection S. 6-7' No Detection S. 4-6' Pb= 1475 PPM AS= 2107 PPM 2n= 3748 PPM Cu= 7389 PPM |
| -                           |          |                    |                  |                                    | -                                                                                                                           | Collected Sample                                                                                       |
|                             |          |                    |                  |                                    |                                                                                                                             | CJCA-5866-4-6-09C<br>@ 1630                                                                            |
| -                           |          |                    |                  |                                    | _                                                                                                                           |                                                                                                        |

PROJECT NUMBER 377812 BORING NUMBER

5867/TW34 SHEET

OF /

#### SOIL BORING LOG

PROJECT CTO-011

LOCATION COMP Leieune, NC

ELEVATION Not Surveyed DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT Geopycbe DPT 54 DT

WATER LEVELS 10'695

START 712264 1515 FINISH 712269 1545 LOGGER D. BYCWA 1 CET

| ŠF.                         |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                              |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                  |
|                             | 0-41     | DP-1               | ,                |                                                   | 0-3' Silty Sand (SM)<br>brown/black, moist,<br>medium dense, fire grained                                                   | 0-5' Cleared by<br>Hard Auger                                                                         |
| 5-                          | 4-8'     | OP-2               | 4'               |                                                   | 3-5.5' Clayey Sand (sc) - grey with orange streats - Moist, dense, fine grained -                                           |                                                                                                       |
| 10-                         | 8-12     | DP3                | y '              |                                                   | 5.5-10' Sandy Clay (CL)  grey/tan, Moist, stiff  10-13' Silty Sand (SM)                                                     | Water table @ 10' b95 -                                                                               |
| 15-                         | (2-16    | VP-4               | ч′               |                                                   | grey with crange streats -<br>by Maist, loose, Medium -<br>dense.<br>Wet at 11.5'                                           | XRF 2-4' No Detections                                                                                |
|                             |          |                    |                  |                                                   | 13-16' feerly Graded Sand (SP)-<br>9vey/crange, wet, malium -<br>dense, medium grained -                                    | 4-6' No Detections<br>6-7' Pb= 1435 PPM<br>As = 2415 PPM<br>Cu= 8073 PPM<br>Zn= 4205 PPM              |
|                             |          |                    |                  |                                                   | End of boring 16' -                                                                                                         | Collected Sample -<br>CJCA-SB67-6-7-09C                                                               |
|                             |          |                    |                  |                                                   | Set CJCA-TW34  Screen: 6-16' b95  Sand: 6-16' b95   50-16 -  Bentenite: 5-6' 695  I So 16 bag of Sand was used.             | 1645  Twoy set with bottom  of screen 16' b95  well set on 7/23/69  6) 845.  Lo' prepacted screen was |

PROJECT NUMBER 377812 BORING NUMBER 5868

SHEET

OF /

## SOIL BORING LOG

PROJECT CTO-011
ELEVATION Not Surveyed

LOCATION Camp Lejeune, NC

ON Not Surveyed DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT Geopyche PPT 54 DT
WATER LEVELS 10 695 START 7/22/69 14

WATER LEVELS 10 695 START 7/22/69 14CC FINISH 7/22/69 1420 LOGGER D. BYCOM / CLT

| VATER                       | LEVELS   | 10                 | 073              |                                    | START //22/04 14CC FINISH 7/22/0                                                                                            | 9 1420 LOGGER D. BYCHA /CL                                                           |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| ĕ.                          |          | SAMPLE             |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | 0-41     | 09-1               |                  |                                    | O-1,5' Silty Sand (SM)  Brown, Moist, loose,  Medium grained  1.5-3,5' Clayey Sand (SC)                                     | Hand Auger Cleared _<br>O-5' b95 -                                                   |
| 5-                          | 4-81     | OP-2               | ч'               |                                    | Grey with crange straits,<br>Maist, medium dense,<br>fine grained.<br>3.5-6.0 Sandy Clay (CL)                               | -                                                                                    |
| io-                         | 8-12'    | DP-3               | ų/               |                                    | grey/tan, maist, very stiff_<br>6-6.5' silfy sand (SM) _<br>grey/tan, maist, loose, -<br>fine grained.                      | Water table 6) 10' hgs -                                                             |
| 15-                         |          | 2                  |                  |                                    | 6.5-10' Sandy Clay (CL) - Same as 3.5-6.0' - 10-12' Silty Sand (SM) Grey, wet, dense, Medium grained                        | XRF<br>2-4' No Detections -<br>4-6' As = 11 PPM -<br>6-8' No Detections -            |
| -                           |          |                    |                  |                                    | End of boring 12'                                                                                                           | Collected Sample -<br>CJCA-5B68-2-4-09C                                              |
| -                           |          |                    |                  | ×                                  |                                                                                                                             | -                                                                                    |
| -                           |          |                    |                  |                                    | -                                                                                                                           | -                                                                                    |

PROJECT NUMBER 377812 BORING NUMBER 5869/TW35

Compleieune, NC

SHEET

OF

#### SOIL BORING LOG

| PROJECT   | CTO-11       |                     | LOCATION Co |
|-----------|--------------|---------------------|-------------|
| ELEVATION | Not Surveyed | DRILLING CONTRACTOR |             |

DRILLING METHOD AND EQUIPMENT DPT Geoprobe 54 01

START 7/21/09 1605 FINISH 7/21/09 1630 LOGGER D. Brown / CLT WATER LEVELS 10 695

| SAMPLE SAMPLE               |                    |          |                  |                                    | 9 1630 LOGGER D. Dreun 161                                                                                         |                                                                                      |
|-----------------------------|--------------------|----------|------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| SE -                        |                    |          |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                   | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL           | AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | -4' D              |          | 3.5'             |                                    | 0-0.5' No Recevery  0.5-2' SILTY Sound (SM)  Brown/orange, Maisti  Medium dense, Very                              | Hand Auger Cleared<br>0-5' bas.                                                      |
| 5 - 4                       | -8 <sup>†</sup>  0 | P-2      | ч'               |                                    | fine grained Sand - 2-4' I waganic Silt (ML) - Crange/grey, Maist, - Medium Stiff - 4'-11' Clayey Sand (SC) -      | -                                                                                    |
| 0 - 8                       | -12' D             | P-3      | ų '              |                                    | crangeltan, Moist, Medium -<br>dense, fine grained                                                                 | Water at 10' bas                                                                     |
| 15-12                       | -16' 0             | p_4      | ų                |                                    | 11-16' Silty Sand (SM) -<br>Ovange/gray, wet, loose, -<br>Medium grained                                           | Cu = 18PM                                                                            |
| -                           | -                  |          |                  |                                    | 16' End of boring                                                                                                  | 4-6' pb= SppM<br>As= 15ppM<br>Cu= 1ppM<br>6-7' pb= 9ppM                              |
| -                           |                    |          |                  |                                    |                                                                                                                    | AS = 15 PPM<br>Cu = 10 PPM<br>Zn = 57 PPM                                            |
| -                           |                    |          |                  |                                    | -                                                                                                                  | Collected Sample<br>CJCA-5869-6-7-09C<br>@ 1640.                                     |
| -                           |                    |          |                  |                                    | -                                                                                                                  |                                                                                      |
|                             |                    |          |                  |                                    |                                                                                                                    |                                                                                      |

PROJECT NUMBER 377812 BORING NUMBER 58 70

SHEET

OF !

#### SOIL BORING LOG

PROJECT \_\_ CTO - OII ELEVATION Not Surveyed SAEDACCO \_ DRILLING CONTRACTOR

LOCATION COMP Lejeune, NC

DRILLING METHOD AND EQUIPMENT Geopyche PPT 540T WATER LEVELS 9 695 START 7/2/64 13

START 7/22/69 1330 FINISH 7/22/09 1350 LOGGER D. BYCOM / CLT

|                             |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                   | COMMENTS                                                                                 |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | COMMENTS  DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION |
|                             | 0-4'     |                    | 41               |                                                   | 0-2' Silty Sand (SM) Brown, Moist, loose, fine grained 2-4' Clayer Sand (SC)                                       | Hand Auger Cleared<br>0-5' b95                                                           |
| 5-                          | 4-81     | OP-2               | ų!               |                                                   | grey/crange, moist<br>Medium dense, fine grained—<br>4-9' Sandy Clay (CL)<br>Grey with crange straits,             | -                                                                                        |
| -<br>10-                    | 8-12'    | DP-3               | 41               |                                                   | Moist, very stiff 9-12' silty sand (sm)  Grey, wet, derse,  Medium grained                                         | hadretall Godine                                                                         |
| 5-                          |          |                    |                  |                                                   | End of boring 12'                                                                                                  | Water table @ 9'bgs                                                                      |
| -                           |          |                    |                  |                                                   | -                                                                                                                  | XRF 2-4' Fe= 17, 000 PPN<br>4-6' No Vetections<br>6-7' Pb= 16 PPM                        |
| -                           |          |                    |                  |                                                   | -                                                                                                                  | Collected Sample<br>CJCA-SB70-2-4-09C<br>@1350                                           |
|                             |          |                    |                  |                                                   | _                                                                                                                  | Collected Sample<br>CJCA-SB70D-2-4-09C<br>@ 1355                                         |
|                             |          |                    |                  | (9)                                               |                                                                                                                    |                                                                                          |
| _                           |          |                    |                  |                                                   | (8.30)                                                                                                             | REV 12/01 FORM D                                                                         |

PROJECT NUMBER

BORING NUMBER

5871/TW 36 SHEET

OF /

| PROJECT _ CAMP Johnson             | LOCATION Camp Leseune, VC                                |
|------------------------------------|----------------------------------------------------------|
| ELEVATION Not Surveyed             | DRILLING CONTRACTOR SAEDE CCO                            |
| DRILLING METHOD AND EQUIPMENT Hand | Auger and DPT with Geoprobe SYDT and Power Picke 9 Sa    |
| WATER LEVELS 91 695                | START 7/21/09 0930 FINISH 7/21/09 1010 OGGER 1 Brown/CLT |

| ŠF.                         | SAMPLE                         |      |                                          | STANDARD SOIL DESCRIPTION                         |                                                                                                                               | COMMENTS                                                                             |
|-----------------------------|--------------------------------|------|------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL<br>NUMBER<br>AND TYPE |      | AND TYPE<br>AND TYPE<br>RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY   | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
|                             | 0-4                            | 06-1 | 4'                                       |                                                   | 2-5' Clayer sand (SM) Black, Moist,<br>Medium dense                                                                           | Cleared 0-5' with hand Auger                                                         |
| 5-                          | 4-8                            | 06-5 | ų '                                      |                                                   | 5-8' Silty Clay (CL) Tan,<br>Maist, Stiff, trace sand.                                                                        | ,                                                                                    |
| 10 -                        | 8-12                           | OP-3 | ų /                                      |                                                   | 8-9' Silty Clay ((L) Tan/black -<br>Meist, Very Stiff, trace -<br>Sand -<br>9-10' Clayer Silt (ML) Tan, -<br>Wet, Very Stiff, | Water at 9'                                                                          |
| . [5-                       | (2-16                          | рр-ч | 4'                                       |                                                   | 10-16' Poull graded sand -<br>with silt (SP-SM)<br>Grey/white, Weet, Medium -<br>dense, Medium graned.                        | Installed Tw36 Screen Set at 16' Tep of screen at 6'                                 |
|                             |                                |      |                                          |                                                   | 14'- Colorchange Dart Brown -<br>End of bering - 16'                                                                          | Collected Somfle<br>CJCA - SB71-6-7-09C<br>at 1010                                   |
| 20 -                        |                                |      |                                          |                                                   | -                                                                                                                             | XRF<br>measurements 6-7' -<br>Pb=20PPM                                               |
| -                           |                                |      |                                          |                                                   |                                                                                                                               | 2N = 15 PFM -<br>Cu = 39 PPM -                                                       |
|                             | -                              |      |                                          |                                                   | -<br>-                                                                                                                        |                                                                                      |

PROJECT NUMBER
377812
BORING NUMBER
5672

# **SOIL BORING LOG**

SHEET

OF

| PROJECT                     | 「 <u></u> | CT0.               | 11               | CJCA                                              |                                                                                                                                               | amp lejeune. Ne                                                                      |
|-----------------------------|-----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| ELEVATIO                    |           |                    |                  |                                                   | DRILLING CONTRACTOR SAEDACCO                                                                                                                  | QC AC                                                                                |
| DRILLING<br>WATER L         |           |                    | 5 b              |                                                   | START 7/21/09 1455 FINISH 7/21                                                                                                                | 9500<br>99 1520 LOGGER S GAVILLE                                                     |
| ГТ                          | -         | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                                              | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL  | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY                   | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | 0-4       | 76-1               | 2.5              |                                                   | 0.5-2 No Recovery                                                                                                                             | 18852-4 - No hits -                                                                  |
| -                           | 4.8       | ₩ 2                | 3.5              |                                                   | gray, dry, loose, vfa -                                                                                                                       | Cu: 17 - 10:90. As: 10:30:13 - Cu: 4                                                 |
|                             | 8-12      | 76-3               | 2.7              |                                                   | 4-45 No recovery -<br>45-8 Sandy Clay (CL), gray -<br>wlarange, moist, v. Stiff                                                               | water @9.5' bgs                                                                      |
| -                           |           |                    |                  |                                                   | 8-93 No Recovery 93-9.7 Silty Clay(CL), gray, wet. Soft, vfg 9.7-12 Sand(SP), H gray will orange, wet, on dange, vfg Borng completed @ 12 bgs | Sample:<br>[CSCA-56-72-4-6-09C]                                                      |
|                             |           |                    |                  |                                                   |                                                                                                                                               | -                                                                                    |
|                             |           |                    |                  | 1                                                 |                                                                                                                                               |                                                                                      |

|    | n    |
|----|------|
|    | 000  |
| 26 | D- G |
| (h |      |
| -  | 'IN' |

| PROJECT NUMBER | BORING NUMBER |       |    |
|----------------|---------------|-------|----|
| 377812         | S673 / TW37   | SHEET | OF |

| PROJEC                      | т(       | TO-1               | 1                | CICA                                              | LOCATION                                                                                                                                                                                            | amp Lejeunes NC                                                                                                                |  |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| ELEVATI                     |          |                    | Surv             |                                                   | DRILLING CONTRACTOR SAEDA ELO                                                                                                                                                                       |                                                                                                                                |  |
| VATER I                     |          |                    | EQUIF            | MENT HA                                           | == START 7/21/09 10:10 FINISH 7/21/0                                                                                                                                                                | 9 10 TO LOGGER 5 GENULL                                                                                                        |  |
| 3c                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                                                                                                    | COMMENTS                                                                                                                       |  |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY                                                                         | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                           |  |
| -<br>-<br>-<br>-<br>-<br>-  |          | 702                | 4'               |                                                   | 0-1 Peat (Pt), black, dry, - loose, OM present, sand - and sult present  1-1.3 Sulty Sand (SM), gray, dry, m. dense, vfg, trace clay 1.3-4.5 Clayer Sand (SC): gray worrange streets, dry to moret. | KRF 2-4 : Not recorded  KRF 4-6   96:19ppm, Zn.9ppm  Fe Stotype 30  KRF 4-6   Not recorded                                     |  |
| 16 -                        | 8-12.    | 708-3              | Ħ,               |                                                   | v. danse, vfg  4.5-9 Sandy Clay (CL), gray  wlorange, moist, Stiff                                                                                                                                  | Sample:                                                                                                                        |  |
|                             | 12-15    | 264                | 3,               |                                                   | 9-10 Sandy Clay (CL), gray w/ - orange, wet, soft, some sitt - 10-135 Silty Sand (SM), gray, -                                                                                                      | [CJCA-7673-4-6-09C]                                                                                                            |  |
| 16-                         |          |                    |                  |                                                   | boring complete @ 15' bgs                                                                                                                                                                           | Well construction info<br>5-15' bgs 1" screen<br>0-4' bgs Burtonite<br>chips<br>4-15' logs Sand<br>25'ags-5' bgs: 1" PVC carin |  |
|                             |          |                    |                  |                                                   |                                                                                                                                                                                                     | - A                                                                                                                            |  |

PROJECT NUMBER 377812

BORING NUMBER 5874

SHEET

OF /

| PROJECT     | CTO-         | 11 0    | CA  |                   | LOCATION      | Camp      | Leseune   | NC             |
|-------------|--------------|---------|-----|-------------------|---------------|-----------|-----------|----------------|
| ELEVATION   | Not su       | urveyed | DR  | ILLING CONTRACTOR | - AF AA       | CCO       |           |                |
| DRILLING ME | THOD AND EQU | IPMENT  | PPT | Geo Probe         | SUDT          |           |           |                |
| WATER LEVEL | s 12.5'      | 695     |     | START 7/2/109     | 1115 FINISH 7 | 121/09 12 | 15 LOGGER | D. Brown / CLI |

| €F                          | SAMPLE   |                    |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |  |  |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |  |  |
|                             | 0-4      |                    | 3'               |                                                   | 1-4' Well graded sand with sitt -<br>(SW-SM) light brown/cronge,<br>Moist, loose, fine grouned                              | Cleared 0-5' With<br>Hand Auger                                                      |  |  |
| S -                         | 4-8      | 09-2               | η'               |                                                   | 4-6' Clayer sand (SC) cronge, woist, medium dense, fine grained                                                             | _                                                                                    |  |  |
| 10 -                        | 8-12     | DP-3               | ų <sup>/</sup>   |                                                   | 6-8' Increanic Clay (CL)  Crange, Maist, Stiff  8-9' Same as 1-4' -  9-12' Increanic Clay (CL)                              | Water Tuble at 12,5'                                                                 |  |  |
| -<br>15 —<br>-              | 12-16    | 09-4               | 41               |                                                   | crange / grey, Meist, stiff  12-16' Clayer sand (sc)  grey, wet, Medium dense, fine grained  Color Change to Crange at      | 1135 - Stepped dvilling -                                                            |  |  |
| -<br>-<br>-<br>-<br>-       |          |                    |                  |                                                   | 14' End of boring 16' -                                                                                                     | Collected CJCA-5874-2-                                                               |  |  |
| -                           |          |                    |                  |                                                   | -                                                                                                                           | XRF No Detections                                                                    |  |  |
|                             |          |                    |                  |                                                   | -                                                                                                                           | -<br>-<br>-                                                                          |  |  |

PROJECT NUMBER

BORING NUMBER

5875/TW38

SHEET

OF /

#### **SOIL BORING LOG**

PROJECT CTO-11 CJCA

LOCATION CAMP Leieune, NC

ELEVATION Not Surveyed DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT DPT WITH Geoprobe SYDT

WATER LEVELS 11'695 START 12169 1155 FINISH 7/21/69 1230 LOGGER D. Brown/CLT

| SF L                        | S        | SAMPLE             |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                                  | COMMENTS                                                                             |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY       | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
|                             | 6-4      | pp-1               | ų′               |                                    | 0-1' Well graded Sand (SW) Dark grey, dry, medium dose- fine grained.  1-4' well graded sand with Silt- (SW-SM) 119ht brown large |                                                                                      |
| 5-                          | 4-8      | DP-2               | ų′               |                                    | Moist, Medium dense,<br>fine grained.<br>4-5' clarer sand (SC)<br>orange, Moist, dense,<br>Il' fine grained,                      |                                                                                      |
| 10 -                        | 8-12     | DP-3               | 4'               |                                    | S-Mo Incrganic clay (CL)  Crange/grey, Moist, Stiff  Wet at 11'  11-12' Clayer Sand (Sc)                                          | Water table at 11 1895-                                                              |
| 15-                         | 2-16     | op 4               | 4'               |                                    | grey/tan, wet, dense, -<br>fine grained -<br>12-15' Silty Clay (CL) _                                                             | XRF reading S<br>4-6' Pb= 17 PPM<br>As - 16 PPM<br>Zn = 14 PPM                       |
|                             | 6 - 20   | DP-S               | ų /              |                                    | Grey, wet, dense, fine -<br>grained                                                                                               | 24' No detections                                                                    |
| 20-                         |          |                    |                  |                                    | 17-20' Silty Sand (SM) =<br>Crange/grey, wet, Medium =<br>dense, fine grained:                                                    | -                                                                                    |
|                             |          |                    |                  |                                    | zo' end of bering -                                                                                                               | Collected CTCA-5875-4-6-09 at 1230                                                   |

PROJECT NUMBER

BORING NUMBER 58-76

SHEET

OF /

#### **SOIL BORING LOG**

PROJECT CTO-11

ELEVATION Not Surveyed DRILLING CONTRACTOR SADAECCO

DRILLING METHOD AND EQUIPMENT DATE Geoprobe 54 DT

WATER LEVELS 5 595

START TIBLES 645 FINISH 7/21/69 1705 LOGGER D. Brown / CLT

| §C                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                       |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                           |
|                             | 0-4'     | DP-1               | 3,5              |                                                   | 0.5-2' Silty Clay (CL)  Black/grey, Moist, Stiff, 2'-7' Inorganic Silt (ML)                                                 | Hand Auger Cleared<br>O-S' bgs                                                                                                 |
| 5 -                         | 11-81    | DP-2               | 4'               |                                                   | Crangelgrey, Meist, Medium stiff, traces and 7-8' silty Sand (SM) light grey, wet, loose                                    | Water at 8'b95                                                                                                                 |
| 10-                         |          |                    |                  |                                                   | fine grained -  End of bering 8' -                                                                                          | 2-4' Pb=10 PFM  As=4 PPM  Zn=9 PPM  Cu=24 PPM  Cu=24 PPM  Cu=13 PPM  Cu=13 PPM  Callected Sample  CJCA-5876-4-6-09()  at 1710. |
|                             |          |                    |                  |                                                   |                                                                                                                             |                                                                                                                                |

PROJECT NUMBER 3778/2 BORING NUMBER

SHEET

OF

#### **SOIL BORING LOG**

PROJECT CTC-11

ELEVATION Not Surveyed

DRILLING CONTRACTOR SADAECCO

DRILLING METHOD AND EQUIPMENT DPT Geoprobe S4DT

WATER LEVELS 10'695

START 7/21/09 1715 FINISH 7/21/09 1745 LOGGER 1. BYCAM (CLT)

| SF.                         |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                          |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION              |
|                             | 0-4'     | DP-I               | 2'               |                                                   | 0-2' No Recovery 2-4' Silty Sand (SM) Blockbray, Moist, Medium dense, Medium grained Sand                                   | Hand Auger Cleared<br>0-5'.                                                                       |
| 5 -                         | 4.8      | DPI                | 41               |                                                   | U-10' sandy Clay (CL) -<br>Orange/tan, Moist, Stiff, -<br>Some fine grained sand -<br>10-11' Inorganic Silt (ML) -          | water at 10'                                                                                      |
| (o -                        | 8-12     | DP-3               | ų ′              |                                                   | orange/grey, wet, - medium stiff, some - trace sand  11-12' Silty Sand (SM) -                                               | -                                                                                                 |
| -                           |          |                    |                  |                                                   | orange/light grey, wet -<br>loose, fine grained -<br>Sand -<br>End of Boring 12'                                            | XRF Readings<br>2-4' Pb=7 PPM<br>As-2 PPM<br>2n=13 PPM<br>Cu=19 PPM<br>4-6' Pb=7 PPM<br>As=15 PPM |
| -                           |          |                    |                  |                                                   | -<br>-<br>-<br>-                                                                                                            | 6-7' PB=11 PPM AS= 4 PPM Zn=24 PPM  Collected Sample  CJCA -5874-2-4-09C                          |
|                             |          | 2                  |                  |                                                   | -<br>-<br>-<br>-                                                                                                            | 6) 1750                                                                                           |

PROJECT NUMBER

BORING NUMBER 50-78

SHEET

OF /

| PROJECT     | CTO       | -11       | LOCATION COMP Leseune, NC                             |
|-------------|-----------|-----------|-------------------------------------------------------|
|             | Not       | Surveyed  | DRILLING CONTRACTOR_SADAECCO                          |
| DRILLING ME | ETHOD AND | EQUIPMENT | PT Geoprobe 5401                                      |
| WATERIEVE   | 10 10     | has       | START 7/21/09 1420 - 7/21/09 1450, 20050 D. BYCHO /// |

| &F _         | SAMPLE             | _                | STANDARD<br>PENETRATION | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                   |
|--------------|--------------------|------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| SURFACE (FT) | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | RESULTS 6"-6"-6" (N)    | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION       |
| -            | 1 0P-1             |                  |                         | 0-1' No Recevery 1-2' Silty Sand (SM)  Porth Brown, dry, medium - dense, fine grained -                                     | Hand Auger Cleared<br>C-5' 695.                                                            |
| 5 - 4-1      | 3' 00-2            | 4'               |                         | 1-4' Pacily Graded Sand (SP) -<br>light tan, Maist, dense,<br>fine grained, Trace sand -                                    | -                                                                                          |
| 0-8-1        | 2' 00-3            | 4'               |                         | 4-11' Sand Clay (cr)  light tan, Moist, Stiff fine grained  wet at 10'  11-12' Clayer Sand (sc)                             | XRF 2-4' Pb= 3 PPM As- 6 PPM Cu = 5 PPM                                                    |
| -            |                    |                  |                         |                                                                                                                             | 4-6' Pb = 76 PPM Zn = 32 PPM Cu = 26 PPM 6-7' Pb= 18 PPM As = 3 PPM Zn = 10 PPM Cu = 5 PPM |
| -            |                    |                  |                         |                                                                                                                             | Collected Sample<br>CJCA - SB78-4-6-09C<br>6) 1500                                         |
| -            |                    |                  |                         | -<br>-<br>-                                                                                                                 |                                                                                            |
| _            |                    |                  |                         | -                                                                                                                           |                                                                                            |

PROJECT NUMBER 377812

BORING NUMBER IRIS-SBOIL SHEET

OF (

| PROJECT     | CT  | 0-011          | <u>-</u>              | LOCATION | Camp Lejeune, uc               |
|-------------|-----|----------------|-----------------------|----------|--------------------------------|
|             | Not | surveyed       | DRILLING CONTRACTOR _ | SAEDA    |                                |
| DRILLING ME |     | ND EQUIPMENT _ | PowerProbe 9500 U     |          | 29/09 1320 LOCCED DIBYOUN (CL) |

| T T                         | ELS /              |                  | SAME SAME STATE OF THE SAME ST | 1962 SHEEL HOLDS - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 - 2015 | OGGER DIVINITEET                                                                             |
|-----------------------------|--------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| §€ —                        | SAMPLE             |                  | STANDARD<br>PENETRATION<br>TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMMENTS                                                                                     |
| DEPTH BELOW<br>SURFACE (FT) | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION         |
| -                           | 4 00-1             | 1'               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-3' No Recovery 3-4' Silty Sand (SM) light brown/tan, Maist, loose, fine grained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hand Auger Cleared<br>O-5' b95                                                               |
| 5 - u-                      | 8' DP-2            | 4'               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-5' Sand (SP)  White/grey, Meist, Icase, fine grained  S-6' Clayer Sand (SC)  Orange/tan, Maist, dense,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XRF 2-4' Fe = 1c1ppm -<br>4-6' Pb=12 PPM<br>Cu=7 PPM<br>Fe = 242 PPM                         |
|                             |                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fine grained  6-8' Sand / Clay (CL)  Orange, Maist, Stiff  End of Balting 8' bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6-7' Fe = 32 PPM  Cu = 2 PPM  FID - No readings  Collected Sample  IR15-SBOI-4-6-09C  @ 1320 |
| -<br>-<br>-<br>-<br>-       |                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                            |
| -                           |                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |

PROJECT NUMBER 377812 **BORING NUMBER** 

IRIS-5802/TWOI SHEET

OF /

#### **SOIL BORING LOG**

CTO-011 PROJECT \_\_\_\_

LOCATION IRIS

Camp Lejeune, NC

DRILLING METHOD AND EQUIPMENT POWER Probe 9500 UTR
WATER LEVELS 14.5 695 SAEDACCO

START 7/26/09 1530 FINISH 7/26/09 1620 LOGGER DE Brown / CLT

|          | SAMPLE             |                                        | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|--------------------|----------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT)                       | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                    | 3'                                     |                                                   | 0-1' No Recovery 1-2' silty sand (SM) lightgrey/brown, Moist, loose, fine grained                                           | Hand Auger cleared<br>C-s' bgs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| y-8'     | OP-2               | 3'                                     |                                                   | orange/tan, Moist, Medium dense, fine grained  3-4' Silty Sand (SM) light grey, Moist, Medium                               | FID- Ne detections<br>in sample bags<br>XRF- No detections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8-12'    | 043                | 3'                                     |                                                   | 4-5' No Recovery 5-6' Same as 3-4'                                                                                          | in sample bags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12-16    | DP-4               | 4'                                     |                                                   | Stiff 8-9' No Recovery 9-20' Sand (SP)                                                                                      | water tuble @ 14,5'b95.  Collected Sample  IRIS-SBOZ-2-7-096  and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16-20    | DP-S               | 41                                     |                                                   | Fine grained.<br>wet 614.5'                                                                                                 | IAIS-58020-2-7-09C<br>@1620<br>well construction Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                    |                                        |                                                   | End of boring 20 bys                                                                                                        | IRIS-TWOI  I" Pre-packed Screen  I hag # 2 sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                    |                                        |                                                   |                                                                                                                             | Screen: 10-20' 695 Sand: 10-20' 695 Bentanite: 9-10' 695 Well set at 20' 695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 12-18-12-13-16-1   | 8-13, 01-3<br>10-4, 01-3<br>10-4, 01-3 | 0-4' DP-1 3' 4-8' DP-2 3' 8-12' DP-3 3'           | PENETRATION RESULTS 6'-6'-6'  12-16' DP-1 3'  12-16' DP-4 4'                                                                | PENETRATION RESULTS  SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  O-4 DP-1 3'  U-8' DP-2 3'  U-8' DP-4 4'  U-8' D |

PROJECT NUMBER 3778/2 BORING NUMBER IR 15-5803

SHEET

OF /

| PROJECT     | CTO-Oll             | LOCATION COMPLETEURE, NC                                  |
|-------------|---------------------|-----------------------------------------------------------|
|             | Not surveyed        | DRILLING CONTRACTOR SAEDACCC                              |
| DRILLING MI | ETHOD AND EQUIPMENT | Pawel Piche 9500 UTR                                      |
| WATER LEVE  | ELS NA              | START 7/4/09 1300 FINISH 7/29/09 1300 LOGGER D. BYCUM/CLI |

|                | SAMPLE STANDARD DENETRATION |                    |                  | STANDARD                                   | SOIL DESCRIPTION                                                                                                   | COMMENTS                                                                             |
|----------------|-----------------------------|--------------------|------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| SURFACE (FT)   | INTERVAL                    | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6" | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -              | O-1                         | 01-1               | 2'               |                                            | 0-2' No Recovery 2-4' Silly Sand (SM) lightbrown/tan, Mcist, loose, fine grained                                   | Hand Auger Cleared<br>0-5' 695                                                       |
| 5 -<br>-<br>-  | ų-8'                        | ÓP-2               | Ч'               |                                            | 4-5' Clayey Sand (SC)  light grey, moist, dense,  fine grained  5-7' Sand Y Clay (CL)                              | XRF 2-4' Fe= 132 PPM<br>4-6' Fe= 101 PPM<br>6-7' Fe= 89 PPM                          |
| -              |                             |                    |                  |                                            | crange, ucist, stiff 7-8' Sand (SP) white/grey, Mcist, losse, fine grained.  End of Bering 8'bgs                   | FID - No Readings  Collected Sample  IRIS-5803-2-7-090  @ 1330                       |
| 1-             |                             |                    |                  |                                            |                                                                                                                    |                                                                                      |
| -              |                             |                    |                  |                                            |                                                                                                                    | -                                                                                    |
| ()             |                             |                    |                  |                                            | _                                                                                                                  |                                                                                      |
| ) <del>-</del> |                             |                    |                  |                                            |                                                                                                                    |                                                                                      |
|                |                             |                    |                  |                                            | -                                                                                                                  | -                                                                                    |
|                | -                           |                    |                  |                                            | -                                                                                                                  | -                                                                                    |

PROJECT NUMBER 377812

BORING NUMBER

IRIS-SBOY/TWO2 SHEET

1 OF )

#### SOIL BORING LOG

CTO-Oll PROJECT \_ ELEVATION Not surveyed

LOCATION IRIS COMPLETEURE, NC

Power Probe 9500 VTR 

074DT7/27/09 0830 7/27/00 09/0 ..... D. Aroun / LIT

| ŠF                          |          | SAMPLE             | =                | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                               |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                   |
|                             | o-4'     |                    | 2'               |                                                   | 0-2' No Receivery 2-3' silty sand (SM) Black/grey, Moist, loose, fine grained                                               | 0-5' bgs Cleared with<br>hand Auger                                                                    |
| 5 -                         | u-8'     | 09-2               | γ'               |                                                   | 3-4' Sand (SP)  white/tan, Moist, loose, fine grained 4-5' clayer Sand (Sc)  grey/tan, Moist, dense,                        | XRF and FID  No detections                                                                             |
| lo -                        | 8-12'    | DP-3               | ч'               | -                                                 | fine grained  5-7' Sandy Clay (CL)  Orange/tan, Moist, Stiff  7-14' Sand (SP)  white/grey, Moist, Icose, fine grained       | Water table @ 15,5'  Collected Sample  IRIS-5804-2-7-09C  @ 0900                                       |
| Is -                        | 12-16'   | DP-4               | γ'               |                                                   | 14-15' Sandy Clay (CL)  Same as S-7'  15-20' Sand (Sp)  White with crange                                                   | IRIS-TWOZ  Well Construction details  Well set to 20' 695                                              |
| 20-                         | 16-20    | 09-5               | 4'               |                                                   | Streaks, Wet, loose, fine grained.  End of boring 20' 695                                                                   | Using I" Pre-packed Screen. I bag of # 2 Sand Screen: 10-20' b95 Sand: 10-20' b95 Bentonite: 9-10' b95 |
|                             |          |                    |                  |                                                   |                                                                                                                             |                                                                                                        |

PROJECT NUMBER 377812

BORING NUMBER

IRIS-5805/7W03

SHEET

1 OF /

#### **SOIL BORING LOG**

| ERION ERION                 | LEVELS   | ATT PURSON TO STATE | 1                | OTANGLOG                           |                                                                                                                             | COMMENTS                                                                                       |
|-----------------------------|----------|---------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| ØE.                         |          | SAMPLE              |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                       |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE  | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION           |
| -                           | o-4'     | 09-1                | 2                |                                    | 0-2' No Recovery 2-2.5' Peat (Pt) Black, Maist, loose 2.5-3.5' Silty Sand (SM)                                              | Hand Auger Cleared<br>0-5' 695                                                                 |
| 5 –<br>-                    | 4-8'     | DP-2                | ų'               |                                    | grey/tan, Maist, loose, - fine grained — 3.5-4.5' Clayey Sand (sc) _ grey/orange, Moist, dense, fine grained                | Water table @ 14'bgs                                                                           |
|                             |          |                     |                  |                                    | 4.5-5.5 Sandy Clay (CL)                                                                                                     | XRF and FID                                                                                    |
| 0 -                         | 8-12'    | 00-3                | 4'               |                                    | lightgrey/orange, Moist, -<br>Stiff                                                                                         | No detections                                                                                  |
|                             |          | VI )                |                  |                                    | S.S-16' Sand (SP) white/crange, Maist, lase, fine grained                                                                   | Oriller could not drill<br>Past 16' bgs.                                                       |
| -<br>5 -                    | 12-16    | 9P-4                | 4'               |                                    | wet 6) 14' bgs                                                                                                              | *                                                                                              |
| ) -                         | _        | -                   |                  |                                    | End of Boring Log 16' -                                                                                                     | IRIS-TW03 Construction details                                                                 |
| 9                           |          |                     |                  |                                    |                                                                                                                             | well set to 18' b95 using I" pre-packed scree Controller used Reserved Sand (1 bag #2 sand)    |
|                             |          |                     |                  |                                    | -                                                                                                                           | Screen: 8-18' 695<br>Sand: 8-18' 695<br>Bentonite: 7-8' 695                                    |
|                             |          |                     |                  |                                    | _                                                                                                                           | Collected Samples @ 094.<br>IRIS-5805-2-7-09(<br>IRIS-5805-2-7-09(-MS<br>IRIS-5805-2-7-09(-50) |
| 19                          |          |                     |                  |                                    |                                                                                                                             |                                                                                                |
| 5                           | -        |                     |                  |                                    |                                                                                                                             |                                                                                                |

PROJECT NUMBER 377812

BORING NUMBER

IRIS SOOG/TWOY SHEET

1 of 1

#### **SOIL BORING LOG**

PROJECT CTG-011
ELEVATION Not Surveyed

LOCATION IRIS COMP Lejeune, NC

DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT POWER Probe 9500 UTR

WATER LEVELS 13, 5' 695 START 7/27/09 1050 FINISH 7/27/09 1110 LOGGER D. BYCUN / CLT

| 10000                       | 1                |                    | 5 69             |                                    | SIAHITIATION FINISH TATE                                                                                                    | 1 LOGGER V. SVEWN / ECT                                                                          |
|-----------------------------|------------------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Ø.E.                        |                  | SAMPLE             |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                         |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL         | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION             |
| -                           | o-4 <sup>1</sup> | 08-1               | 2'               |                                    | 0-2' No Recovery<br>2-4' Sand (SP)<br>white/grey, Moist, loose,<br>fine grained                                             | Hand Auger cleared<br>U-S' 695                                                                   |
| 5 -                         | 4-81             | 11-2               | y'               |                                    | 4-5' (la Yey sand (sc) light grey, Moist, dense, _ fine grained 5-7' Sandy Clay (CL) crange/tan, Moist, very Stiff          |                                                                                                  |
| 10-                         | 8-12             | 09-3               | 3'               |                                    | 7-8' Sand (SP)  Same as 2-4'  8-9' No Recovery  9-16' Sand (SP)                                                             | Water table @ 13.5'bgs-<br>Driller could not drill<br>deeper than 16' 695                        |
| 15 -                        | 12-16'           | DP-4               | y'               |                                    | white/grey, woist, loose, fine grained: orange staining@13' wet @13.5'  End of Boring 16'bgs                                | IRIS-TWOY  Construction details  I" Pre-pacted screen-                                           |
| _                           |                  |                    |                  |                                    | Ena of bonny 18 292                                                                                                         | bag cf # 2 sand   well set @ 18' b95   Screen; 8-18' b95   Sand: 8-18' b95   Bentanite; 7-8' b95 |
|                             |                  |                    |                  |                                    | -                                                                                                                           | No detections                                                                                    |
|                             |                  |                    |                  |                                    |                                                                                                                             | Collected Sample IRIS-SB06-2-7-09C  DIIIO.                                                       |
|                             |                  |                    |                  |                                    |                                                                                                                             | -                                                                                                |

PROJECT NUMBER 377812 BORING NUMBER

IRIS-5807/TWOS SHEET

1 OF 1

#### SOIL BORING LOG

PROJECT CTO-011

LOCATION Camp Lejeune, NC

ELEVATION Not SURVEYED DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT POWER Probe 9500 UTR

WATER LEVELS 10' b95

START 7/27/09 1140 FINISH 7/27/09 1215 LOGGER D. Brown /CLT

| (25,00) 25,00               | LEVELS   | 3 10               | 095              | 1                                  | START 727/09 1170 FINISH 727/0                                                                                              | 9 1215 LOGGER D. Brown / CLT                                                                                                                            |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| &E                          |          | SAMPLE             | _                | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                                                |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                                                    |
|                             | 0-4      | 09-1               | 21               |                                    | 0-2' No Recovery 2-4' Silty Sand (SM) 9'ex, Maist, loose, fine grained                                                      | Hand Auger Cleared<br>0-s' bgs.                                                                                                                         |
| 5 -                         | 4-8'     | OPZ                | 3'               |                                    | 4-5' No Recovery  S-6' Clayey Sand (sc)  Port grey, Moist,  Medium dense, fine grained  6-10' Sand (sp)                     | FID - No Detections -<br>water table @ 10' bgs                                                                                                          |
| 10-                         | 8-12     | DP-3               | 4'               |                                    | white/grey, moist, loose, _<br>fine grained<br>wet @ 10'<br>10-12' sandy Clay (CL)                                          | Driller could not drill deeper than 12' 695.                                                                                                            |
| -                           |          |                    |                  |                                    | lightgrey/crange, wet -<br>Stiff -<br>End of Boring 12' bgs -<br>-<br>-                                                     | IRIS-TWOS Well Construction details I"Pre-Packed screen 1/2 bag # 2 sand. Screen: 6-16' bgs Sand: 6-16' bgs Bentonite: 5-6' bgs Well set 16' bgs @)1220 |
|                             |          |                    |                  |                                    |                                                                                                                             | (ollected sample -<br>IRIS-SB07-2-4-09C -<br>@) 1210 -                                                                                                  |

PROJECT NUMBER

3TR12

BORING NUMBER

| L15- 3608 SHEET | OF |

SOIL BORING LOG

PROJECT \_CTO-11 CS/A LOCATION Camp Legure Not Surveyed ELEVATION TAEDACIO DRILLING CONTRACTOR. DRILLING METHOD AND EQUIPMENT 16 & NT W/sepprobe 54BT WATER LEVELS \_ 4.5' START 1245 7/29/09 FINISH 1305 7/29/09 LOGGER 3 Beville STANDARD PENETRATION TEST RESULTS DEPTH BELOW SURFACE (FT) SAMPLE SOIL DESCRIPTION COMMENTS RECOVERY (FT) NUMBER AND TYPE SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY DEPTH OF CASING, DRILLING RATE, INTERVAL DRILLING FLUID LOSS, OR CONSISTENCY, SOIL STRUCTURE, TESTS AND INSTRUMENTATION 6"-6"-6" MINERALOGY (N) 0-4 Filty Sand (SM)! most, horse vig 4-6 Clayery Sand (SC), gray-wet, malense, vig fg \_ water @ 4.5' bgs 4 0-4 1-10 4-8 191-2 4 6.8 Sandy Clay (CL) wangs wet, M. Stiff, Vfg Boring complete @ 8' hos

PROJECT NUMBER
377812
BORING NUMBER
1145-5609
SHEET 1 OF 1

| PROJECT         | CT0-11      | SCA   |         | West -          | LOCATION - | Camp | Leienne |  |
|-----------------|-------------|-------|---------|-----------------|------------|------|---------|--|
| ELEVATION No    | + survey    | 12d   | _ DRILL | LING CONTRACTOR |            |      | 8       |  |
| DRILLING METHOD | AND EQUIPME | NT NA |         |                 |            |      |         |  |

| WATER                       | LEVELS   | ·                  |                  |                                    | START 1330 7/29/19 FINISH 1340                                                                                              | 7/29/09 LOGGER Sperth                                                                |
|-----------------------------|----------|--------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| %F.                         |          | SAMPLE             |                  | STANDARD<br>PENETRATION            | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | 0-4      | D6-1               | 2                |                                    | 0-2 No kerovery<br>2-25 Clargey Sand (SC), tan, -<br>dry, dense, Ag                                                         | -                                                                                    |
| -                           | 41-7     | Dt-5               | 4                |                                    | 2.5-3.5 Rusty Metal flagments.<br>1-30 mm diameter<br>3.5-6 Claugy Sind (SC), tan.                                          | -                                                                                    |
| -                           |          |                    |                  |                                    | dry, denn, vfg. same metal =                                                                                                | Sample: -<br>IR15-S609-2-7-09C                                                       |
| -                           |          |                    |                  |                                    | 6-8 Sand (SP). H gray, dry,                                                                                                 | -                                                                                    |
| -                           |          |                    |                  |                                    | Baring completed @ 8' bgs _                                                                                                 | _                                                                                    |
| -                           |          |                    |                  |                                    |                                                                                                                             | -                                                                                    |
| -                           |          |                    |                  |                                    | _                                                                                                                           | _                                                                                    |
| -                           |          |                    |                  |                                    | -                                                                                                                           | _                                                                                    |
| -                           |          |                    |                  |                                    | -                                                                                                                           | -                                                                                    |
| -                           |          |                    |                  |                                    | -                                                                                                                           | -                                                                                    |

PROJECT NUMBER 377812 BORING NUMBER
IR15-5810

SHEET

OF /

| PROJECT    | CTC-011            |          |                | LOCATION     | COMP LEXCUP    | e, uc       |
|------------|--------------------|----------|----------------|--------------|----------------|-------------|
| ELEVATION  | Not surveyed       | DRILLING | CONTRACTOR _   |              |                | 7           |
|            | THOD AND EQUIPMENT |          |                |              |                |             |
| WATER LEVE | LS NA              | STA      | RT7/29/09 1335 | FINISH 7/29/ | 69 1345 LOGGER | O. Brown/co |

| ŠF.                         |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                                                                                 | COMMENTS                                                                                                                                      |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY                                                      | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                                          |
|                             | 0-41     | 0P-l               | 3                |                                                   | 0-1' No Recovery 1-1.5' Peat (Pt) Block, Moist, Icose 1.5-2.5' Clayer Sand (Sc)                                                                                                  | Hand Auger Cleared _<br>O-5' bg5.                                                                                                             |
| S-                          | 4-8'     | DP-2               | 4'               |                                                   | crange/tan, Mcist, lose, - fine grained  2.5-3' Sand (SP)  white/grey, Maist, loose, -                                                                                           | FIL 2-4' 0.18PM -                                                                                                                             |
| -                           |          |                    |                  |                                                   | fine grained  3-4' Clayer Sand (sc)  orange, Moist, Icase, fine grained  4-7' Sandy Clay (CL)  crarge/tan, Moist, Stiff  7-8' Sand (SP)  Same as 2.5-3'  End of Boing Log 8' bgs | XRF >-4' Rb=5PPM Fe=44PP<br>SF=10PPM Pb=3PPM<br>ZN=17PPM<br>4-6' Fe=57PPM<br>6-7' Fe=32PPM<br>Collected Sample<br>IRIS-5010-2-4-09C<br>@ 1400 |
| -                           |          |                    |                  |                                                   |                                                                                                                                                                                  | -<br>-<br>-                                                                                                                                   |
| -                           |          |                    |                  |                                                   |                                                                                                                                                                                  | -<br>-<br>-<br>-                                                                                                                              |
|                             |          |                    |                  |                                                   | -<br>-                                                                                                                                                                           | -                                                                                                                                             |

PROJECT NUMBER

377812 BORING NUMBER

TRI7- TSO1 SHEET OF |

|                             |         |                    |                  |                         | SOIL BORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NG LOG                                                  |
|-----------------------------|---------|--------------------|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| ROJE                        | ст      | CTO                | -11              | CJCA                    | LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | camp lejenne, No                                        |
|                             |         |                    | Sur              |                         | DRILLING CONTRACTOR SAEDALLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ( )                                                     |
| RILLIN                      | IG MET  | HOD AN             | D EQUI           | PMENT H                 | A & DPT W/ Geographe 54DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |
|                             | LEVELS  | 3                  | 5'6              | 95                      | START 09 10 7/27/09 FINISH 0920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/27/09 LOGGER S. BENULL                                |
| SE.                         | _       | SAMPLE             | _                | STANDARD<br>PENETRATION | SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMMENTS                                                |
| DEPTH BELOW<br>SURFACE (FT) | MAL     | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS         | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS. |
| HFA                         | NTERVAL | BAG<br>T T         | 000              | 6*-6*-6*                | OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TESTS AND INSTRUMENTATION                               |
| 2 K                         | Z       | žž                 | 発圧               | (N)                     | The state of the s | Mari A                                                  |
| -                           |         |                    |                  |                         | 0-1 No Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KRF (ppm) FID (ppm)                                     |
| -                           | 0-4     | 1-90               | 3                |                         | 1-4 Clause S. 1 (50) by -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.1111                                                  |
| _                           |         | 150                | )                | i                       | 1-4 Clayery Sand (SC) tan,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24 NK                                                   |
|                             |         |                    |                  |                         | moiss, vidense, uta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |
|                             |         |                    |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-6' Not collected (wet)                                |
| 5 -                         | 1       |                    |                  |                         | V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | water @ 5' bas -                                        |
| -                           | 4.8     | D1-7               | 3                |                         | 5-8 Sitty Sand (SM), tan, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67. Not collected (wet)                                 |
| -                           | 1       |                    |                  |                         | wet, m. derse, vfg, Littleday -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| -                           | -       | -                  |                  |                         | wer, maurie, viz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
| -                           | 1       |                    |                  |                         | Barrage lated 28' bas -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample:                                                 |
| 10                          | -       |                    |                  |                         | Boring completed @8' bas _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.17                                                    |
|                             |         |                    |                  |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [1R17-5801-2-4-09C]                                     |
| -                           | 1       |                    |                  |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | @ 09:25                                                 |
|                             | 1       |                    |                  |                         | s=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C 01.23                                                 |
| -                           | 1       |                    |                  |                         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
| -                           | -       |                    |                  |                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
| _                           | -       |                    |                  |                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **                                                      |
|                             |         |                    |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
|                             | -       |                    |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B*                                                      |
|                             |         |                    |                  |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
|                             |         |                    |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       |
| -                           | 1       |                    |                  |                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
| -                           | 1       |                    |                  |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
| -                           | 1       |                    |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                                       |
|                             | -       |                    |                  |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
| 2.4                         | 1       |                    |                  |                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
| _                           |         |                    |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
|                             |         |                    |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
|                             |         |                    |                  |                         | Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                       |
|                             |         |                    |                  |                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
|                             | 1       |                    |                  |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |

PROJECT NUMBER
377812

BORING NUMBER

IRI7-5802/7WOI SHEET

1 OF 1

#### SOIL BORING LOG

PROJECT CTC-Oll

ELEVATION Not Surveyed DRILLING CONTRACTOR DRILLING METHOD AND EQUIPMENT Power Probe 9500

WATER LEVELS 12' b95 START 7/28/09 10

LOCATION IR17 Camp lejeune, NC

ING CONTRACTOR SAEDACCO
COS 9500 UTR
START 7/28/09 1000 FINISH 7/28/09 1030 LOGGER D. Brown /CLT

| LEVELS   | -                  | _                | 1                                             | START //28/09 [000 FINISH //28/0                                                                                            | 2000011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|--------------------|------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | SAMPLE             | 1                | STANDARD<br>PENETRATION                       | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N)            | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0-41     | 09-1               | 2'               |                                               | 0-21 No Recovery 2-41 Silty Sand (SM) Brown/grey, Moist, loose, fine grained                                                | Hand Auger cleared<br>0-5' 695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4-8'     | 09-2               | ч'               |                                               | 4-lo' Clayey Sand (Sc) lightgray/arange, Maist, dense, fine grained lo-12' Sandy Clay (CL)                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8-12'    | DP-3               | ч′               |                                               | light grey with crange  Streaks, Moist, Stiff - 12-16' Sand(sp)  tan/grey, wet, loose,                                      | Water table @ 12'695  XAF No Detections  FID - No Detections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12.16    | 09-4               | 41               |                                               | End of Boring 16' bgs                                                                                                       | Collected Sample<br>IRI7-5802-2-7-09C<br>@ 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                    |                  |                                               | -                                                                                                                           | IRIT-Twol Construction DetailS  I" Pre-packed screen  I Bag of #2 Sand  well set at 16' bgs  Sand: 6-16' bgs  Screen: 6-16' bgs  Bentonide: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                    |                  |                                               | -                                                                                                                           | Bentonite; 5-6'695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | 0-4,               |                  | 0-4' 0P-1 2'<br>4-8' 0P-2 4'<br>8-12' DP-3 4' | 9-12' DP-3 4'                                                                                                               | SAMPLE  STANDARD PENETRATION TEST RESULTS  O-4' OP-1  U-9' OP-2  U-9' OP-2  U-9' OP-3  U-10' Clayey Sand (Sc)  light gray / arange, Maist,  den se, fine grained  U-10' Clayey Sand (Sc)  light gray with arange  Streaks, Maist, Stiff  12-16' Sand (SP)  tan/grey, wet, loose,  fine grained  U-10' Clayey Sand (Sc)  Light grey with arange  Streaks, Maist, Stiff  12-16' Sand (SP)  tan/grey, wet, loose,  fine grained |

PROJECT NUMBER 377812

BORING NUMBER
IN17-5803

SHEET

1 OF 1

#### **SOIL BORING LOG**

PROJECT CTG-011

LOCATION IR17 CAMP Lejeune, NC

ELEVATION Not Surveyed DRILLING CONTRACTOR SAE DACCO

DRILLING METHOD AND EQUIPMENT FOWER Probe 9500 VTR

WATER LEVELS NA START 7/28/09 1055 FINISH 7/28/09 1110 LOGGER D. Brown /CLT

| 30                          |                  | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
|-----------------------------|------------------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL         | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
|                             | 0-4              | DP-1               | 2.5'             |                                                   | 0-1.5' No Recovery 1.5-2' Silty Sand (SM) light brown/grey, Maist, loose, fine grained                                      | Hand Auger Cleared  0-5' bg5                                                         |
| S -                         | ų-8 <sup>1</sup> | 09-2               | η'               |                                                   | 2-3.5' Clayey Sand (SC)  light brown/grey, Mcist,  dense, fine grained  3.5-8' Sandy Clay (CL)  light grey with crange      | XAF No Detections -                                                                  |
| -                           |                  |                    |                  |                                                   | Streaks, moist, stiff - End of Boring Log 8'bgs_                                                                            | (cllected samples<br>IRI7-5803-2-7-09C<br>6) 1110<br>IRI7-5803D-2-7-09C<br>6) 1115   |
| -                           |                  |                    |                  |                                                   | -                                                                                                                           | -<br>-<br>-<br>-                                                                     |
| -                           |                  |                    |                  |                                                   | -                                                                                                                           |                                                                                      |
|                             |                  |                    |                  |                                                   |                                                                                                                             | -                                                                                    |
| -                           |                  |                    |                  |                                                   | _                                                                                                                           |                                                                                      |
|                             | -                |                    |                  |                                                   |                                                                                                                             | -                                                                                    |
|                             | -                |                    |                  |                                                   | -                                                                                                                           | -                                                                                    |

PROJECT NUMBER

377812

SHEET

1 of 1

IR17-5804/TWOZ SOIL BORING LOG

PROJECT CTO-Oll

ELEVATION Not Surveyed DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT Power Probe 9500 UTR

WATER LEVELS 11' b95

START7/28/09 1130 FINISH7/28/09 1150 LOGGER D. Brown/CLT

|          | SAMPLE             |                  | STANDARD                           | SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|--------------------|------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                            |
| 0-41     |                    | 3'               |                                    | 0-1' No Recovery 1-2' Silty sand (SM) light brown/grey, Maist, loose, fine grained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hand Auger Cleared<br>O-5' bgs                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ų-8'     | 09-2               | 4'               |                                    | light grey, maist, dense, — fine grained, — 4-9' sandy clay (cl) —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water table @ 11'bgs                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8-12'    | DP-3               | ų'               |                                    | 9-11' Same as 2-4'  11-12' Sound (SP)  9rey with crange Staining, - wet, loose, fine grained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | XRF No Detections  FID No detections  Driller could not drill                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |                    |                  |                                    | End of Bering 12' 695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | deeper than 12' b95.  IRIT-TWOD Well  Construction details  well set to 17' b95  Screen: 7-17' b95  Sand: 7-17' b95  Bentonite: 5-7' b95                                                                                                                                                                                                                                                                                                                        |
|          |                    |                  |                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Collected Sample IRI7-5804-2-7-09C @1200                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                    |                  |                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | 8-h                |                  | 0-4' 0P-1 3'                       | O-4, 06-1 3, believed the secondary of t | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  O-4' OP-1  O-1' No Recovery  I-a' Silty Sand (SM)  light brown/grey, Moist, loose, fine grained.  Ight grey, Moist, dense, fine grained.  U-9' Sand y Clay (CL)  light grey/tan, Moist, Stiff  O-1' Same as 2-4'  II-12' Sand (SP)  grey with crange Staining, |

PROJECT NUMBER 3778/2 BORING NUMBER
IR17-5805

SHEET

OF /

#### **SOIL BORING LOG**

CTO-Oll LOCATION IRI7 Camp Leseune, NC **PROJECT** ELEVATION Not Surveyed DRILLING CONTRACTOR \_\_SAEDACCO 9500 UTR Power Probe DRILLING METHOD AND EQUIPMENT START 7/28/09 1330 FINISH 7/28/09 134/5 LOGGER D. Brown /CLT WATER LEVELS NA DEPTH BELOW SURFACE (FT) SAMPLE STANDARD SOIL DESCRIPTION COMMENTS PENETRATION TEST DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, NUMBER AND TYPE RESULTS NTERVAL MOISTURE CONTENT, RELATIVE DENSITY DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION OR CONSISTENCY, SOIL STRUCTURE, 6"-6"-6" MINERAL OGY (N) Hand Auger Cleared 0-2' No Recovery 1-21 Silty sand (SM) 0-5' 695 21 0-4' 09-1 black/brown, Moist, loose, fine grained 2-4' Clayey Sand (Sc) tanlorange, Moist, dense, fine grained 5 41 4-81 No Detections DP-2 4-8' Sandy Clay (CL) tan/grey, Moist, Stiff FIO No detections End of Boring Log 8'695 collected sample IR17-5805-2-7-09C (a) 1400

PROJECT NUMBER 3778/2 BORING NUMBER
IR85-5806

SHEET

OF/

| PROJECT    | CT0-01       | LOCATION CAMP Lejeune, NC                                  |    |  |  |  |
|------------|--------------|------------------------------------------------------------|----|--|--|--|
|            | Not Surveyed | DRILLING CONTRACTOR SAEDACCO                               |    |  |  |  |
|            |              | Power Probe 9500 UTR                                       |    |  |  |  |
| WATER LEVE | LS NA        | START 7/29/69 0826 FINISH 7/29/69 0840 LOGGER D. Brown / C | 67 |  |  |  |

| Š₽           |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                   | COMMENTS                                                                               |
|--------------|----------|--------------------|------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION   |
|              | 0-4'     | PP-1               | 2                |                                                   | 0-21 Ne Recovery 2-31 Silty Sand (SM) brown/blacky Moisty loose, fine grained                                      | Hand Auger cleared<br>0-51 bg5                                                         |
| S -          | 11-8     | 08-2               | Ч                |                                                   | 3-5' Clayer sand (sc) _<br>orange/tan, ucist, dense, _<br>fine grained _<br>5-8' Sand (SP)                         | FID Ne Readings                                                                        |
| -            |          |                    |                  |                                                   | thite/grey, Mcist, dense,<br>fine grained                                                                          | Collected Samples<br>IR85-5806-2-7-09C<br>IR85-5806-2-7-09C-MS<br>IR85-5806-2-7-09C-50 |
| -            |          |                    |                  |                                                   | -                                                                                                                  | ₩ 0850                                                                                 |
| 1            |          |                    |                  |                                                   | -                                                                                                                  |                                                                                        |
|              |          |                    |                  |                                                   | -                                                                                                                  |                                                                                        |
| -            |          |                    |                  |                                                   | -                                                                                                                  | ,                                                                                      |
| 3            |          |                    |                  |                                                   | -                                                                                                                  |                                                                                        |

PROJECT NUMBER
377812

BORING NUMBER

IRSS-5807

SHEET

1 OF 1

#### SOIL BORING LOG

CTO-Oll camp Lejeune, NC **PROJECT** LOCATION DRILLING CONTRACTOR SAEDACCO Net surveyed ELEVATION Power Probe 9500 UTR DRILLING METHOD AND EQUIPMENT WATER LEVELS NA START 7/28/09 1640 FINISH 7/28/09 1650 LOGGER D. Braun / CL T DEPTH BELOW SURFACE (FT) SAMPLE STANDARD COMMENTS SOIL DESCRIPTION PENETRATION TEST RECOVERY (FT) DEPTH OF CASING, DRILLING RATE, SOIL NAME, USCS GROUP SYMBOL, COLOR, INTERVAL NUMBER AND TYPE RESULTS MOISTURE CONTENT, RELATIVE DENSITY DRILLING FLUID LOSS, OR CONSISTENCY, SOIL STRUCTURE. TESTS AND INSTRUMENTATION MINERAL OGY (N) Hand Auger Cleared 0-2' No Recovery 21 0-5' 695 2-3' Silty Sand (SM) 0-4 0P-1 grey/brown, Moist, loose, fine grained 3-4' Clayey Sand (SC) 5 tanlorange, Mcisti 3 4-8 09-2 Medium dense, fine grained. 4-7' No Detections 4-5' NO RECOVERY 5-8' Sand (SP) Collected Sample white/grey, moist, loose, fine grained 10 IR85-5807-2-4-09C @ 1655 End of Boring Log 8' bgs

PROJECT NUMBER 377812

BORING NUMBER

IR85-5807/TW06 SHEET

/ OF /

#### **SOIL BORING LOG**

PROJECT CTO-OII

LOCATION IR85 CAMP Lejeune, IC

ELEVATION Not SURVEYED DRILLING CONTRACTOR SAEDACCO

DRILLING METHOD AND EQUIPMENT POWER Probe 9500 UTR

WATER LEVELS II'bgs START 7/28/09 0820 FINISH 7/28/09 0845 LOGGER D. Brown / CLT

| ŠF.                         |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                                                                                         |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                                             |
|                             | 0-4'     |                    | 3'               |                                                   | 0-1' No Recovery 1-2' Silty Sand (SM) brown/black, Maist, loose, fine grained                                               | Hand Auger cleared<br>0-5' 695                                                                                                                   |
| 5 -                         | ų-8'     | 19-2               | y'               |                                                   | 2-6' Clayey Sand Lsc)  Crange/tan, Mcist,  dense, fine grained  6-11' Sand (SP)                                             | No Detections                                                                                                                                    |
| 10 -                        | 8-12'    | DP-3               | ч′               |                                                   | light grey/white, Moist, loose, fine grained  11-16' Clayey Sand (sc)  light grey, wet, medium  dense, fine grained         | Water table 6) 11 bgs  Callected Sample  IR85-5807-2-7-096  6) 0850                                                                              |
| 15 -                        | 12-16'   | 09-4               | 4'               |                                                   | End of Boring 16' bgs                                                                                                       | Driller could not drill deeper than 16' 695,                                                                                                     |
|                             |          |                    |                  |                                                   |                                                                                                                             | IR85-Two6 well, Construction Details  well set to 16' b95  using 1" pre-packed  Screen.  Screen. 6-16' b95  Sand: 6-16' b95  Bentonite: 5-6' b95 |
| -                           |          |                    |                  |                                                   | -                                                                                                                           |                                                                                                                                                  |
|                             |          |                    |                  |                                                   |                                                                                                                             |                                                                                                                                                  |

PROJECT NUMBER

BORING NUMBER
TR85-58-8

SHEET

1 OF 1

#### SOIL BORING LOG

CTO-OIL IR85 Camp Lejeune, Nr PROJECT . LOCATION ELEVATION Not Surveyed SAEDACCO DRILLING CONTRACTOR DRILLING METHOD AND EQUIPMENT Power probe 9500 UTR WATER LEVELS NA START 7/28/09 1710 FINISH 7/28/09 1730 LOGGER D. Brown /CLT DEPTH BELOW SURFACE (FT) SAMPLE COMMENTS STANDARD SOIL DESCRIPTION PENETRATION RECOVERY (FT) DEPTH OF CASING, DRILLING RATE, NUMBER AND TYPE TEST RESULTS SOIL NAME, USCS GROUP SYMBOL, COLOR, NTERVAL MOISTURE CONTENT, RELATIVE DENSITY DRILLING FLUID LOSS, OR CONSISTENCY, SOIL STRUCTURE, TESTS AND INSTRUMENTATION 6"-6"-6" MINERALOGY (N) No Recovery 0-1' Hand Auger cleared 3 1-3' Silty sand (SM) 0-5' b95. 0-4 OP-1 grey/brown, Moist, loose, fine grained 3-4' clayey sand (sc) tanlorange, Moist, dense, fine grained XRF No detections 4-8' DP-2 FID No Detections 4-5' No Recovery 5-8' Sand (SP) white / grey, Moist, loose, fine grained Collected Sample End of Boring Log 8'b95 IA85-5B08-6-7-09C @1725

PROJECT NUMBER 377812 BORING NUMBER

IR8S-5809/TWOS SHEET

) OF /

#### **SOIL BORING LOG**

PROJECT CTC-Oll

ELEVATION Not Surveyed DRILLING CONTRACTOR SAE DACCO

DRILLING METHOD AND EQUIPMENT Power probe 9500 UTR

WATER LEVELS 14' 695

START 7/27/09 1510 FINISH 7/27/09 1600 LOGGER DIBrown / CLT

| 30                          |          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                            | COMMENTS                                                                             |
|-----------------------------|----------|--------------------|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| _                           | o-4'     |                    | 3'               |                                                   | 0-1' No Recover Y 1-3' Silty Sand (SM) grey/brown, Moist, loose, fine grained                                               | Hand Auger Cleared 0-5' 695.                                                         |
| 5 -                         | 4-8'     | DF-2               | 4'               |                                                   | 3-4' Clayey Sand (sc)  crange/tan, Moist, dense  fine grained  4-6' Silty Sand (SM)  Same as 1-3'                           | XRF No Detections FID No Detections                                                  |
| 10-                         | 8-12'    | 0p-3               | ų'               |                                                   | 6-20' Sand (SP)  white/grey, moist, loose, fine grained  wet 6) 14'                                                         | IR85-TWOS  Construction details  I"Prepacked Screen  I bag of #2 Sand                |
| -<br>IS –                   | 12-16    | DP-4               | ų'               |                                                   | color change: Black @13.5' - (dor change: Grey 14.5' -  End of boring 20' b95 -                                             | well set@ 20'695  Screen: 10-20'695  Sand! 10-20'695  Bentonite! 9-10'695            |
| 20-                         | 16-26    | DP-5               | 4'               |                                                   |                                                                                                                             | Collected Sample IR85-SB09-2-7-09C  GISSO                                            |
|                             |          |                    |                  |                                                   |                                                                                                                             | water table 6,14 bgs                                                                 |
|                             |          |                    |                  |                                                   |                                                                                                                             |                                                                                      |
|                             |          |                    |                  |                                                   | (8.30)                                                                                                                      | REV 12/01 FORM D158                                                                  |

PROJECT NUMBER 377812

BORING NUMBER
IR85-5810 SHEET

of /

| PROJECT    | CT    | 0-011    |           |          | _ I OCATION  | CUN    | of Leseur  | ie, NC     |       |
|------------|-------|----------|-----------|----------|--------------|--------|------------|------------|-------|
| ELEVATION  |       | Surveyed |           | *******  | SAEDF        |        |            | 6:         |       |
|            |       |          | wer probe | 9500 V   | TR           | 7/ //  |            | 1 2        | 7//   |
| WATER LEVE | LS N/ | 4        | START     | 7/29/090 | 100 FINISH 4 | 1/2/01 | 0940 LOGGI | ER DIBYOLL | NICLI |

|                       | NA                                       | OTHERD .                                               | START //29/69 0100 FINISH //24/                                                                                                                                        | COMMENTS                                                                                                                                                   |
|-----------------------|------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SURFACE (FT)          | AND TYPE<br>AND TYPE<br>RECOVERY<br>(FT) | STANDARD<br>PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6" | SOIL DESCRIPTION  SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,                                              | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                                                       |
| -<br>-<br>-<br>-<br>- |                                          | 6*-6*-6**<br>(N)                                       | MINERALOGY  0-2' No Recover Y  2-4' Clayer sand (Sc)  Gange/tan, Maist, dense, fine grained  4-5' No Recovery  5-8' Sand (SP)  White/grey, Maist, Icose, fine grained. | Hand Auger Cleared  0-5' bgs  FID - No Detections  XRF 2-4' No detections  4-6' Zn = 2225 PPM  Cu = 4860 PPM  6-7' Zn = 75 PPM  Cu = 143 PPM  Pb = 671 PPM |
| -                     |                                          |                                                        |                                                                                                                                                                        |                                                                                                                                                            |

PROJECT NUMBER 377812 BORING NUMBER
IR85-58[]

SHEET

OF /

| PROJECT     | CTO-OII            | LOCATION Camp Lejeune, NC                                  |
|-------------|--------------------|------------------------------------------------------------|
| ELEVATION _ | Not Surveyed       | DRILLING CONTRACTOR SAEDACCO                               |
| DRILLING ME | THOD AND EQUIPMENT | Powel Prohe 9500 UTR                                       |
| WATER LEVE  | IS NA              | START 7/29/09 0955 FINISH 7/29/09 1005 LOGGER D. Brown/CLT |

| §€                          | SA              | AMPLE              |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                   | COMMENTS                                                                             |
|-----------------------------|-----------------|--------------------|------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL        | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| -                           | )-4' [          |                    | 2'               |                                                   | 0-2' No Recovery 2.5-3.0' Peat (Pt) Black, Maist, loose 3-3.5' Silty sand (SM)                                     | Hand Auger Cleared<br>O-S' bgs                                                       |
| 5-                          | -8 <sup>i</sup> | Op-2               | 41               |                                                   | grey/brown, Moist, loose,<br>fine grained<br>3.5-S.o' Clayey sand (sc) -<br>tan/orange, Moist, dense, -            | XRE No Detections -                                                                  |
|                             |                 |                    |                  |                                                   | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                            |                                                                                      |
| -                           |                 |                    |                  |                                                   |                                                                                                                    | _                                                                                    |
| -                           |                 |                    |                  |                                                   |                                                                                                                    |                                                                                      |
|                             |                 |                    |                  |                                                   |                                                                                                                    |                                                                                      |
|                             |                 |                    |                  |                                                   |                                                                                                                    | -                                                                                    |
|                             |                 |                    |                  |                                                   |                                                                                                                    |                                                                                      |

PROJECT NUMBER 377812

BORING NUMBER

[R85-5813/TW07 SHEET

OF )

|                             | T                        | 11.4               |                  | -011                                              | DRILLING CONTRACTOR SAEDACCO                                                                                       |                                                                                                                           |  |  |  |  |  |  |  |  |
|-----------------------------|--------------------------|--------------------|------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| LEVAT<br>RILLIN<br>IATER    | ION<br>IG METH<br>LEVELS | HOD AN             | DEQUIP<br>b95    | rveyed<br>PMENT four                              | verprohe 9500 UTR                                                                                                  | 109 1445 LOGGER D. Brown /CL                                                                                              |  |  |  |  |  |  |  |  |
| <u>}</u>                    |                          | SAMPLE             |                  | STANDARD                                          | SOIL DESCRIPTION                                                                                                   | COMMENTS                                                                                                                  |  |  |  |  |  |  |  |  |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL                 | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"<br>(N) | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION                                      |  |  |  |  |  |  |  |  |
|                             | 041                      |                    | 2'               |                                                   | 0-2' No Recovery 2-2.5' Peat (PT) Black, Moist, loose 2.5-3.5' Silty Sand (SM)                                     | Hand Auger Cleared 0-5' 695.                                                                                              |  |  |  |  |  |  |  |  |
| 5 -<br>-                    | 4-8'                     | 0P-2               | 4'               |                                                   | Brown, Mcist, loose,<br>fine grained  3.5-6' Clayey Sand (CL)  orange/tan, Maist,  Medium dense, fine              | Water table & 10' b95                                                                                                     |  |  |  |  |  |  |  |  |
| 10 -                        | 8-12                     | DP-3               | ų <sup>r</sup>   |                                                   | grained 6-12' Sand (SP) White/grey, Moist, loose, fine grained wet @ 10' bgs                                       | FID No Detections  Collected Sample                                                                                       |  |  |  |  |  |  |  |  |
| 15-                         | 12-16                    | DP-4               | 41               |                                                   | Driller could not drill<br>beyond 12' b95                                                                          | IR85-5813-2-7-09C  @ 1500  IR85-Two7 well  Construction Details                                                           |  |  |  |  |  |  |  |  |
| -                           |                          |                    |                  |                                                   |                                                                                                                    | well set to 17' b95 Using 1" pre-packed screen and 1 bag of #2 sand Screen: 7-17' b95 Sand! 7-17' b95 Bentonite: 6-7' b95 |  |  |  |  |  |  |  |  |
|                             | 1                        |                    |                  |                                                   | -                                                                                                                  |                                                                                                                           |  |  |  |  |  |  |  |  |
|                             | 4                        |                    |                  |                                                   |                                                                                                                    | -                                                                                                                         |  |  |  |  |  |  |  |  |
| -                           | 1                        |                    |                  |                                                   | -                                                                                                                  | -                                                                                                                         |  |  |  |  |  |  |  |  |
|                             |                          |                    |                  |                                                   |                                                                                                                    | -                                                                                                                         |  |  |  |  |  |  |  |  |
|                             | -                        |                    |                  |                                                   |                                                                                                                    | -                                                                                                                         |  |  |  |  |  |  |  |  |
|                             | -                        |                    |                  |                                                   | ,                                                                                                                  | -                                                                                                                         |  |  |  |  |  |  |  |  |
|                             | -                        |                    |                  |                                                   |                                                                                                                    | -                                                                                                                         |  |  |  |  |  |  |  |  |

PROJECT NUMBER 3778/2

BORING NUMBER IR85-5814

SHEET

OF/

| PROJEC                      | т       |                    | C7               | 0-011                       | LOCATION                                                                                                      | Camp Leleune, uc                                                                     |
|-----------------------------|---------|--------------------|------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                             |         | Not                | Sur              | veyed                       | DRILLING CONTRACTOR SAEDACO                                                                                   |                                                                                      |
|                             |         |                    |                  |                             | reverbe 9500 UTR                                                                                              |                                                                                      |
| WATER                       |         |                    |                  |                             |                                                                                                               | 9 0920 LOGGER DIBrown/CLT                                                            |
| %€                          |         | SAMPLE             |                  | STANDARD<br>PENETRATION     | SOIL DESCRIPTION                                                                                              | COMMENTS                                                                             |
| DEPTH BELOW<br>SURFACE (FT) | NTERVAL | NUMBER<br>AND TYPE | RECOVERY<br>(FT) | TEST<br>RESULTS<br>6"-6"-6" | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE, | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS AND INSTRUMENTATION |
| SCI                         | Ž.      | AN                 | 黑匠               | (N)                         | MINERALOGY                                                                                                    |                                                                                      |
| -                           |         |                    |                  |                             | 0-2.5' No Recovery                                                                                            | Hand Auger cleared                                                                   |
| -                           | 0-41    | DP-1               | 1.5'             |                             | Brown/grey, Mcist,<br>lcose, fine grained                                                                     | c-5' b95                                                                             |
| -                           |         |                    |                  |                             | 3.5-6' Clayer Sand (sc)                                                                                       | _                                                                                    |
| 5-                          | U-8'    | 0p-2               | ч'               |                             | dense, fine grained -                                                                                         | FID - Ne reading 5                                                                   |
| -                           |         |                    |                  |                             | 6-8' Sand (SP) -<br>White/grey, Moistilcose, -                                                                | XRF - 2-4' Fe=123PFM -<br>Cu=21PPM -                                                 |
| _                           |         |                    |                  |                             | Fine grained                                                                                                  | 4-6' Fe = 175 PPM _<br>ZN = 3 PPM                                                    |
| -                           |         |                    |                  |                             | -                                                                                                             | 6-7' Fe = 451 PPM -                                                                  |
| -                           |         |                    |                  |                             | -                                                                                                             | Collected Sample -                                                                   |
| -                           |         |                    |                  |                             |                                                                                                               | IR85-5814-2-7-09C                                                                    |
| _                           |         |                    |                  |                             | _                                                                                                             | @ 0915 -                                                                             |
|                             |         |                    |                  |                             |                                                                                                               | 1                                                                                    |
|                             |         |                    |                  |                             |                                                                                                               | Ī                                                                                    |
| _                           |         |                    |                  |                             | -                                                                                                             |                                                                                      |
| -                           |         |                    |                  |                             | _                                                                                                             | _                                                                                    |
| -                           |         |                    |                  |                             | -                                                                                                             | -                                                                                    |
| -                           |         |                    |                  |                             | -                                                                                                             | -                                                                                    |
| -                           |         |                    |                  |                             | -                                                                                                             | -                                                                                    |
|                             |         |                    |                  |                             | -                                                                                                             | -                                                                                    |
|                             |         |                    |                  |                             | _                                                                                                             | -                                                                                    |
| _                           |         |                    |                  |                             |                                                                                                               | ]                                                                                    |
| -                           |         |                    |                  |                             | _                                                                                                             | _                                                                                    |

PROJECT NUMBER

BORING NUMBER

IR85-SBI7/TWO8 SHEET

OF /

#### SOIL BORING LOG

CTO-Oll LOCATION IRBS CAMP Lejeune, NC PROJECT ELEVATION Vot Surveyed DRILLING CONTRACTOR SAEDACCO DRILLING METHOD AND EQUIPMENT POWER Probe 9500 VTR WATER LEVELS 11' 695 START 7/28/09 1515 FINISH 7/28/09 1540 LOGGER DI Brown / CLT DEPTH BELOW SURFACE (FT) SAMPLE STANDARD SOIL DESCRIPTION COMMENTS PENETRATION TEST RESULTS NUMBER AND TYPE RECOVERY (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR. DEPTH OF CASING, DRILLING RATE. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION 6\*-6\*-6\* MINERALOGY (N) 0-2' No Recovery Hand Auger Cleared 0-4 0-5' 695 2-3' Silty Sand (SM) DP-1 light brown/black, Moist, loose, fine grained 3-4' Clayey Sand (Sc) 5. tanlarange, maist, medium dense, fine grained 4-8' DP-2 4-5' No Recovery water table @ 11 bgs 5-8' Sand (SP) white/grey, Moist, loose, fine grained 10 -8-12' DP-3 Driller could not drill 8-9' No Recovery deeper than 16' b95 9-12' Sand (SP) white/grey, maist, dense, fine grained, wet & 11' bgs 6-7' CU= 7 PPM 12-16 DP-4 ZN= 21 PPM 12-15' No Recovery FID No Detection 5 15 -15-16' Sand (SP) Same as 9-12/695 Collected Samples End of Boring Log 16'695 IR85-5017-6-7-09C @ 1540 IR85-58170-6-7-09C a) 1545. IR85-Two8 Construction Details I" Pre-packed screen 1 Bag of #2 Sand Screen: 8-18'695 Sand: 8-18' h95 Bentonite: 7-8' b95 Well set to 18'695

|   | CH2IVIHILL |
|---|------------|
| - |            |

TEST PIT NUMBER IRIS- TPOI

SHEET 1 OF 1

|                             |          |                    |                                                                                                                                                                             | EST PIT LOG                                                                                                                                                                                   |
|-----------------------------|----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ROJECT                      |          | 15                 | (SCA LOCATION: () CONTRACTOR: SAEDA                                                                                                                                         | imp Johnson LOGGER: EMUST                                                                                                                                                                     |
| LEVATION                    |          | PMENT USE          | CONTRACTOR: SHEWA                                                                                                                                                           | DATE EXCAVATED: 7/27/09                                                                                                                                                                       |
| VATER L                     |          | FIVIENT USE        | APPROX. DIMENS: Length: 9 ft                                                                                                                                                | Width: 2 f + Max. Depth: 2 f +                                                                                                                                                                |
|                             |          |                    | SOIL DESCRIPTION                                                                                                                                                            | COMMENTS                                                                                                                                                                                      |
| DEPTH BELOW<br>SURFACE (FT) | INTERVAL | NUMBER<br>AND TYPE | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.                                                        | DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTS. OVM (ppm): Headspace Analysis |
| 1                           |          |                    | O-1 - Topsoil - Sulty Sand  DK guey fg sand + organ  (roots) lower, dry - moist  1-2 - Sulty Sand (sm)  Lt Tan fg sand & sult  loose, mist, some roots  Terminated @ 2' bys | 0.0 1-1.5<br>0.0 1-5-2                                                                                                                                                                        |
| 13_                         |          |                    |                                                                                                                                                                             |                                                                                                                                                                                               |
| 14_                         |          |                    |                                                                                                                                                                             | -                                                                                                                                                                                             |

| CH2MHILL |  |
|----------|--|
|----------|--|

TEST PIT NUMBER

377812

TP01

SHEET 10

# **TEST PIT LOG**

|        |                           |                                             |                                                                           |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|---------------------------|---------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JECT   | : 1R1                     | 5                                           |                                                                           |                                                                                                            |                                                                                 |                                                                                                                                                                   | LOCA                                                                                                                                                | NOITA                                                                                                                                                                                                 | 1: (                                                                                                                                                                                                               | am                                                                                                                                                                                                                      | La                                                                                                                                                                                                                 | ohr                                                                                                                                                                                                                                       | 1502                                                                                                                                                                                                                                                 | (                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOG                                                                                                                                                                                                                                                                                                         | GER                                                                                                                                                                                                                                                                                   | : E                                                                                                                                                                                                                                                                                                        | Mus                                                                            | st                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ATIO   | N :                       |                                             |                                                                           |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         | ,                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       | 1 1                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                           | IPMENT                                      | USED                                                                      | :                                                                                                          | Deer                                                                            | e                                                                                                                                                                 | 31                                                                                                                                                  | Og                                                                                                                                                                                                    |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ED:                                                                                                                                                                                                                                                                                                         | _7,                                                                                                                                                                                                                                                                                   | 127/                                                                                                                                                                                                                                                                                                       | 99                                                                             |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ER LE  | VEL:                      |                                             |                                                                           |                                                                                                            | APPF                                                                            | ROX. D                                                                                                                                                            | DIMEN                                                                                                                                               | IS:                                                                                                                                                                                                   | Lengt                                                                                                                                                                                                              | th:                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                  | H                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               | Width                                                                                                                                                                                                                                                                | ٠,                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                             | - //5                                                                                                                                                                                                                                                                                 | Max.                                                                                                                                                                                                                                                                                                       | Depth:                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                           |                                             | SOI                                                                       | L DES                                                                                                      | CRIPT                                                                           | ION                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    | i.                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            | U                                                                                                                                                                                                                                                                          | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MMEN                                                                                                                                                                                                                                                                                                        | ITS                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NAME   | E, USCS G                 | ROUP S                                      | SYMBOL                                                                    | , COLO                                                                                                     | OR, MC                                                                          | DISTUR                                                                                                                                                            | RE CO                                                                                                                                               | NTENT                                                                                                                                                                                                 | r, REL                                                                                                                                                                                                             | ATIVE                                                                                                                                                                                                                   |                                                                                                                                                                                                                    | DIFFIC                                                                                                                                                                                                                                    | CULTY                                                                                                                                                                                                                                                | IN EX                                                                                                                                                                                                                                                         | CAVAT                                                                                                                                                                                                                                                                | TION, F                                                                                                                                                                                                                                                                    | NINNUF                                                                                                                                                                                                                                                                     | NG GR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVEL                                                                                                                                                                                                                                                                                                        | COND                                                                                                                                                                                                                                                                                  | NOITION,                                                                                                                                                                                                                                                                                                   | COLLA                                                                          | APSE C                                                                                                                                                                                                                                                                                                                                                                               | F WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LLS,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ITY, O | R CONSIS                  | STENCY                                      | , SOIL S                                                                  | TRUC                                                                                                       | TURE,                                                                           | MINEF                                                                                                                                                             | RALOG                                                                                                                                               | iY                                                                                                                                                                                                    |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    | September 1                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      | NCOU                                                                                                                                                                                                                                                                       | NTERE                                                                                                                                                                                                                                                                      | D, WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TER S                                                                                                                                                                                                                                                                                                       | SEEPA                                                                                                                                                                                                                                                                                 | GE, GF                                                                                                                                                                                                                                                                                                     | RADAT                                                                          | IONAL                                                                                                                                                                                                                                                                                                                                                                                | CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                           |                                             |                                                                           |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    | Te                                                                                                                                                                                                                      | est Pit                                                                                                                                                                                                            | Dimen                                                                                                                                                                                                                                     | tions (                                                                                                                                                                                                                                              | ft)                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | South                     |                                             |                                                                           |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e (ft) |                           | 2                                           | 4                                                                         |                                                                                                            | 6                                                                               |                                                                                                                                                                   | 8                                                                                                                                                   |                                                                                                                                                                                                       | , 10                                                                                                                                                                                                               |                                                                                                                                                                                                                         | 12                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                            | 18                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       | 22                                                                                                                                                                                                                                                                                                         |                                                                                | 24                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                           |                                             |                                                                           |                                                                                                            | 11                                                                              |                                                                                                                                                                   |                                                                                                                                                     | =                                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | \_                        |                                             | S                                                                         | 7                                                                                                          |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                           |                                             |                                                                           |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                           | -                                           |                                                                           |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | _                         | +                                           | +                                                                         |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     | $\vdash$                                                                                                                                                                                              |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         | $\vdash$                                                                                                                                                                                                           |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                             | Н                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            | $\vdash$                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       | $\vdash$                                                                                                                                                                                                                                                                                                   | $\dashv$                                                                       |                                                                                                                                                                                                                                                                                                                                                                                      | $\dashv$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                           |                                             |                                                                           |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                           |                                             |                                                                           |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                           |                                             |                                                                           |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                           | _                                           | $\perp$                                                                   |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       | _                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            | $\Box$                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                | $\Box$                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | $\vdash$                  | _                                           | +                                                                         |                                                                                                            |                                                                                 |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            | $\vdash$                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                           | _                                           | -                                                                         |                                                                                                            |                                                                                 | -                                                                                                                                                                 |                                                                                                                                                     | $\vdash$                                                                                                                                                                                              |                                                                                                                                                                                                                    | _                                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               | $\vdash$                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                          | $\vdash$                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | _                         | +                                           |                                                                           |                                                                                                            | _                                                                               |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | ATION<br>AVATION<br>ER LE | ATION : AVATION EQUIER LEVEL : NAME, USCS O | ATION: AVATION EQUIPMENT ER LEVEL:  NAME, USCS GROUPS ITY, OR CONSISTENCY | ATION: AVATION EQUIPMENT USED ER LEVEL: SO NAME, USCS GROUP SYMBOL HTY, OR CONSISTENCY, SOIL S  e (ft) 2 4 | ATION: AVATION EQUIPMENT USED: ER LEVEL: SOIL DES NAME, USCS GROUP SYMBOL, COLO | ATION: AVATION EQUIPMENT USED: Deer ER LEVEL: APPE  SOIL DESCRIPT  NAME, USCS GROUP SYMBOL, COLOR, MO ITY, OR CONSISTENCY, SOIL STRUCTURE,  e (ft)  2 4 6 7075611 | ATION: AVATION EQUIPMENT USED: Deeve ER LEVEL: SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTUI ITY, OR CONSISTENCY, SOIL STRUCTURE, MINER | PATION: AVATION EQUIPMENT USED: Deere 310 ER LEVEL: APPROX. DIMEN  SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE COLOR, OR CONSISTENCY, SOIL STRUCTURE, MINERALOG  (ft) 2 4 6 8  TOPSOIL | ATION: AVATION EQUIPMENT USED: Deere 310 g ER LEVEL: APPROX. DIMENS:  SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT OFFITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  (ft) 2 4 6 8  TOPEGIL | ATION: AVATION EQUIPMENT USED: Deere 310 a ER LEVEL: APPROX. DIMENS: Lenging SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELEITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  e (ft) 2 4 6 8 10 | ATION: AVATION EQUIPMENT USED: Deere 310 g ER LEVEL: APPROX. DIMENS: Length: SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE HTY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  TOPSOIL | ATION: AVATION EQUIPMENT USED: Deere 310 g ER LEVEL: APPROX. DIMENS: Length: 9 SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE HTY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  Test Pit  (ft) 2 4 6 8 10 12 | ATION: AVATION EQUIPMENT USED: Deere 310 a ER LEVEL: APPROX. DIMENS: Length: 9 b  SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE HTY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  Test Pit Dimen  e (ft) 2 4 6 8 10 12 | ATION: AVATION EQUIPMENT USED: Deere 310 g ER LEVEL: APPROX. DIMENS: Length: 9 H  SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE HTY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  Test Pit Dimentions  (e (ft) 2 4 6 8 10 12 14 | ATION: AVATION EQUIPMENT USED: Deere 310 g ER LEVEL: APPROX. DIMENS: Length: 9 pt  SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE SAND HEAVE, DETTY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  Test Pit Dimentions (ft)  14 17075011 | ATION: AVATION EQUIPMENT USED: Deere 310 g ER LEVEL: APPROX. DIMENS: Length: 9 H Width  SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE HTY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  Test Pit Dimentions (ft)  e (ft) 2 4 6 8 10 12 14 16 | ATION:  AVATION EQUIPMENT USED: Deere 310 g  ER LEVEL: APPROX. DIMENS: Length: 9 H Width:  SOIL DESCRIPTION  INAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE SAND HEAVE, DEBRIS ENCOUTESTS, INSTRUMENTS.  Test Pit Dimentions (ft)  e (ft) 2 4 6 8 10 12 14 16 | AVATION:  AVATION EQUIPMENT USED: Deere 310g DATE EXCAPRION.  ER LEVEL: APPROX. DIMENS: Length: 9 H Width: 2 H | AVATION:  AVATION EQUIPMENT USED: Deere 310g  ER LEVEL: APPROX. DIMENS: Length: 9 H Width: 2 H  SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE OITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  TESTS, INSTRUMENTS.  Test Pit Dimentions (ft)  e (ft) 2 4 6 8 10 12 14 16 18 | DATE EXCAVATED:  AVATION EQUIPMENT USED:  Devre 310 g  ER LEVEL:  APPROX. DIMENS: Length:  SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE OITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  Test Pit Dimentions (ft)  Pe (ft) 2 4 6 8 10 12 14 16 18 20 | ATION:  AVATION EQUIPMENT USED: Deere 310 g ER LEVEL: APPROX. DIMENS: Length: 9 H  SOIL DESCRIPTION COMMENTS  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE HTY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  TESTS, INSTRUMENTS.  Test Pit Dimentions (ft)  Pe (ft) 2 4 6 8 10 12 14 16 18 20 | ATION: AVATION EQUIPMENT USED: Deeve 310 g ER LEVEL: APPROX. DIMENS: Length: 9 | AVATION EQUIPMENT USED: Deere 310 g ER LEVEL: APPROX. DIMENS: Length: 9 H SOIL DESCRIPTION SOIL DESCRIPTION COMMENTS  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAR SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADAT TESTS, INSTRUMENTS.  Test PIt Dimentions (ft)  e (ft) 2 4 6 8 10 12 14 16 18 20 22 | AVATION : AVATION EQUIPMENT USED:  Deere 310 g  ER LEVEL:  APPROX. DIMENS: Length:  SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE PITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  Test Pit Dimentions (ft)  DATE EXCAVATED: 7/27/09  Max. Depth: 2  COMMENTS  DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL TESTS, INSTRUMENTS.  Test Pit Dimentions (ft)  DATE EXCAVATED: 7/27/09  Max. Depth: 2  COMMENTS  TORSING THE PITY OF THE PIT | ACTION: AVATION EQUIPMENT USED: Deere 310 g ER LEVEL: APPROX. DIMENS: Length: 9 H Width: 2 H Max. Depth: 2 H  SOIL DESCRIPTION  NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE HITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  Test Pit Dimentions (ft)  Test Pit Dimentions (ft)  PARTICIPATION DATE EXCAVATED: 7/27/09  Max. Depth: 2 H  Max. Depth: 2 H  SOMMENTS  DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WAS AND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTINUENTS.  Test Pit Dimentions (ft)  PARTICIPATION OF THE APPLICATION OF THE APPLI |

OVM (ppm):

Breathing Zone Analysis

OVM (ppm): Headspace Analysis

0.0 ppm 0-1 1-2 0.0



TEST PIT NUMBER

SHEET 1 OF 1

| BBO JECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                 | LOCATION: Com a la                                                          | .bc           | LOGGER: EMUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT<br>ELEVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                 | CONTRACTOR: SAEDACCO                                                        | nnson         | LOGGER: ETTIOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AND DESCRIPTION OF THE PARTY OF | The state of the s | PMENT USE          | o: Deere 310a                                                               |               | DATE EXCAVATED: 7 27 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| WATER L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EVEL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | APPROX. DIMENS: Length: 10 ft                                               | Width: 2      | THE RESERVE OF THE PARTY OF THE |
| & F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPLE               | SOIL DESCRIPTION                                                            | DIEEEOU II TO | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ) EEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT. RELATIVE DENSITY. |               | IN EXCAVATION, RUNNING GRAVEL COLLAPSE OF WALLS, SAND HEAVE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ER                 | OR CONSISTENCY, SOIL STRUCTURE,                                             |               | OUNTERED, WATER SEEPAGE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DEPTH BELOW<br>SURFACE (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NTERVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NUMBER<br>AND TYPE | MINERALOGY.                                                                 | GRADATION     | AL CONTACTS, TESTS, INSTRUMENTS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Σ₹                 | n 65                                                                        | OVM (ppm):    | Headspace Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0-0.5 - Topson - Dr gray                                                    | _             | 1-2 by oxidatel suit<br>and red brick & Puc<br>Piping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | organic rich sult s send                                                    | 0.0 ppm       | oxidate Sil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | loose, most                                                                 |               | 1-2 byp rust staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 0.5-2.5 - Suty sand (sm) -                                                  |               | and red brick 37VC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                                                             | -             | PiPing -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Tan As Sand & Sult, loose                                                   | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | moist, some brick + puc                                                     |               | 0.0ppm Ron 0-35 by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 2.5-3 - Sety Sand (Sm) -                                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Drange of sand + set , louse -                                              | 4             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | mist                                                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 3-3.5 - Sand (SP) - L+ 7an -                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | fy sand, loose, moist                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Jan, 1002, Mast                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Terminated @ 3.5'bas                                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Committages & 33 bigs                                                       |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | n=                                                                          | -             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 9                                                                           | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ±-                                                                          | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                             | -             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 7 <u>.</u>                                                                  | _             | T-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | a                                                                           | -             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -                                                                           | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                             | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -                                                                           | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 8                                                                           | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 2                                                                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                             |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| • | CH2MHILL |
|---|----------|
|---|----------|

TEST PIT NUMBER

1RIS-TPOZ

SHEET 10

# **TEST PIT LOG**

| PROJEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | contract of | IR15               |        | V        |      |           | LOC   | ATION | 1: (    | amp                | اهل           | hns           | son             |        |        |           |     |                                       | LOG  | GER  | : E                | mi    | tst/F | DU     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|--------|----------|------|-----------|-------|-------|---------|--------------------|---------------|---------------|-----------------|--------|--------|-----------|-----|---------------------------------------|------|------|--------------------|-------|-------|--------|-----|
| ELEVAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | OLUDNE             | NITLIC | ·        | 7    | (30.41) E | D     | 15 -  |         | _                  |               |               |                 |        |        | DATE      | EXC | A\/AT                                 | ED.  | ¬ 1. | 2-1                | 00    |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | QUIPME             | NI US  | SED:     | Dee  |           |       | 109   |         | ii. v              |               |               |                 | _      | Width  |           |     | and the local designation in the last | ED:  | 11   | 27/0               |       |       | F 0.   |     |
| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LEVEL       | :                  |        |          |      |           | DIMEN | 15:   | Length  | n: ]               | 00            | 1             |                 | _      | vvidtn |           | 21  |                                       |      |      | Max.               | Depth | 1: 3. | 5 41   | sys |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |        | SOIL DES | -    |           |       |       |         |                    | $\rightarrow$ |               |                 |        |        | Western T |     |                                       | MMEN |      |                    |       |       | 051111 |     |
| The state of the s |             | CS GROU<br>NSISTEN |        |          |      |           |       |       | T, RELA | COM 7. 781. 1948 L | -             | SAND<br>TESTS | HEAV<br>S, INST | E, DEE | BRIS E |           |     |                                       |      |      | OITION,<br>AGE, GF |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |        |          |      |           |       |       |         | Tes                | st Pit D      | Dimen         | tions (         | ft)    |        |           |     |                                       |      |      |                    |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           | 丰                  | ï      |          |      | 1         | ř.    | ï     | 1 1     |                    | 1             |               |                 |        |        |           |     | F                                     |      |      | 1 1                |       |       | . !    |     |
| Scale (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft)         | 2                  |        | 4        | 6    |           | 8     |       | 10      |                    | 12            |               | 14              |        | 16     |           | 18  |                                       | 20   |      | 22                 |       | 24    |        | 26  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-          | +                  | -      | 106      | 50:1 | -         | -     |       |         |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
| 2_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                    |        | Sm1 +    | deb  | v · S ·   | Oxid  | latio | 1       |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |        | SM       |      |           |       |       | 7       |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |        | SP       |      |           |       |       | PT      |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | $\top$             |        |          |      |           |       |       |         |                    | $\neg$        |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |        |          |      |           |       |       | $\Box$  |                    | $\neg$        |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |        |          |      |           |       |       |         |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |        |          |      |           |       |       |         |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |        |          |      |           |       |       |         |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                    |        |          |      |           |       |       |         |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |        |          |      |           |       |       |         |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                    |        |          |      |           |       |       |         |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |        |          |      |           |       |       |         |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |
| 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                    |        |          |      |           |       |       |         |                    |               |               |                 |        |        |           |     |                                       |      |      |                    |       |       |        |     |

OVM (ppm):

Breathing Zone Analysis

OVM (ppm): Headspace Analysis

O.Oppm O-3.5'bgs

|   | CH2MHILL   |
|---|------------|
| = | CHZIVIHILL |

TEST PIT NUMBER

SHEET 1 OF 1

| ROJECT:      | 1215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOCATION: Camp<br>CONTRACTOR: SAEDACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Johnson    | n LOGGER: EMUST                                       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------|
| LEVATION     | The second secon | CONTRACTOR: SAEDACC ED: Dete 3109 APPROX. DIMENS: Length: 8 F+ ISOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0          | 215 50000000 3140106                                  |
| VATER LEV    | N EQUIPMENT USI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APPROX. DIMENS: Length: 8 F+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Width:     | DATE EXCAVATED: 7/28/09  2 C+ Max. Depth: 3 f+        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tridui.    | COMMENTS                                              |
| SURFACE (FT) | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SOIL NAME, USCS GROUP SYMBOL, COLOR,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DIFFICULTY | Y IN EXCAVATION, RUNNING GRAVEL                       |
| E S          | - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOISTURE CONTENT, RELATIVE DENSITY,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | I, COLLAPSE OF WALLS, SAND HEAVE,                     |
| HF BF        | AY PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OR CONSISTENCY, SOIL STRUCTURE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | COUNTERED, WATER SEEPAGE,                             |
| SU           | INTERVAL<br>NUMBER<br>AND TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MINERALOGY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OVM (ppm): | NAL CONTACTS, TESTS, INSTRUMENTS.  Headspace Analysis |
|              | = 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0-05 70011-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                       |
| -            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | organic rich Sult + Sard, loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 4.1      | 0-1                                                   |
| 1_           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00         | 1-2                                                   |
| -            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05-7-814 Scallen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -          |                                                       |
| 2_           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05-2 - Suty Sand (sm) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -          |                                                       |
| _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tan to sand, some sut.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0        | 2-3                                                   |
| 3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                       |
| "            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lucse, moist. large roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7          |                                                       |
| -            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-3 - Sand (SP) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H          | 1                                                     |
| 4_           | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Box$     |                                                       |
|              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lt Tan ty sand, loose,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / 1        |                                                       |
| -            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | moist 3 mill, 10034,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / -        | l .                                                   |
| 5_           | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.10124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _          | 1                                                     |
| _            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _          |                                                       |
|              | N .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Terminated @ 3'bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | I                                                     |
| 6_           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          | 1                                                     |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | 1                                                     |
| 7_           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          | 1                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                       |
| -            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                                                       |
| 8            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | 1                                                     |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _          | 1                                                     |
| 9            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon | 1          |                                                       |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          | 1                                                     |
| -            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | I                                                     |
| 10_          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _          | 1                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 1                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                       |
| 11 —         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |                                                       |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |                                                       |
| 12           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                       |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |                                                       |
| 13           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                       |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          | 1                                                     |
| 14           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                       |

| 0 | CH2MHILL |
|---|----------|
|---|----------|

377812

TEST PIT NUMBER

TP03

SHEET 10

# **TEST PIT LOG**

| PROJECT    | : 1      | R15           |          |        |        |       | LOCA  | ATION | 1: (   | Car      | 10.      | Joh   | ınsī            | n     |          |         |          |       | LOG    | GER   | : E      | Mu            | 1st    | RD   | u             |
|------------|----------|---------------|----------|--------|--------|-------|-------|-------|--------|----------|----------|-------|-----------------|-------|----------|---------|----------|-------|--------|-------|----------|---------------|--------|------|---------------|
| ELEVATIO   | N:       |               |          |        |        |       |       |       |        |          | -        |       |                 |       |          |         |          |       |        |       |          |               |        | ,    |               |
| EXCAVATI   | ON EC    | UIPME         | NT USE   | ) :    | I      | Deev  | re    | 3     | 109    |          |          |       |                 |       |          | DATE    | EXC      | AVAT  | ED:    | 71    | 28/0     | 9             |        |      |               |
| WATER LE   | VEL:     |               |          |        | APPE   | OX. D | DIMEN | IS:   | Leng   | th:      | 8        | 3 4+  |                 |       | Width    | :       | 24       | t     |        | • ,   |          |               | : 3    | H    |               |
|            |          |               | SC       | IL DES | CRIPT  | ION   |       |       |        |          |          |       |                 |       |          |         |          | CO    | MMEN   | ITS   |          |               |        |      |               |
| SOIL NAM   | E, USC   | S GROUP       | SYMBO    | L, COL | OR, MO | DISTU | RE CO | NTENT | T, REL | ATIVE    |          | DIFFI | CULTY           | IN EX | CAVAT    | TION, F | RUNNII   | NG GF | AVEL   | COND  | ITION,   | COLL          | APSE C | F WA | LLS,          |
| DENSITY, C | OR CON   | SISTENC       | CY, SOIL | STRUC  | TURE,  | MINE  | RALOG | ŝΥ    |        |          |          |       | HEAV<br>S, INST |       |          | NCOU    | NTERE    | D, WA | ATER S | SEEPA | GE, GF   | IADAT         | IONAL  | CONT | ACTS          |
|            |          |               |          |        |        |       |       |       |        | Te       | est Pit  | Dimen | tions (         | ft)   |          |         |          |       |        |       |          |               |        |      |               |
|            | Seat     | Ş.            |          |        |        |       |       |       |        |          |          |       |                 |       |          |         |          |       |        |       |          |               |        | B    | <b>Julian</b> |
| Scale (ft) |          | 2             |          | 1      | 6      |       | 8     |       | 10     |          | 12       |       | 14              |       | 16       |         | 18       |       | 20     |       | 22       |               | 24     |      | 26            |
|            | 1        |               | TOF      | 0501   | _      |       | -/    |       |        |          |          |       |                 |       |          |         |          |       |        |       |          |               |        |      |               |
| 2_         |          |               | 5'       | m      |        |       | 1     |       |        |          |          |       |                 |       |          |         |          | -     |        |       |          |               |        |      |               |
|            | 4        |               | 5        | P      |        |       |       |       |        |          |          |       |                 |       |          |         |          |       |        |       |          |               |        |      |               |
| . —        | $\vdash$ | $\rightarrow$ |          | 1      |        |       | -     | _     |        | $\vdash$ | $\vdash$ |       | _               | _     | $\vdash$ |         |          |       |        |       | $\vdash$ | $\dashv$      |        | -    |               |
| 4          | $\vdash$ | -             | _        | -      |        | _     |       |       |        |          |          |       |                 |       | $\vdash$ |         | -        |       |        |       | $\vdash$ | $\rightarrow$ |        | -    | _             |
| l          | $\vdash$ |               |          | _      |        |       |       |       |        |          | _        | _     |                 |       |          |         |          |       |        |       | $\vdash$ |               |        | _    |               |
| 6          |          |               |          |        |        |       |       |       |        |          |          |       |                 |       |          |         |          |       |        |       |          |               |        |      |               |
|            |          |               |          |        |        |       |       |       |        |          |          |       |                 |       |          |         |          |       |        |       |          |               |        |      |               |
| 8          |          |               |          |        |        |       |       |       |        |          |          |       |                 |       |          |         |          |       |        |       |          |               |        |      |               |
|            |          |               |          |        |        |       |       |       |        |          |          |       |                 |       |          |         |          |       |        |       |          |               |        |      |               |
| 10         |          |               |          |        |        |       |       |       |        |          |          |       |                 |       |          |         |          |       |        |       |          |               |        |      |               |
| '0_ _      |          |               | _        | +      |        |       |       |       |        |          |          | _     |                 |       |          |         |          |       |        |       |          | $\neg$        |        |      |               |
|            | $\vdash$ | _             | _        | -      |        | _     |       |       | -      |          |          | _     | _               |       |          | _       | $\vdash$ |       |        | _     | $\vdash$ | -             |        | -    |               |
| 12         | $\vdash$ |               | -        | -      |        | _     | _     | _     | -      | _        | $\vdash$ |       | _               | -     | $\vdash$ |         |          | _     |        | _     | $\vdash$ | -             |        | -    | _             |
|            | $\vdash$ |               |          | _      |        |       |       |       |        |          |          |       |                 |       |          |         |          |       |        |       |          |               |        |      |               |
| 14         | 1 I      |               |          |        |        |       |       |       |        |          |          |       |                 |       |          |         |          |       |        |       | ı 1      |               |        |      |               |

OVM (ppm): Headspace Analysis

OVM (ppm):

Breathing Zone Analysis



TEST PIT NUMBER

IRIS - TPO4 SHEET 1 OF 1

| PROJEC                      | T: /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1R15               | LOCATION: Camp J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hason       | LOGGER: E Must                    |     |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------|-----|
| ELEVAT                      | the state of the s |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ner manuer abole                  |     |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JIPMENT USE        | A Company of the Comp | Milelbox    | DATE EXCAVATED: 7/26/09           | _   |
|                             | LEVEL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | APPROX. DIMENS: Length: 9 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | wigin.      | COMMENTS                          | _   |
| DEPTH BELOW<br>SURFACE (FT) | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AMPLE              | SOIL NAME, USCS GROUP SYMBOL, COLOR,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DIECIOLILTY | IN EXCAVATION, RUNNING GRAVEL     | _   |
| ELC<br>E                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | MOISTURE CONTENT, RELATIVE DENSITY,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | COLLAPSE OF WALLS, SAND HEAVE.    |     |
| A H                         | AL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E 2                | OR CONSISTENCY, SOIL STRUCTURE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | COUNTERED, WATER SEEPAGE,         |     |
| TH.                         | NTERVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 器 左                | MINERALOGY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | IAL CONTACTS, TESTS, INSTRUMENTS. |     |
| E S                         | Ë                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NUMBER<br>AND TYPE | MINERALOGI,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OVM (ppm):  | Headspace Analysis                | ٦   |
| _                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0-05- Topso, 145 Dt grey (sm)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                   | _   |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0 03 topsoil & or again                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0         | 0-1                               |     |
| 1_                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Ay Sand & selt, loose moist _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                   |     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                   |     |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 6.5-3 - Sulty Sand (Sm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0         | 1-2 (5) 1-2                       | 4   |
| 2_                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   | _   |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Tan for sand + sut, trace -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                   |     |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Clay, small coarse sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1           | 1                                 |     |
| 3                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0         | 2-3                               | -   |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Size shell fragments, med -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0         |                                   |     |
| _                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | dense Good Con mother crange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1           | Small piece of                    |     |
| 4_                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | red covamic                       | _   |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 3-4 - Sutty Sand (Sm) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                   |     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | - John Jana (3.1.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0         | 3-4- metal pipe,                  |     |
| 5_                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | As above - orange -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0         |                                   | =   |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Ceramic + gliss                   |     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 4-5- Sand (SP) - White -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                   |     |
| 6_                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 11 2 Jana (31) - White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0         | 4-5                               | -   |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | 11+ to 1 co 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0         | 4 5                               |     |
| 7                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Lt tan ty sand, loss, mit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                   |     |
| 7_                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   | -   |
| _                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Terminated @ 5 bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                   | - 5 |
| 8_                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | termination C 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                   |     |
| "-                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |                                   | _   |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |     |
| 9                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   | 1.5 |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | l                                 |     |
| 10_                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |     |
| -                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                   | 2   |
| 11_                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                   |     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | I.                                |     |
| -                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | I                                 |     |
| 12_                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           | I .                               | -   |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | I                                 |     |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |                                   |     |
| 13_                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                   | -   |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1                                 |     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | I.                                |     |
| 14                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | I .                               | -   |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   | _   |

| • | CH2MHILL |
|---|----------|
|---|----------|

TEST PIT NUMBER

377812

1R15-TP04

SHEET 10

# **TEST PIT LOG**

| PROJECT:                         |         |              |            |       | LOCATI         | ON: (2    | imp J    | ohn   | Son      |        |                       |       |        | LOG    | GER  | : E | Mus   | st/R | D4  |        |
|----------------------------------|---------|--------------|------------|-------|----------------|-----------|----------|-------|----------|--------|-----------------------|-------|--------|--------|------|-----|-------|------|-----|--------|
| ELEVATION :<br>EXCAVATION E      | OLUDMEN | TUSED        | . 1        |       | 21/            |           |          |       |          |        | DAT                   | EEYC  | ΔΙΛΑΤΕ | D: -   | 7/2  | 010 | 9     |      |     |        |
| WATER LEVEL :                    |         | 1 USED       |            | BOX   | 310<br>DIMENS: | Length    | 1: 9 %   | *     |          | V      | Vidth: 2              | L LAU | AVATE  | υ.     | 110  | Max | Depth | . 5  | H   |        |
|                                  |         | SOL          | L DESCRIP  |       | JIIVILI TO.    | Longa     | / 1      | †     |          |        | vidur. Z              | 71    |        | MMEN.  |      | man | Берин | . 01 | - ( |        |
| SOIL NAME, USO<br>DENSITY, OR CO |         | SYMBOL       | , COLOR, N | OISTU |                | ENT, RELA | TIVE     | SAND  | HEAVE    |        | AVATION,<br>RIS ENCOU |       | NG GRA | AVEL C | COND |     |       |      |     |        |
|                                  |         |              |            |       |                |           | Test Pit | Dimen | tions (f | ft)    |                       |       |        |        |      |     |       |      |     |        |
| Qualit                           | da .    | - 12<br>- 12 |            | 2     | 5 12           | (B) (B)   | 25       | S :   | S 70     | 7.5    | 128                   | 3     |        | .85    | 10   |     |       | 2 8  | - 1 | Ribeth |
| Scale (ft)                       | 2       | 4            | 9          | 6     | 8              | 10        | 12       |       | 14       |        | 16                    | 18    |        | 20     |      | 22  |       | 24   |     | 26     |
|                                  |         | TOP          | Soil /SN   | 4     |                |           |          |       |          |        |                       |       |        |        |      |     |       |      |     |        |
| 2_                               |         |              |            |       |                |           |          |       |          |        |                       |       |        |        |      |     |       |      |     |        |
|                                  |         | Sm           |            |       |                |           |          |       |          |        |                       |       |        |        |      |     |       |      |     |        |
| 4                                |         | Sm 4         | debris     | /     |                |           |          |       |          |        |                       |       |        |        |      |     |       |      |     |        |
|                                  |         | SP           |            | 1     |                |           |          |       |          |        |                       |       |        | $\neg$ |      |     |       |      |     |        |
| 6                                |         |              |            |       |                | $\dashv$  |          |       |          |        | $\neg$                |       |        | $\neg$ |      |     |       |      |     |        |
|                                  |         |              |            |       |                |           |          |       |          |        |                       |       |        |        |      |     |       |      |     |        |
| 8                                |         |              |            |       |                |           |          |       |          | $\neg$ |                       |       |        |        |      |     |       |      |     |        |
|                                  |         |              |            |       |                |           |          |       |          |        |                       |       |        |        |      |     |       |      |     |        |
| 10                               |         |              |            |       |                |           |          |       |          |        |                       |       |        |        |      |     |       |      |     |        |
|                                  |         |              |            |       |                |           |          |       |          |        |                       |       |        |        |      |     |       |      |     |        |
| 12                               |         |              |            |       |                |           |          |       |          |        |                       |       |        |        |      |     |       |      |     |        |
|                                  |         |              |            |       |                |           |          |       |          |        |                       |       |        |        |      |     |       |      |     |        |
| 14                               |         |              |            |       |                |           |          |       |          |        |                       |       |        |        |      |     |       |      |     |        |

OVM (ppm):

Breathing Zone Analysis

OVM (ppm): Headspace Analysis

0.0 -0.5' bgs

0.0 ppm



TEST PIT NUMBER

SHEET 1 OF 1

| PROJEC                      | et: ,   | IR15               | LOCATION: Camp Jo                    | hnson      | LOGGER: E MUS                                    | it |
|-----------------------------|---------|--------------------|--------------------------------------|------------|--------------------------------------------------|----|
| ELEVAT                      |         | UDMENTION          | CONTRACTOR: SAEDACCO                 |            | DATE EVOLUTED DISULO                             |    |
|                             | LEVEL : | UIPMENT USE        | DPPROX. DIMENS: Length: 9 4          | Width:     | DATE EXCAVATED: 7/28/09<br>2 ft Max. Depth: 7 ft |    |
|                             |         | Andrews V          | SOIL DESCRIPTION                     | Widin.     | COMMENTS                                         | _  |
| DEPTH BELOW<br>SURFACE (FT) | 3       | SAMPLE             | SOIL NAME, USCS GROUP SYMBOL, COLOR, | DIFFICULTY | IN EXCAVATION, RUNNING GRAVEL                    |    |
| GE (                        |         | ш                  | MOISTURE CONTENT, RELATIVE DENSITY,  | CONDITION, | COLLAPSE OF WALLS, SAND HEAVE,                   |    |
| H X                         | × ×     | H -                | OR CONSISTENCY, SOIL STRUCTURE,      | DEBRIS ENC | OUNTERED, WATER SEEPAGE,                         |    |
| SUF                         | NTERVAL | NUMBER<br>AND TYPE | MINERALOGY.                          |            | AL CONTACTS, TESTS, INSTRUMENTS.                 |    |
|                             | Z       | Σ₹                 |                                      | OVM (ppm): | Headspace Analysis                               |    |
|                             |         |                    | 0-1 - Tupsoil + Sulty Sand (Sm)      | 0.0        | 0-1                                              |    |
|                             |         |                    |                                      |            |                                                  |    |
| 1_                          |         | 1                  | Dk grey ty may sand selt -           |            |                                                  | _  |
| -                           |         |                    | organic rich, most, loose -          | 0.0        | 1-2                                              | 5  |
| 2                           |         | 1                  |                                      |            |                                                  |    |
|                             | ľ       |                    | 1-43-Silty sand (sm) -               | 1          | 1.3                                              |    |
| 72                          | 1       | 1                  |                                      | 0-0        | 2-3                                              |    |
| 3_                          |         |                    | Tan + orange fy sand + sult_         |            |                                                  | -  |
|                             |         |                    | I - O -                              | 22 24      |                                                  |    |
| -                           |         |                    | losse, maist                         | 7.2        | 3-9                                              |    |
| 4_                          |         | 1                  | 25 0 1 1/2 ((1)                      |            |                                                  |    |
| 2                           |         | 1                  | 3-5 - Sandy Clay (CL)                |            |                                                  |    |
| -                           |         | 1                  |                                      | 4.3        | 5-9                                              |    |
| 5                           |         |                    | Gray lorange by Sand + -             | 4.5        | 3 4                                              | _  |
| -                           |         | 1                  | clay, from, most                     |            |                                                  |    |
| 6                           |         |                    | cay, prm, mis.                       | 1          |                                                  |    |
| -                           |         |                    | 4-9- Sand (SP) -                     | 1          |                                                  |    |
| 2                           |         | 1                  | Sand (SI)                            | 1          |                                                  |    |
| 7_                          |         |                    | white - Lt Tan for sand,             | _          |                                                  | -  |
|                             |         |                    |                                      |            |                                                  |    |
| 722                         |         | 1                  | /loss, moist                         | 1          |                                                  |    |
| 8                           |         | 1                  |                                      | 1          |                                                  | 35 |
| _                           |         |                    | T. 1.1071.                           |            |                                                  | -  |
| 9_                          | 1       |                    | Terminated @ 7/bgs                   |            |                                                  |    |
| ×                           |         | 1                  |                                      | 1          |                                                  |    |
| -                           |         | 1                  |                                      | -          |                                                  |    |
| 10_                         |         | 1                  | 1                                    |            |                                                  |    |
|                             |         |                    |                                      |            |                                                  |    |
| -                           | 1       | 1                  | -                                    | 1          |                                                  |    |
| 11_                         |         | 1                  | _                                    | -          |                                                  | -  |
|                             |         |                    |                                      |            |                                                  |    |
| 40                          |         | 1                  |                                      |            |                                                  |    |
| 12                          | 1       | 1                  | -                                    | 1          |                                                  | -  |
| _                           |         |                    |                                      |            |                                                  |    |
| 13                          |         |                    |                                      |            |                                                  |    |
| 10_                         | 1.      |                    | -                                    | 1          |                                                  | _  |
| -                           |         |                    | -                                    | -          |                                                  |    |
| 14                          |         |                    |                                      |            |                                                  |    |
| 10000                       |         |                    |                                      |            |                                                  |    |

| 0 | CH2MHILL |
|---|----------|
|---|----------|

317812

TEST PIT NUMBER

TP05

SHEET 10

# **TEST PIT LOG**

| PROJECT                |                                                  | IR I          | 5       |         |      |                      | LOCA            | TION  | : Ca     | mp -          | chne          | Bn            |                       |          | L           | OGGE   | R: E1   | Mus           | x/ /=         | 2DU      |
|------------------------|--------------------------------------------------|---------------|---------|---------|------|----------------------|-----------------|-------|----------|---------------|---------------|---------------|-----------------------|----------|-------------|--------|---------|---------------|---------------|----------|
| ELEVATIO               |                                                  | OL HOMAS      | NTLIO   | D .     | D- / |                      | 210             |       |          |               |               |               |                       | TE EVO   | AVATED      | -1     | 28/09   |               | -             |          |
| EXCAVAT                | -                                                |               | INT USE | D:      | LPC  | Ve                   | 310<br>DIMEN    | 2     | Longth   | 9             | · f           | -             | Width:                | 2        | PH          | - //   | Max. D  | Jonth:        | -             | 1.1      |
| WATER LE               | VEL:                                             |               |         | 011 05  |      | A PERSONAL PROPERTY. | JIMEN           | 5;    | Length:  |               | +             | _             | widin:                | ×        |             | IENTS  |         | eptii.        | 1-            | PT       |
| 0011 11414             | E 1100                                           | 00000         |         | OIL DES |      |                      | 75.001          | TEN I | DEL ATE  | <i>y</i> = 1  | DIFFICI       | II TV IA      | EXCAVATION            | N. DUNNI |             |        |         | COLLAI        | DOE OF        | MALLO    |
| SOIL NAM<br>DENSITY, C |                                                  |               |         |         |      |                      |                 |       | , HELATI |               | SAND H        | EAVE,         | DEBRIS ENC<br>UMENTS. | 3        |             |        |         |               |               |          |
|                        |                                                  |               |         |         |      |                      |                 |       |          | Test Pit I    | Dimenti       | ons (ft)      |                       |          |             |        |         |               |               |          |
|                        | 8000                                             | h i           |         | 4       |      |                      |                 |       |          |               | ,             | 1             | 1 1                   | 1        |             | 1      | 1 1     |               | 1             | Aleger 1 |
| Scale (ft)             |                                                  | 2             |         | 4       | 6    |                      | 8               |       | 10       | 12            |               | 14            | 16                    | 18       |             | 20     | 22      | $\perp$       | 24            | 26       |
|                        | 1                                                |               | To      | P501    | 1/5m | 1                    |                 | /     |          |               |               |               |                       |          |             |        |         |               |               |          |
| 2                      |                                                  |               | 51      | n       |      |                      | 1               |       |          |               |               |               |                       |          |             |        |         |               |               |          |
|                        |                                                  |               |         |         |      |                      |                 |       |          |               |               |               |                       |          |             |        |         |               |               |          |
| 4                      |                                                  |               | CI-     |         |      |                      |                 |       |          | $\neg$        |               |               |                       |          |             |        |         |               |               |          |
|                        |                                                  |               |         |         |      |                      |                 |       |          |               |               | $\neg$        |                       |          |             | $\top$ | $\top$  | $\neg$        |               | $\neg$   |
| 6                      | <del>                                     </del> | 1             | 95      |         | 1    |                      | $\vdash$        |       |          | +             | $\neg$        | -             |                       | 1        |             | +      | +       | $\neg$        | $\neg$        | $\neg$   |
| 0-                     |                                                  | 1             | × /     | 4       | 1    |                      | $\vdash$        | _     | $\vdash$ | +             | $\rightarrow$ | +             |                       | +-       | $\vdash$    | +      | +       | $\dashv$      | +             | _        |
| _                      | -                                                | $\rightarrow$ | 4       | +       | -    | -                    | $\vdash$        |       | $\vdash$ | $\rightarrow$ | $\rightarrow$ | -             |                       | _        |             | +      | +       | -             | +             |          |
| 8                      | -                                                | $\vdash$      |         | +-      |      |                      | $\vdash$        |       | $\vdash$ | +             | -             | $\dashv$      |                       | +        | <del></del> | +      | +       | -+            | +             | -        |
|                        | -                                                | $\vdash$      | _       | +-      | -    |                      | $\vdash \vdash$ |       | $\vdash$ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |                       | -        |             | +      | +       | $\rightarrow$ | +             | -        |
| 10                     |                                                  |               |         |         |      |                      |                 |       | $\vdash$ |               |               | _             |                       |          |             | _      | $\perp$ | $\dashv$      | $\rightarrow$ |          |
|                        |                                                  |               |         |         |      |                      |                 |       |          |               |               |               |                       |          |             |        |         |               |               |          |
| 12                     |                                                  |               |         |         |      |                      |                 |       |          |               |               |               |                       |          |             |        |         |               |               |          |
|                        |                                                  |               |         |         |      |                      |                 |       |          |               |               |               |                       |          |             |        |         |               |               |          |
| 14                     |                                                  |               |         |         |      |                      |                 |       |          |               |               |               |                       |          |             |        | T       |               |               |          |

OVM (ppm): Headspace Analysis

OVM (ppm):

Breathing Zone Analysis



TEST PIT NUMBER

1R15-TP06

SHEET 1 OF 1

| PROJECT                     | : 18    | 215                | LOCATION: Camp Johnson LOGGER: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | must     |
|-----------------------------|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| ELEVATIO                    |         |                    | CONTRACTOR: SAEDACCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|                             |         | IPMENT USE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 09     |
| WATER L                     | EVEL:   |                    | The state of the s | 14       |
| ₹F                          | SA      | MPLE               | SOIL DESCRIPTION COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| DEPTH BELOW<br>SURFACE (FT) |         |                    | SOIL NAME, USCS GROUP SYMBOL, COLOR, DIFFICULTY IN EXCAVATION, RUNNING GRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| H B                         | A.      | PE G               | MOISTURE CONTENT, RELATIVE DENSITY, CONDITION, COLLAPSE OF WALLS, SAND HE OR CONSISTENCY, SOIL STRUCTURE, DEBRIS ENCOUNTERED, WATER SEEPAGE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AVE,     |
| H H                         | NTERVAL | # C                | MINERALOGY. GRADATIONAL CONTACTS, TESTS, INSTRUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ENTS.    |
| S                           | Z       | NUMBER<br>AND TYPE | OVM (ppm): Headspace Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|                             |         |                    | Onl - Trosail Mulde Shee 3111 Onl - Hables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| -                           |         |                    | 0-1 - Topsoil, Mulch, Subtysand 31.4 0-1 Highly or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Janic    |
| 1_                          |         |                    | Dit grey by sand + sect, - 6.1 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O. Oppin |
|                             |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| _                           |         |                    | organic rich, mulch, mist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 2_                          |         |                    | 1-2 Sety Sand(sm) - 0.0 2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _        |
| 4                           |         |                    | July Sandisin) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 3                           |         |                    | Orangish Tan for sand, some - 00 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|                             |         |                    | 0.0 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| -                           |         |                    | Selt, losse, moist -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 4                           |         |                    | 2-2 50 /(2) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        |
|                             |         |                    | 2-3 Sand (SP) - Tan 0.0 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| -                           |         |                    | formy sand lowse, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 5                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| _                           |         |                    | 3.5 - Sandy clay KLS -0.0 5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 6                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| °-†                         |         |                    | Gray lorange / Tan As sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| -                           |         |                    | A COLLEGE OF THE STATE OF THE S | 9        |
| 7_                          |         |                    | + Glay, firm, dry-noist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|                             |         |                    | 5-6- Sand (SP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| -                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 8                           |         |                    | White - LT Tan for sound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-       |
| _                           |         |                    | last, mist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 9                           |         |                    | 1 10031, 176151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 9_                          |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·      |
| -                           |         |                    | Terminated @ 6 bgs -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 10                          |         |                    | 1(11)1111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|                             |         |                    | 1 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| -                           |         |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9        |
| 11_                         |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| 150                         |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                             |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 12_                         |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| -                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| 13                          |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 13_                         |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| -                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 14                          |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                             |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

| 0 | H2MHILL |
|---|---------|
|---|---------|

TEST PIT NUMBER

377812

TP06

SHEET 10

# **TEST PIT LOG**

| PROJECT: 1RIS                      | LOCATION: Cam                    | p Johnson                                    | LOGGE                  | R: Emust                                         |
|------------------------------------|----------------------------------|----------------------------------------------|------------------------|--------------------------------------------------|
| ELEVATION:                         |                                  | ·                                            |                        |                                                  |
| EXCAVATION EQUIPMENT USED :        | Deere 310g                       |                                              |                        | 28/09                                            |
| WATER LEVEL :                      | APPROX. DIMENS: Length:          | 9H Width:                                    | 2.14                   | Max. Depth: (a ft                                |
| SOIL D                             | ESCRIPTION                       | 0                                            | COMMENTS               |                                                  |
| SOIL NAME, USCS GROUP SYMBOL, CO   | DLOR, MOISTURE CONTENT, RELATIVE | DIFFICULTY IN EXCAVATION                     | ON, RUNNING GRAVEL CON | NDITION, COLLAPSE OF WALLS,                      |
| DENSITY, OR CONSISTENCY, SOIL STRU | JCTURE, MINERALOGY               | SAND HEAVE, DEBRIS EN<br>TESTS, INSTRUMENTS. | COUNTERED, WATER SEEF  | PAGE, GRADATIONAL CONTACTS                       |
|                                    | Tes                              | t Pit Dimentions (ft)                        |                        |                                                  |
| - Oouth-                           |                                  | W 12 12 N 12                                 |                        | -North                                           |
| Scale (ft) 2 4                     | 6 8 10                           | 12 14 16                                     | 18 20                  | 22 24 26                                         |
| Topsoil, mul                       | 1ch, 5m                          |                                              |                        |                                                  |
| 2 \   Sm                           |                                  |                                              |                        |                                                  |
| SP                                 |                                  |                                              |                        |                                                  |
| 1                                  |                                  |                                              |                        | <del>                                     </del> |
| 4_                                 | ++4+++                           | <del></del>                                  |                        |                                                  |
|                                    |                                  |                                              |                        |                                                  |
| 6_ SP                              |                                  |                                              |                        |                                                  |
|                                    |                                  |                                              |                        |                                                  |
| 8_                                 |                                  |                                              |                        |                                                  |
|                                    |                                  |                                              |                        |                                                  |
| 10                                 |                                  |                                              |                        |                                                  |
|                                    |                                  |                                              |                        |                                                  |
| 12                                 |                                  |                                              |                        |                                                  |
|                                    |                                  |                                              |                        |                                                  |
| 14                                 |                                  |                                              |                        |                                                  |

OVM (ppm): Headspace Analysis

OVM (ppm):

Breathing Zone Analysis



TEST PIT NUMBER

IRIS-TPO7 SHEET 1 OF 1

| DDO IFO                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ID IC              | LOCATION Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | labor      |                    | 00FD - 1-101 - 15 ± |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|---------------------|
| PROJEC                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IR15               | LOCATION: CAMP<br>CONTRACTOR: SAEDAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Johnso     | N LO               | GGER: Emust         |
| ELEVATI                     | The state of the s | PMENT USED         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0         | DATE EXCAVAT       | ED: 7/28/09         |
| WATER                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I MICIAI OSCI      | APPROX. DIMENS: Length: 1/2 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Width:     | THE                | Depth: 6 f f        |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N. Cophiese        | SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trideri.   | 200                | MENTS               |
| DEPTH BELOW<br>SURFACE (FT) | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPLE               | SOIL NAME, USCS GROUP SYMBOL, COLOR,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DIFFICULTY | Y IN EXCAVATION, F | UNNING GRAVEL       |
| SE (                        | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOF                | MOISTURE CONTENT, RELATIVE DENSITY,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | , COLLAPSE OF WA   |                     |
| FA                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E 로                | OR CONSISTENCY, SOIL STRUCTURE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEBRIS EN  | COUNTERED, WATE    | R SEEPAGE,          |
| 를 를<br>등                    | NTERVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NUMBER<br>AND TYPE | MINERALOGY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GRADATIO   | NAL CONTACTS, TE   | STS, INSTRUMENTS.   |
| -0.55%                      | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ž ž                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OVM (ppm): | Headspace Ar       | alysis              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0-0.5 - Topsoil - Dkgrey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                    |                     |
| _                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 100001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0.0      | 0-1                |                     |
| 1_                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | organic rich sult a sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _          | 1                  | -                   |
| _                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                    |                     |
| 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | The state of the s | 0.0        | 1-2                |                     |
| 2                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0.5-3 - Suty Sand (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -          |                    | 7-                  |
| _                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0       | z-3                | 5                   |
| 3_                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Ovangish tan ty sand,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                    |                     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1:14 out his morest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 2 11               | -                   |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | little sut, loose, mrist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0        | 3-4                | 9.5                 |
| 4                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 255 0 1 11 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _          |                    | 12                  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                  | 3-5,5- Sandy Clayles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0        | 4-5                |                     |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | . 3                | 29                  |
| 5                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | day, firm, dy-moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6        |                    | _                   |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Man Com division in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0        | 5-6                |                     |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | day, non , any moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -          |                    | 33                  |
| 6                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 2 (1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | _                  | -                   |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 5.5-6- Sand (SP) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Λ          |                    |                     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Π          | 1                  |                     |
| 7_                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ľ                  | Orange   Tan for sond,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\vdash$   | 1                  | -                   |
| _                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _          | 1                  |                     |
| 8                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | lose, most.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 1                  |                     |
| 0_                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1 1241,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _          | 1                  | _                   |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                    | 9                   |
| 9                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Terminated e 6 bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                    |                     |
| \$4600 m                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 1                  |                     |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                    | 9                   |
| 10                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                    | -                   |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1                  |                     |
| 200                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | 1                  | 24                  |
| 11_                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | 1                  |                     |
| 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                    | 56                  |
| 10                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |                    |                     |
| 12                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                    | -                   |
| _                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          | 1                  |                     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1                  |                     |
| 13_                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          | 1                  | · ·                 |
| _                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          | 1                  |                     |
| 14                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1                  |                     |
| 14                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                    | -                   |

| 0 | CH2MHILL |
|---|----------|
|---|----------|

TEST PIT NUMBER

TPOT

SHEET 10

# **TEST PIT LOG**

|                                     |                           | \ .                                            |                      | _                           |
|-------------------------------------|---------------------------|------------------------------------------------|----------------------|-----------------------------|
| PROJECT: IRIS                       | LOCATION: (Jan            | mp Johnson                                     | LOGGEF               | R: EM                       |
| ELEVATION:                          |                           |                                                |                      |                             |
| EXCAVATION EQUIPMENT USED :         | Deere 3109                |                                                | TE EXCAVATED: 7/     | 28 / 09<br>Max. Depth: 6 4+ |
| WATER LEVEL :                       | APPROX. DIMENS: Length:   | 10 1+ Width:                                   | 2 ft                 | Max. Depth: 6 4+            |
| SOIL DES                            | SCRIPTION                 |                                                | COMMENTS             |                             |
| SOIL NAME, USCS GROUP SYMBOL, COL   |                           |                                                |                      | DITION, COLLAPSE OF WALLS,  |
| DENSITY, OR CONSISTENCY, SOIL STRUC | CTURE, MINERALOGY         | SAND HEAVE, DEBRIS ENCO<br>TESTS, INSTRUMENTS. | DUNTERED, WATER SEEP | AGE, GRADATIONAL CONTACTS   |
|                                     | Test                      | t Pit Dimentions (ft)                          |                      |                             |
| South-                              | 100 at 100 at 100 100 100 |                                                |                      | North                       |
| Scale (ft) 2 4                      | 6 8 10                    | 12 14 16                                       | 18 20                | 22 24 26                    |
| TOPS                                | 551/                      |                                                |                      |                             |
| 2_ \ Sm                             |                           |                                                |                      |                             |
|                                     |                           |                                                |                      |                             |
| 4_ 04_                              |                           |                                                |                      |                             |
|                                     |                           |                                                |                      |                             |
| 6_                                  |                           |                                                |                      |                             |
|                                     |                           |                                                |                      |                             |
| 8                                   |                           |                                                |                      |                             |
|                                     |                           |                                                |                      |                             |
| 10                                  |                           |                                                |                      |                             |
|                                     |                           |                                                |                      |                             |

OVM (ppm): Headspace Analysis

OVM (ppm):

Breathing Zone Analysis

|   | CH2MHILL |
|---|----------|
| - |          |

TEST PIT NUMBER

IRIS TPOB

SHEET 1 OF 1

| ROJECT:              | IR15               | LOCATION: Cam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o loboseo       | LOGGER                                         | Emust      |
|----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------|------------|
| LEVATION:            | 110.5              | LOCATION: Cam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0               |                                                |            |
|                      | QUIPMENT USE       | D: Deere 310 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | DATE EXCAVATED:                                | 7 28 09    |
| VATER LEVEL :        | Ę.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Width:          | A A Max. Depth:                                | 5.5 H      |
| 3 E                  | SAMPLE             | SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | COMMENTS                                       | •          |
| SURFACE (FT) STERVAL |                    | SOIL NAME, USCS GROUP SYMBOL, COLOR,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | IN EXCAVATION, RUNNING                         |            |
| A ACE                | ~ H                | MOISTURE CONTENT, RELATIVE DENSITY,<br>OR CONSISTENCY, SOIL STRUCTURE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | , COLLAPSE OF WALLS, SA                        |            |
| SURFAC<br>SURFAC     | 필스                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | COUNTERED, WATER SEEP                          |            |
| N S E                | NUMBER<br>AND TYPE | MINERALOGY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OVM (ppm):      | IAL CONTACTS, TESTS, INS<br>Headspace Analysis | STRUMENTS. |
|                      |                    | A-CE Taril No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O vini (ppini): | Treadspace Principals                          | -          |
| -                    | 1                  | 0-0.5 - Topsoil - Dk quen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.0            | 12-1                                           |            |
| 1                    | 1                  | organic Silt & Sand, loose,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _               | P                                              |            |
|                      | 1                  | dy -most                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0             | 1-2                                            |            |
| -                    | 1                  | A ANTONIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 0.0           | 1 2                                            |            |
| 2_                   | 1                  | 0.5-1 - Sand (SP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 4.5           | 2-3                                            |            |
|                      | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1-3                                            |            |
| . 7                  |                    | Tan to sand, lower, min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | st              | - 11                                           |            |
| 3_                   | 1                  | 573 - 577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 0.0           | 3-4                                            |            |
| _                    | 1                  | 1-3 - sardy Clay(EL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _               |                                                |            |
| , ]                  | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20              | 4-5                                            |            |
| *-                   |                    | Dry lorange to sand +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 2.9           | 7 5                                            |            |
| -                    |                    | ordina or in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -               |                                                |            |
| 5_                   | 1                  | clay, fin, mrist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1             |                                                |            |
| 3-                   |                    | 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _               |                                                |            |
| +                    |                    | 3.4 - 6.11 Sa. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               | +                                              |            |
| 6                    |                    | 3-4 - Sulty Sand (sm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4               |                                                |            |
|                      |                    | Mary lot of soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11              |                                                |            |
| -                    |                    | arangelton to sand +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /-1             |                                                |            |
| 7_                   |                    | Self, loose, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vdash$        |                                                |            |
|                      | 1                  | The control of the co | /               |                                                |            |
|                      |                    | (4-5.5- Sand (SP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-1             |                                                |            |
| 8_                   | 1                  | Jana (SF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>[</i> – ]    | li .                                           |            |
| _                    | 1                  | White As sand, 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / _             |                                                |            |
| 9_                   |                    | 13 30001,1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                                |            |
| 3-                   |                    | \ Moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _               |                                                |            |
| -                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               |                                                |            |
| 10_                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                |            |
|                      |                    | Terminated 05.5 by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2               | I                                              |            |
| -                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               | I                                              |            |
| 11_                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _               | 1                                              |            |
|                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1                                              |            |
|                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |                                                |            |
| 12_                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _               | l                                              |            |
| _                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                |            |
| 40                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1                                              |            |
| 13_                  | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               |                                                |            |
| _                    | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                |            |
| 14                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                |            |
| 14 —                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               |                                                |            |

| • | CH2MHILL |
|---|----------|
|---|----------|

OVM (ppm): Headspace Analysis

| PROJECT | NUMBER |
|---------|--------|
|         | 377812 |

OVM (ppm):

Breathing Zone Analysis

TEST PIT NUMBER

SHEET 10

| PRO  | JECT :  | :      | ľ      | RIS         | 5      |          |       |       | LOCA  | ATION | : (   | an    | P J     | John            | 150             | n_    |       |        |        |       | LOG   | GER   | : E      | me     | 15t           |        |       |
|------|---------|--------|--------|-------------|--------|----------|-------|-------|-------|-------|-------|-------|---------|-----------------|-----------------|-------|-------|--------|--------|-------|-------|-------|----------|--------|---------------|--------|-------|
| ELEV | /ATIOI  | N :    |        |             |        |          |       |       |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        |               |        |       |
| EXC/ | AVATION | ON E   | QUIPN  | <b>IENT</b> | USED   | :        | De    | eve   | 7     | 310   | 9     |       |         |                 |                 |       |       |        | EXC    | -     | ED:   | 71    | 28/      |        |               |        |       |
| WAT  | ER LE   | VEL:   |        |             |        |          | APP   | ROX.  | DIMEN | IS:   | Lengt | th:   | (       | 3 1             | +               |       | Width | :      | 20     | +     |       |       | Max.     | Depth: | 6             | .5 A   | 4     |
|      |         |        |        |             | SO     | L DES    | CRIPT | ПОП   |       |       |       |       |         | 0               |                 |       |       |        | -0-    | CO    | MMEN  | ITS   |          |        |               |        |       |
| SOIL | NAME    | E, USC | SGR    | OUP SY      | MBOL   | , COL    | OR, M | OISTU | RE CO | NTENT | , REL | ATIVE |         | DIFFI           | CULTY           | IN EX | CAVAT | TON, F | RUNNIN | IG GF | AVEL  | COND  | ITION,   | COLLA  | PSE C         | F WA   | LLS,  |
| DENS | SITY, O | R CON  | NSISTE | NCY,        | SOIL S | TRUC     | TURE, | MINE  | RALOG | Ϋ́    |       |       |         | 120-27 30013000 | HEAV<br>S, INST |       |       | NCOU   | NTERE  | D, WA | TER S | SEEPA | GE, GF   | RADATI | ONAL          | CONT   | ACTS, |
|      |         |        |        |             |        |          |       |       |       |       |       | Te    | est Pit | Dimen           | tions (         | ft)   |       |        |        |       |       |       |          |        |               |        |       |
|      |         | Sout   | h      |             | 3      |          | (9 )  |       | 20 7  | 9     |       |       | 2 12    | - ,             |                 |       |       |        | 16     | 0     |       |       |          | 1 12   |               | +      | lorth |
| Scal | e (ft)  |        | 2      |             | 4      |          | 6     |       | 8     |       | 10    |       | 12      |                 | 14              |       | 16    |        | 18     |       | 20    |       | 22       |        | 24            |        | 26    |
|      |         | Λ      |        | To          | PS     | PIL      | -     |       |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        |               |        |       |
| 2    |         |        |        |             | 6      |          |       |       | 7     |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        |               |        |       |
|      |         |        |        |             | 0      |          |       |       |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        |               |        |       |
| 4    |         | 1      |        | 3           | m      | _        |       |       |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        |               |        |       |
|      |         |        | 1      | P           |        |          |       |       |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        |               |        |       |
|      |         |        | 1      |             |        |          |       | -     | _     |       |       |       |         | _               |                 |       |       | _      |        |       |       |       | $\vdash$ | _      | -             | $\neg$ |       |
| 6    | _       |        |        |             | _      | ⊢        |       | -     | -     |       |       |       | -       |                 | _               |       |       | _      | -      | _     | _     |       | $\vdash$ |        | $\rightarrow$ | -      | -     |
|      | _       | _      | -      | _           | _      | <u> </u> | -     | -     | -     | _     |       |       | -       |                 |                 |       |       |        | -      | _     |       |       |          | -      | $\rightarrow$ | -      | -     |
| 8    |         |        |        |             |        |          |       | _     |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        | _             |        |       |
|      |         |        |        |             |        |          |       |       |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        |               |        |       |
| 10   |         |        |        |             |        |          |       |       |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        |               |        |       |
|      |         |        |        |             |        |          |       |       |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        |               |        |       |
| 12   |         |        |        |             |        |          |       |       |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        |               |        |       |
| W-7- |         |        |        |             |        |          |       |       |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        | $\neg$        |        |       |
| 14   |         |        |        |             |        |          |       |       |       |       |       |       |         |                 |                 |       |       |        |        |       |       |       |          |        |               |        |       |



PROJECT NUMBER 377も12 TEST PIT NUMBER

SHEET 1 OF 1

| PROJEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 5 ı                                                                                                               | OCATION: Camp J                                                        | ohn Son                                            | LOGGER: EMUS                                                                                                                             | + |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---|
| A Company of the Comp | TION EQUIPMENT  | USED: Deere 310 a                                                                                                 |                                                                        | DAT                                                | E EXCAVATED: 7/29/09                                                                                                                     |   |
| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LEVEL :         | APPROX. DIMENS: L                                                                                                 | ength: 7 ft                                                            | Width: 2                                           | Max. Depth: 6 ft                                                                                                                         |   |
| DEPTH BELOW<br>SURFACE (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | INTERVAL NUMBER | SOIL DESCRIPTION  SOIL NAME, USCS GROUP SYM  MOISTURE CONTENT, RELATIV.  OR CONSISTENCY, SOIL STRUCT  MINERALOGY. | E DENSITY,                                                             | CONDITION, COLI<br>DEBRIS ENCOUN<br>GRADATIONAL CO | COMMENTS  XCAVATION, RUNNING GRAVEL  LAPSE OF WALLS, SAND HEAVE, ITERED, WATER SEEPAGE, ONTACTS, TESTS, INSTRUMENTS.  Headspace Analysis | _ |
| - 1 2 3 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | O-05 - Topsoi<br>Organic rich:<br>loose, duy-mon<br>05 - Sille<br>Orongish   Tan<br>Some sult,                    | sut + sand, _<br>ist _<br>y Sand (sm) =<br>fy Sand, _<br>luose, must = | 0.0 0<br>0.0 1<br>0.0 2<br>0.0 2                   | of to the left into                                                                                                                      |   |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | Test pit to                                                                                                       | erminated -                                                            |                                                    | a mound<br>w/ batteries<br>on to p<br>Call it<br>TPOIA                                                                                   | - |
| 14_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                                                                                                   | -                                                                      |                                                    |                                                                                                                                          | _ |

|   | CH2MHILL   |
|---|------------|
| - | CHZIVIHILL |

377812

TEST PIT NUMBER

TPOI

SHEET 10

## **TEST PIT LOG**

LOCATION: Camp Johnson 1R85 LOGGER: Emust PROJECT: **ELEVATION:** 7/29/09 DATE EXCAVATED: **EXCAVATION EQUIPMENT USED:** 3109 Deene APPROX. DIMENS: Width: Max. Depth: 6 At WATER LEVEL: Length: SOIL DESCRIPTION COMMENTS SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS. TESTS, INSTRUMENTS. Test Pit Dimentions (ft) South Scale (ft) 12 18 20 14 16 26 1005011 2\_ Sin SP 6 8 10 12

OVM (ppm): Headspace Analysis

OVM (ppm):

**Breathing Zone Analysis** 



TPO1.4

SHEET 1 OF 1

## **TEST PIT LOG**

| ROJEC                      |         | 1285               | LOCATION CONTRACTOR: SF                                                                                                                                        | Camp J          | lohnso                   | 1                                  | LOGGER:                                                                                | Emust           |
|----------------------------|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|------------------------------------|----------------------------------------------------------------------------------------|-----------------|
|                            |         | IPMENT USE         | Deere 3109                                                                                                                                                     | TEUACCO         |                          | DATE EX                            | CAVATED: 7                                                                             | 129/09          |
| or the second              | LEVEL:  |                    | APPROX. DIMENS: Length:                                                                                                                                        | 13 ft           | Width: 5                 | f+                                 | Max. Depth:                                                                            | 3 ft            |
| > <                        | 6/      | AMPLE              | SOIL DESCRIPTION                                                                                                                                               |                 |                          |                                    | COMMENTS                                                                               |                 |
| SURFACE (FT)               | NTERVAL | NUMBER<br>AND TYPE | SOIL NAME, USCS GROUP SYMBOL, COLO<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY.                                     |                 | CONDITION,<br>DEBRIS ENC | COLLAPSE<br>COUNTERED<br>AL CONTAC | TION, RUNNING<br>OF WALLS, SAN<br>D, WATER SEEPA<br>CTS, TESTS, INST<br>Space Analysis | D HEAVE,<br>GE, |
| _                          | _=_     | 24                 | A-15 TALL P                                                                                                                                                    | 11              |                          |                                    |                                                                                        |                 |
| 1 2 3 4 5 6 7 8 9 10 11 12 | San (E) |                    | 0-15- Topsoil, B<br>debris, - Dk grey<br>Sand + silt, ba<br>broken glass. loos<br>1.5-3 - Silty S<br>Tan fg Sand, som<br>loose, moist<br>Termineted P<br>3'bap | tains se, maist | 0.0                      | 0-3+B                              | atteries                                                                               | \$<br>ass       |
| -                          |         |                    |                                                                                                                                                                | 7               |                          |                                    |                                                                                        |                 |
| 13_                        |         |                    |                                                                                                                                                                | -               |                          |                                    |                                                                                        |                 |
| _                          |         |                    |                                                                                                                                                                | 2               |                          |                                    |                                                                                        |                 |
| 14                         |         |                    | I                                                                                                                                                              |                 |                          |                                    |                                                                                        |                 |
|                            | I       |                    |                                                                                                                                                                | _               |                          | ı                                  |                                                                                        |                 |



OVM (ppm): Headspace Analysis

| PROJECT | NUMBER |
|---------|--------|
|         | 7      |

TEST PIT NUMBER

377812 TPO IA

SHEET 10

## **TEST PIT LOG**

Camp Johnson 1R85 LOGGER: EMUST PROJECT: LOCATION: **ELEVATION:** 3105 NS: Length: Deere DATE EXCAVATED: 7/29/09 **EXCAVATION EQUIPMENT USED:** 13f+ APPROX. DIMENS: 5++ Max. Depth: 3C+ WATER LEVEL: Width: SOIL DESCRIPTION COMMENTS SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTS. Test Pit Dimentions (ft) South Nanth Scale (ft) 16 18 20 26 +der! 2 Sm 6 8 10 12

**Breathing Zone Analysis** 

OVM (ppm):

ELEVATION :
EXCAVATION EQUIPMENT USED :
WATER LEVEL : PROJECT : CH2MHILL 1R85 CONTRACTOR: CONTRA PROJECT NUMBER 377812 OR: SHEDACLO TEST PIT LOG TEST PIT NUMBER NOGUMOC Width: 1907 DATE EXCAVATED:

O

Max. Depth: SHEET LOGGER: EMUST \_

유

SAMPLE NUMBER AND TYPE 0.5-2 MINERALOGY. MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, SOIL NAME, USCS GROUP SYMBOL, COLOR, Topas 1 + Bathairs DK they exteriors 2 Sur mors 4 رای Sand(SA) 200 Sando Sile 1000 0.0 DIFFICULTY IN EXCAVATION, FUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTS 0.0 DVM (ppm): 012 0-2 at surpre log therico 7/24/00

DEPTH BELOW SURFACE (FT)

INTERVAL

lerminated

0

2'bap

13\_

=

10

12

|   | CH2MHILL |
|---|----------|
| - |          |

| PRO | JECT | NIII | MRF |
|-----|------|------|-----|
|     | 0201 | 140  |     |

TEST PIT NUMBER

377812

1885-TROZ

SHEET 10

## **TEST PIT LOG**

| PROJECT                                                         | : I       | R85      |          |      |        | LOCAT           | ION: (      | amp                                                                                      | Joh     | nsov     |          |          |        | LO        | GGER   | 1: E     | Mus    | t     |         |
|-----------------------------------------------------------------|-----------|----------|----------|------|--------|-----------------|-------------|------------------------------------------------------------------------------------------|---------|----------|----------|----------|--------|-----------|--------|----------|--------|-------|---------|
| ELEVATIO                                                        |           |          |          |      |        |                 |             | ~ 1                                                                                      |         |          |          |          |        |           |        |          |        |       |         |
| EXCAVAT                                                         | ION EQUIP | MENT U   | ISED:    | D    | eers   | 2 310<br>DIMENS | 09          |                                                                                          |         |          |          |          | E EXCA | VATED:    | 71     | 29/0     | 9      |       |         |
| WATER LE                                                        | EVEL:     |          |          | APPE | ROX. D | DIMENS          | : Lengti    | h:                                                                                       | 34      |          | W        | idth:    | 211    |           | - 1    | Max. D   | epth:  | 24    | t       |
| SOIL DESCRIPTION                                                |           |          |          |      |        |                 |             | 1,                                                                                       |         |          |          | 4        | COMME  | NTS       |        |          |        |       |         |
| SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE |           |          |          |      |        |                 | DIFF        | ICULTY                                                                                   | IN EXC  | VATION   | RUNNING  | G GRAVEL | CONE   | DITION, O | COLLAP | SE OF    | NALLS, |       |         |
| DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY             |           |          |          |      |        |                 |             | SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTS. |         |          |          |          |        |           |        |          |        |       |         |
|                                                                 |           |          |          |      |        |                 |             | Test P                                                                                   | it Dime | ntions ( | ft)      |          |        |           |        |          |        |       |         |
|                                                                 | South     |          |          | 1    |        |                 |             |                                                                                          |         | 7 1      |          |          |        |           |        |          |        | -     | North   |
| Scale (ft)                                                      | 700501    |          | 4        | 6    |        | 8               | 10          | 1                                                                                        | 2       | 14       | _        | 16       | 18     | 20        |        | 22       | _      | 24    | 26      |
|                                                                 | SP        | 1        | _        | +    | Н      | $\vdash$        | +           | _                                                                                        | +       | $\vdash$ | $\dashv$ | +        | +      | -         | -      | +        | +      | +     | +       |
| 2                                                               | 1         |          | $\dashv$ | +    | Н      |                 |             |                                                                                          | +       | $\vdash$ |          | _        | +      | _         | 1      | +        | +      | +     | +       |
| 4                                                               |           |          |          |      |        |                 |             |                                                                                          |         |          |          |          |        |           |        |          |        |       |         |
|                                                                 |           |          |          |      |        |                 |             |                                                                                          |         |          |          |          |        |           |        |          |        |       |         |
| 6                                                               | $\vdash$  | +        | _        | +    |        | -               | -           |                                                                                          | +       | $\vdash$ | _        | _        | +      | _         | -      | -        | -      | -     | _       |
| 8                                                               |           |          |          |      |        |                 |             |                                                                                          | $\pm$   |          |          |          |        |           |        |          |        | #     | $\perp$ |
| 10                                                              |           |          |          |      |        |                 |             |                                                                                          |         |          |          |          |        |           |        |          |        | $\pm$ |         |
|                                                                 |           | $\vdash$ |          | -    |        |                 | -           |                                                                                          | +       | $\vdash$ |          | -        | +      |           | _      | $\vdash$ | _      |       |         |
| 12                                                              | -         | $\vdash$ | _        | +    |        | -               | +           | -                                                                                        | +       | $\vdash$ | -        |          | +-+    | -         | -      | +        | -      | +     | +       |
| 14                                                              |           | +        |          |      |        |                 | +           |                                                                                          | +       | $\vdash$ | _        | +        |        |           | 1      | $\vdash$ | -      |       | _       |
| 14<br>OVM (ppm):                                                | Headspace | Analysis |          | OVM  | (ppm): | Brea            | athing Zone | Analysis                                                                                 |         |          |          |          |        |           |        |          |        |       |         |

| 75000 |    |    |     |    |
|-------|----|----|-----|----|
|       |    |    |     |    |
|       | CH | 2N | IHI | LL |
| -     |    |    |     |    |

TEST PIT NUMBER

TP03

SHEET 1 OF 1

## **TEST PIT LOG**

|                                   |         |                    |                                                                                                                                                                    | - 000                                                                                                                                                           |
|-----------------------------------|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT                           |         | - 1                | CONTRACTOR: SAEDACO                                                                                                                                                | Johnson LOGGER: EM                                                                                                                                              |
| ELEVATION                         |         | DMENT LIGH         | CONTRACTOR: SAEDACO                                                                                                                                                | DATE EXCAVATED: 7/29/09                                                                                                                                         |
| WATER L                           |         | PMENT USE          | APPROX. DIMENS: Length: 6 Lt                                                                                                                                       | Width: 7_ M Max. Depth: 2 At                                                                                                                                    |
|                                   |         | MPLE               | SOIL DESCRIPTION                                                                                                                                                   | COMMENTS                                                                                                                                                        |
| DEPTH BELOW<br>SURFACE (FT)       | NTERVAL | NUMBER<br>AND TYPE | SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.                                               | DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTS. |
| S E                               | Ĭ.      | A P D              | MINERALOGY.                                                                                                                                                        | OVM (ppm): Headspace Analysis                                                                                                                                   |
| - 1 2 3 4 5 6 7 8 9 10 11 12 13 1 |         | UN AN              | 0-0.5 - Topsoil, few Datteries. Drawey & sad- 4 silt, losse, moist, few Datteries at surface  0.5 - 2 - Sand (SP)  Ten & saml, losse,  maist.  Terminated @ 2'bgp. | - 0.0 0-1 for botter es -                                                                                                                                       |
| 14                                |         |                    | -                                                                                                                                                                  |                                                                                                                                                                 |

| 9-2         |        |    |
|-------------|--------|----|
|             |        |    |
|             | CH2MHI | LL |
| The same of |        |    |

377812

TEST PIT NUMBER

1R85-TP03

SHEET 10

## **TEST PIT LOG**

|                                                                 |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     | 201625 |                  |
|-----------------------------------------------------------------|-----------------------------------------------------|-----------------|--------|--------|----|----------|------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----|---------|-------|--------|-----|-----|------|-----|-------|-------|-------|------|-----|-----|--------|------------------|
| PROJE                                                           | and the same and the                                | VR8             | 5      |        |    | 2101-113 | LOCA | ATION                                                                  | l: (                                                                                     | am  | 67      | ohr   | SOV    |     |     |      |     |       | LOG   | GER   | : E  | Mie | st  |        |                  |
| ELEVAT<br>EXCAV                                                 |                                                     | EQUIPA          | /ENT   | JSED   |    | Dage     | 00 2 | 10 a                                                                   |                                                                                          |     |         |       |        |     |     | DATE | EXC | AVATI | ED: * | 7/2   | 9/00 | 7   |     |        |                  |
|                                                                 |                                                     |                 |        |        |    |          |      |                                                                        | 101                                                                                      | *   |         |       | Width  |     | 214 |      |     | 11-   | Max.  | Depth | : 24 | H   |     |        |                  |
| SOIL DESCRIPTION                                                |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        | 7   |     | MMEN |     |       |       |       |      |     |     |        |                  |
| SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE |                                                     |                 |        |        |    |          |      | DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
| DENSIT                                                          | DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY |                 |        |        |    |          |      |                                                                        | SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTS. |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
|                                                                 |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          | Tes | t Pit D | iment | ions ( | ft) |     |      |     |       |       |       |      |     |     |        |                  |
| I                                                               | 90                                                  | <del>outh</del> | F 1    |        | Ť  | 4        | 1    | ſ                                                                      | r r                                                                                      | - 1 | 1       | 1     |        |     |     |      | 4   | 8     | 77    | P 1   | F 1  |     | 1 1 | 1      | <del>Vorth</del> |
| Scale (                                                         | (ft)                                                | 2               |        | 4      |    | 6        | 8    |                                                                        | 10                                                                                       |     | 12      |       | 14     |     | 16  |      | 18  |       | 20    |       | 22   |     | 24  |        | 26               |
|                                                                 | 1                                                   | Toos            | ail Ru | Datter | 15 |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
| 2_                                                              |                                                     | T.              | \$2    |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
|                                                                 |                                                     |                 |        | 2000   |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
| 4_                                                              |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
|                                                                 |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
| 6                                                               |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
|                                                                 |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       | e I    |     |     |      |     |       |       |       |      |     |     |        |                  |
| 8                                                               |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
|                                                                 |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
| 10                                                              |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
|                                                                 |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
| 12                                                              |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
|                                                                 |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |
| 14                                                              |                                                     |                 |        |        |    |          |      |                                                                        |                                                                                          |     |         |       |        |     |     |      |     |       |       |       |      |     |     |        |                  |

OVM (ppm): Headspace Analysis

OVM (ppm):

Breathing Zone Analysis

|     | CH2MHILL |
|-----|----------|
| 440 |          |

TP03A

SHEET 1 OF 1

## **TEST PIT LOG**

| DDC ICC                     | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IRB5               | LOCATION: Camo Johnson LOGGER: EMUS                                             | <u>-</u> +-  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|--------------|
| PROJEC'<br>ELEVATI          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11100              | LOCATION: Camp Johnson LOGGER: EMUS<br>CONTRACTOR: SAEDACO                      | 21           |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IPMENT USE         | D: DATE EXCAVATED:                                                              |              |
| WATER                       | and the same of th | II MEITI OOL       | APPROX. DIMENS: Length: b bt Width: 2 bt Max. Depth: 2.5                        | 14           |
|                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WHENCEN            | SOIL DESCRIPTION COMMENTS                                                       | 7            |
| & E                         | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AMPLE              | SOIL NAME, USCS GROUP SYMBOL, COLOR, DIFFICULTY IN EXCAVATION, RUNNING GRAVEL   |              |
| SE SE                       | Sir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tu                 | MOISTURE CONTENT, RELATIVE DENSITY, CONDITION, COLLAPSE OF WALLS, SAND HEAVE,   |              |
| H A                         | ₹<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E F                | OR CONSISTENCY, SOIL STRUCTURE, DEBRIS ENCOUNTERED, WATER SEEPAGE,              |              |
| DEPTH BELOW<br>SURFACE (FT) | NTERVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NUMBER<br>AND TYPE | MINERALOGY. GRADATIONAL CONTACTS, TESTS, INSTRUMENTS.                           |              |
| See See 1                   | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ž₹                 | OVM (ppm); Headspace Analysis                                                   |              |
| 1_<br>-<br>2_               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1005- Topsil, batteries - 0.0 0-13 ct @ ont surface. Dk gray - 0.0 1-2 Surface. | -            |
| 3                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Tan to sad, loose-<br>most.  Terminated e 2.5 bge                               |              |
| 8_                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | u                  |                                                                                 | =            |
| 9_                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                 | 3            |
| 285                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                 |              |
| , 2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1 1                                                                             | -            |
| 10                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                 | <u> </u>     |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                 | -            |
| 11_                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |                                                                                 |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |                                                                                 | <del>=</del> |
| 72                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                 | 24           |
| 12                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                 | _            |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                 |              |
| 7                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1 1                                                                             | =            |
| 13_                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                 | -            |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                 | _            |
| 14_                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                 | =            |

|          | CH2MHILL |
|----------|----------|
| Same III |          |

TEST PIT NUMBER

377812

IR85-TP034

SHEET 10

# **TEST PIT LOG**

| PROJECT: 185                       | LOCATION               | : Camp Ja                             | hnson                                   |               |                   | LOGGER    | : EM         | ust /R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DU       |
|------------------------------------|------------------------|---------------------------------------|-----------------------------------------|---------------|-------------------|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| ELEVATION:                         |                        | , , , , , , , , , , , , , , , , , , , | *************************************** |               |                   |           |              | CONTRACTOR OF THE PROPERTY OF |          |
| EXCAVATION EQUIPMENT USED :        | Deeve 310              | 9                                     |                                         |               | EXCAVATE          | D:        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| WATER LEVEL :                      | APPROX. DIMENS:        | Length: 6                             | lt                                      | Width:        | 214               |           | Max. Depth:  | : 2.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H        |
| SOIL DE                            | ESCRIPTION             |                                       | ,                                       |               | , cor             | MENTS     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U        |
| SOIL NAME, USCS GROUP SYMBOL, CO   | LOR, MOISTURE CONTENT, | RELATIVE D                            | IFFICULTY IN E                          | EXCAVATION, F | RUNNING GRA       | VEL COND  | ITION, COLLA | APSE OF W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALLS,    |
| DENSITY, OR CONSISTENCY, SOIL STRU | ICTURE, MINERALOGY     | 2.0                                   | AND HEAVE, DI<br>ESTS, INSTRUM          |               | NTERED, WA        | TER SEEPA | GE, GRADAT   | IONAL CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TACTS    |
|                                    |                        | Test Pit Di                           | mentions (ft)                           |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| South                              |                        |                                       |                                         |               |                   |           | 20 20 2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | North    |
| Scale (ft) 2 4                     | 6 8                    | 10 12                                 | 14                                      | 16            | 18                | 20        | 22           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26       |
|                                    |                        |                                       | -                                       |               | $\longrightarrow$ |           | $\square$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\perp$  |
| 2_ SP                              |                        |                                       |                                         |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|                                    |                        |                                       |                                         |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 4_                                 |                        |                                       |                                         |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 6                                  |                        |                                       |                                         |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|                                    |                        |                                       |                                         |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 8_                                 |                        |                                       |                                         |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|                                    |                        |                                       |                                         |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\vdash$ |
| 10                                 |                        |                                       |                                         |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\vdash$ |
|                                    |                        |                                       | -                                       |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\vdash$ |
| 12                                 |                        |                                       |                                         |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\perp$  |
|                                    | +                      | $\perp$                               | $\perp$                                 |               |                   | _         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\perp$  |
| 14_                                |                        |                                       |                                         |               |                   |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |

OVM (ppm): Headspace Analysis

OVM (ppm):

Breathing Zone Analysis

| 1200000   |            |
|-----------|------------|
|           |            |
|           | CH2IVIHILL |
| - Charles |            |

TPO4

SHEET 1 OF 1

## **TEST PIT LOG**

| PROJEC                                    | Τ:      | IR 85              | LOCA                                    | TION: (amp<br>SAEDACCO | Johnso        | n LOGO          | GER: EMUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------|---------|--------------------|-----------------------------------------|------------------------|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELEVATION                                 |         |                    | CONTRACTOR:                             | SAEDACCO               |               | *               | -1-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           |         | PMENT USE          |                                         |                        |               | ATE EXCAVATED   | the state of the s |
| WATER L                                   | EVEL:   |                    | APPROX. DIMENS: Length SOIL DESCRIPTION | 1: (0                  | Width: S      | Max. D          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ĕ£                                        | SA      | MPLE               | SOIL NAME, USCS GROUP SYMBOL, O         | COLOR                  | DIEEICH TV IN | EXCAVATION, RUI | Company of the same of the sam |
| DEPTH BELOW<br>SURFACE (FT)               |         | ne.                | MOISTURE CONTENT, RELATIVE DEN          | 76                     |               | OLLAPSE OF WALL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FAC                                       | .VAL    | H H                | OR CONSISTENCY, SOIL STRUCTURE          | September 200 for a    |               | UNTERED, WATER  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SUF                                       | NTERVAL | NUMBER<br>AND TYPE | MINERALOGY.                             | -                      |               | CONTACTS, TEST  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Z       | Z 4                |                                         |                        | OVM (ppm):    | Headspace Analy | /sis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _                                         |         |                    | 0-050-0.25 - To                         | pso1 +                 | 0.0           | 1 Ba Hery       | on surface -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                                         |         |                    | 1 battery, Dk yu<br>moist, Sand + Su    | y lovy                 | 0             | )-1             | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                           |         |                    | 1 (0 1 = 8                              | 14                     |               |                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                           |         |                    | mast, sona su                           | · †                    |               |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2_                                        |         |                    | 0.25-1.5 - San                          | d (SP) f               |               |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                                         |         |                    | 10.03                                   |                        |               |                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                                         |         |                    | Tan for sand                            | 100Se,                 | - 1           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (67.8                                     |         |                    |                                         |                        |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |         |                    | Maist.                                  | / 1                    |               |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4_                                        |         |                    |                                         |                        |               |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                                         |         |                    | Terminated                              | @ 1.5'bus              | 4             |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                         |         |                    |                                         | - ·                    |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N. S. |         | Ų.                 |                                         |                        |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |         |                    | 1                                       | -                      |               |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6_                                        |         |                    | 1                                       | -                      |               |                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                                         |         |                    |                                         | -                      |               |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7_                                        |         | į.                 | 1                                       | _                      |               |                 | 9_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                           |         |                    |                                         |                        |               |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                                         |         | 0                  |                                         | 7                      |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8_                                        |         |                    |                                         | _                      |               |                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                                         |         |                    |                                         | =                      |               |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9_                                        |         |                    |                                         | _                      |               |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                                         |         |                    | 1                                       | _                      |               |                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10                                        |         |                    |                                         |                        |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,,,,                                      |         |                    |                                         | _                      |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                         |         |                    |                                         | -                      |               |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11_                                       |         |                    |                                         | -                      |               |                 | 8 <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _                                         |         |                    | V                                       | _                      |               |                 | :4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12_                                       |         |                    |                                         |                        |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |         |                    |                                         |                        |               |                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                                         |         |                    |                                         | -                      |               |                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13_                                       |         |                    |                                         | <del></del>            |               |                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                           |         |                    |                                         | _                      |               |                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14                                        |         |                    |                                         |                        |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - "-                                      |         |                    |                                         |                        |               |                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|   | CH2MHILL |
|---|----------|
| - |          |

| PRO. | IFCT | NIIN | /IRF |
|------|------|------|------|
| FINO |      | IAOI |      |

TEST PIT NUMBER

377812

1885-TPQ4

SHEET 10

# **TEST PIT LOG**

| PROJ | IECT :  | 0     | 1      | R85          | 5      |        |        |        | LOCA  | ATION | : (    | am       | 0 7      | oh                                                                                                                                                              | 150V    | 1     |          |         |        |       | LOG   | GER  | : E          | mi    | st       | RIX   | ٨     |
|------|---------|-------|--------|--------------|--------|--------|--------|--------|-------|-------|--------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|----------|---------|--------|-------|-------|------|--------------|-------|----------|-------|-------|
| ELEV | OITA    | N :   |        |              |        |        |        |        |       |       |        |          | 7        |                                                                                                                                                                 |         |       |          |         |        |       |       | - 2  |              |       |          |       |       |
| EXCA | VATIO   | ON E  | QUIPN  | MENT         | USED   | ):     | 100    | VR     | =     | 310   | 9      |          |          |                                                                                                                                                                 |         |       |          | DATE    | EXC    | AVAT  | ED:   | 71:  | 29  <br>Max. | 09    |          |       |       |
| WATE | ER LE   | VEL:  |        |              |        |        | APPF   | ROX. [ | DIMEN | IS:   | Leng   | th:      |          | 0                                                                                                                                                               | 4       |       | Width    | :       | 24     | *     |       | - 1  | Max.         | Depth | : 1-     | 51    | t     |
|      |         |       |        |              | so     | IL DES | CRIPT  | ION    |       |       |        |          |          |                                                                                                                                                                 | 0       |       |          |         | 1      |       | MMEN  |      |              |       |          | · v   |       |
| SOIL | NAME    | , USC | S GR   | OUP S'       | YMBOL  | , COL  | OR, MO | DISTU  | RE CO | NTENT | r, REL | ATIVE    |          | DIFFI                                                                                                                                                           | CULTY   | IN EX | CAVAT    | TION, F | RUNNII | NG GR | RAVEL | COND | ITION,       | COLL  | APSE     | OF WA | ALLS, |
| DENS | ITY, OI | R CON | NSISTE | ENCY,        | SOIL S | TRUC   | TURE,  | MINE   | RALOG | iΥ    |        |          |          | DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTS. |         |       |          |         |        |       |       |      |              |       |          |       |       |
|      |         |       |        |              |        |        |        |        |       |       |        | T        | est Pit  | Dimen                                                                                                                                                           | tions ( | (ft)  |          |         |        |       |       |      |              |       |          |       |       |
|      |         | Sout  | h      |              | 201    |        |        | 201    | 20    |       |        |          |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       | W .      | f     | North |
| Scal | e (ft)  |       | 2      | TO           | Km 14  |        | 6      |        | 8     |       | 10     |          | 12       |                                                                                                                                                                 | 14      |       | 16       |         | 18     |       | 20    |      | 22           |       | 24       |       | 26    |
|      |         | 7     |        | 00           |        |        |        |        |       |       |        |          |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |
| 2    |         |       |        | -            | -      |        |        |        |       |       |        |          |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |
|      |         |       |        |              |        |        |        |        |       |       |        |          |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |
| 4    |         |       |        |              |        |        |        |        |       |       |        |          |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |
| "    |         |       |        | _            | -      |        |        |        |       |       |        | $\vdash$ |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |
|      |         |       | -      | <del> </del> | -      |        | _      | _      | _     | _     | _      | -        | -        |                                                                                                                                                                 | _       |       | _        | _       |        | -     |       | _    | _            | -     | _        |       | _     |
| 6    |         |       |        | -            | -      |        |        | _      |       |       | _      | -        | -        |                                                                                                                                                                 | 0       |       | $\vdash$ |         |        |       |       |      |              | _     | $\vdash$ |       |       |
|      |         |       |        | _            | _      |        |        |        |       |       |        |          |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |
| 8    |         |       |        |              |        |        |        |        |       |       |        |          |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |
|      |         |       |        |              |        |        |        |        |       |       |        |          |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |
| 10   |         |       |        |              |        |        |        |        |       |       |        |          |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |
| -    |         |       |        |              |        |        |        |        |       |       |        |          |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |
| 40   |         | _     | _      |              | 1      |        |        |        |       |       |        |          | $\vdash$ |                                                                                                                                                                 |         |       |          |         |        | -     |       |      |              | _     |          |       |       |
| 12   |         |       |        | _            | _      |        |        |        |       |       | _      | _        |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |
|      |         |       |        | -            | -      | -      | -      | -      |       |       |        | -        | -        |                                                                                                                                                                 |         | _     |          | _       |        |       |       |      | -            |       |          |       |       |
| 14   |         |       |        |              |        |        |        |        |       |       |        |          |          |                                                                                                                                                                 |         |       |          |         |        |       |       |      |              |       |          |       |       |

OVM (ppm): Headspace Analysis

OVM (ppm):

Breathing Zone Analysis



North Carolina Department of Environment and Natural Resources- Division of Water Quality

well contractor certification # 20/2

|                                                                                                               | THE POST OF THE PO |                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. WELL DETAILS:                                                                                                                                        |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                                                  |
| Well Contractor (Individual) Name                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b. Water Level (Below Measuring Point):ft.                                                                                                              |
| SAEDACCO, INC.                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measuring point is fi. above land surface.                                                                                                              |
| Well Contractor Company Name                                                                                  | 07// 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                         |
| STREET ADDRESS 9088 NO                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. CASING: Length Diameter                                                                                                                              |
| FORT MILL SC<br>City or Town State                                                                            | 29707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a. Casing Depth (if known): ft in.                                                                                                                      |
| City or Town State                                                                                            | Zip Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b. Casing Removed:fiin.                                                                                                                                 |
| Area code - Phone number                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. DISINFECTION: 0.1615                                                                                                                                 |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Amount of 65%-75% calcium hypochlorite used)                                                                                                           |
| 2. WELL INFORMATION:  SITE WELL ID # (if applicable)                                                          | (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                      |
| SILE WELL ID # (II applicable)                                                                                | <u>~</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8. SEALING MATERIAL:                                                                                                                                    |
| STATE WELL PERMIT # (if applicable).                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Neat Cement Sand Cement                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)_                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)_                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentonite                                                                                                                                               |
| WELL USE (Circle applicable use): Monito                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentonite 5 lb.                                                                                                                                         |
| Municipal/Public Industrial/Commerce Recovery Injection Irrigation                                            | cial Agricultural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Type: Slurry Poliets 🗶                                                                                                                                  |
| Other (list use)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water <u>O. (a) g</u> al.                                                                                                                               |
| 3. WELL LOCATION:                                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>Other</u>                                                                                                                                            |
| COUNTY CNISCOLD QUADRANGLE                                                                                    | NI A MATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type material                                                                                                                                           |
| NEAREST TOWN: JACKSONVIL                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amount                                                                                                                                                  |
| CAMD JOHNSON                                                                                                  | <u>.e., 700</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivis                                                                | ion Lor No. Parcel Zin Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                           |
| TOPOGRAPHIC / LAND SETTING:                                                                                   | ,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BORCHOLE WAS FILED WITH CHIPS AFTER                                                                                                                     |
| Slope Valley Flat Ridge Other                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WELL WAS ZEMOUED                                                                                                                                        |
| (Circle appropriate setting)                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |
| LATITUDE                                                                                                      | May be in degrees,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                         |
| LONGITUDE                                                                                                     | minutes, seconds, or in a decimal format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                |
| Latitude/longitude source: GPS                                                                                | Topographic map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | form showing total depth, depth and diameter of screens (if any) remaining                                                                              |
| (Location of well must be shown on a U.                                                                       | , - ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in the well, gravel interval, intervals of casing perforations, and depths and                                                                          |
| attached to this form if not using GPS.,                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | types of fill materials used.                                                                                                                           |
| a. FACILITY-The name of the business where the we<br>(If a residential well, akip 4a; complete 4b, well owner |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. DATE WELL ABANDONED 7/29/09                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                          |
| NAME OF FACILITY CAMP JO                                                                                      | HOSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF                                                                                       |
| STREET ADDRESS    JACK Separation   NC                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                                                        |
| JACKSCHULLE NC                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c/13/C)                                                                                                                                                |
|                                                                                                               | Zip Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIGNATURE OF CERTIFIED WELL CONTRACTOR DATE                                                                                                             |
| b. CONTACT PERSON/WELL OWNER:                                                                                 | 17m on 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |
| NAME K-CRI HAURER CI                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE (The private well owner must be an individual who personally abandons his/her residential well |
| STREET ADDRESS 4824 PARKL                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in accordance with 15A NCAC 2C .0113.)                                                                                                                  |
| CHARW77E NC City or Town State 2                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                              |
| City or Town State 2                                                                                          | Cip Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                              |
| (704)- 975-2980                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |
| Area code - Phone number                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

| 1. WELL CONTRACTOR:                                                                                                                                               | 5. WELL DETAILS:                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| TIM THOMAS                                                                                                                                                        | a, Total Depth: 15 ft. Diameter: 1 in.                                                                                                              |
| Well Contractor (Individual) Name                                                                                                                                 | b. Water Level (Below Measuring Point): ft.                                                                                                         |
| SAE DACCO, TNC, Well Contractor Company Name                                                                                                                      | Measuring point is ft. above land surface.                                                                                                          |
| STREET ADDRESS SOR NORTHFIELD DR                                                                                                                                  | 6. CASING: Length Diameter                                                                                                                          |
|                                                                                                                                                                   |                                                                                                                                                     |
| FORT MILL SC 29707  City of Town State Zip Code                                                                                                                   | a. Casing Depth (if known):  b. Casing Removed:  ft.  in.                                                                                           |
| (843) 548 ZIBO                                                                                                                                                    |                                                                                                                                                     |
| Area code - Phone number                                                                                                                                          | 7. DISINFECTION: 0.1615                                                                                                                             |
| 2. WELL INFORMATION:                                                                                                                                              | (Amount of 65%-75% calcium hypochlorite used)                                                                                                       |
| SITE WELL ID # (if applicable) 700 - 2                                                                                                                            | 8. SEALING MATERIAL:                                                                                                                                |
| STATE WELL PERMIT # (if applicable)                                                                                                                               | Neat Cement Sand Cement                                                                                                                             |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                              | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                        |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                             | <u>Bentonite</u>                                                                                                                                    |
| WELL USE (Circle applicable use): Monitoring Residential Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation Other (list use)       | Bentonite 4 lb. Type: Slurry Pellets X Water 0.62 gal.                                                                                              |
| Other (list use)                                                                                                                                                  | Other                                                                                                                                               |
| 3. WELL LOCATION:                                                                                                                                                 |                                                                                                                                                     |
| COUNTY CNSLOW QUADRANGLE NAME                                                                                                                                     | Type material                                                                                                                                       |
| NEAREST TOWN: TACKSONVICE NC<br>CAMD JOHNSON                                                                                                                      | Amount                                                                                                                                              |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                     | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                       |
| TOPOGRAPHIC / LAND SETTING:                                                                                                                                       | BORCHOLE WAS FILED WITH CHIPS AFTER                                                                                                                 |
| Slope Valley Flat Ridge Other (Circle appropriate setting)                                                                                                        | WELL WAS ZEMWED                                                                                                                                     |
| LATITUDE May be in degrees,                                                                                                                                       |                                                                                                                                                     |
| decimal format                                                                                                                                                    | 11. 10. WELL BY A CRAM, Down a detailed should of the small on the late of                                                                          |
| Latitude/longitude source: GPS Topographic map                                                                                                                    | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this form showing total depth, depth and diameter of screens (if any) remaining |
| (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)                                                                   | in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used.                                        |
| a. FACILITY- The name of the business where the well is located. Complete 4a and 4b.  (If a residential well, :kip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                     |
| FACILITY ID #(if applicable)                                                                                                                                      | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                      |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                     | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                  |
| STREET ADDRESS                                                                                                                                                    | 1 1 0                                                                                                                                               |
| STREET ADDRESS  TACK SCHOOL C                                                                                                                                     | SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                        |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                                     |                                                                                                                                                     |
| NAME KEDI 1-LAUREDE, CHZM HICK                                                                                                                                    | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                            |
| STREET ADDRESS 4824 PARKWAY PLAZA BULD                                                                                                                            | (The private well owner must be an individual who <u>personally</u> abandons his/her residential well in accordance with 15A NCAC 2C .0113.)        |
| City or Town State Zip Code                                                                                                                                       | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                               |
|                                                                                                                                                                   | FRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                          |
| (704) - <u>775 7980</u><br>Area code - Phone number                                                                                                               |                                                                                                                                                     |
| Area code - Fhone minner                                                                                                                                          | •                                                                                                                                                   |



| WELL CONTRACTOR CERTIFIC                                                                                                                                          | CATION # 2012                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                                                               | 5. WELL DETAILS:                                                                                                                                                                                                                                                 |
| TIM THOMAS Well Contractor (Individual) Name                                                                                                                      | a. Total Depth: 20 ft. Diameter: 1 in. b. Water Level (Below Measuring Point): ft.                                                                                                                                                                               |
| SAE DACCO, TNC. Well Contractor Company Name                                                                                                                      | Measuring point is ft. above land surface.                                                                                                                                                                                                                       |
| STREET ADDRESS SICRY NORTHFIELD DR                                                                                                                                | 6. CASING: Length Diameter                                                                                                                                                                                                                                       |
| FORT MILL SC 29707  City or Town State Zip Code                                                                                                                   | a. Casing Depth (if known):  b. Casing Removed:  ft.  in.  in.                                                                                                                                                                                                   |
| $\frac{(89)}{\text{Area code - Phone number}} \leq 48 \geq 180$                                                                                                   | 7. DISINFECTION: 0, 16 15                                                                                                                                                                                                                                        |
| 2. WELL INFORMATION:                                                                                                                                              | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                                                                                                    |
| SITE WELL ID # (if applicable) 700-3                                                                                                                              | 8. SEALING MATERIAL:                                                                                                                                                                                                                                             |
| STATE WELL PERMIT # (if applicable)                                                                                                                               | Neat Cement Sand Cement                                                                                                                                                                                                                                          |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                              | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                                                                                                                     |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                             | Bentonite                                                                                                                                                                                                                                                        |
| WELL USE (Circle applicable use): Monitoring Residential Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation                        | Bentonite Ib. Type: Slurry Pellets \( \Lambda \) Water \( \Ordoj{0}, \bar{8}\)Z gal.                                                                                                                                                                             |
| Other (list use)                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                         |
| 3. WELL LOCATION:                                                                                                                                                 | Other                                                                                                                                                                                                                                                            |
| COUNTY CNSLCCO QUADRANGLE NAME                                                                                                                                    | Type material                                                                                                                                                                                                                                                    |
| NEAREST TOWN: JACKSONVILLE, NC<br>CAMP JOHNSON                                                                                                                    | Amount                                                                                                                                                                                                                                                           |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                     | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                                                                                                    |
| TOPOGRAPHIC / LAND SETTING:                                                                                                                                       | BORCHOLE WAS FILED WITH CHIPS AFTER                                                                                                                                                                                                                              |
| Slope Valley Flat Ridge Other (Circle appropriate setting)                                                                                                        | WELL WAS ZEMOUED.                                                                                                                                                                                                                                                |
| May be in degrees,                                                                                                                                                |                                                                                                                                                                                                                                                                  |
| LATITUDE minutes, seconds, or in a decimal format                                                                                                                 | 10 WELL DIACRAM Down detailed should effect will be stold a con-                                                                                                                                                                                                 |
| LONGITUDE  Latitude/longitude source: GPS Topographic map  (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)        | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| 4a. FACILITY- The name of the business where the well is located. Complete 4a and 4b. (If a residential well, ckip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                                                                                                  |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                     | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                                                                                                   |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                     | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                                                                                               |
| STREET ADDRESS                                                                                                                                                    |                                                                                                                                                                                                                                                                  |
| STREET ADDRESS  IT ALL SCHOOL CO A C  City or Town State Zip Code                                                                                                 | SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                                                                                                                                     |
| 4b. CONTACT PERSON/WELL OWNER:                                                                                                                                    |                                                                                                                                                                                                                                                                  |
| NAME KERT HALRESE CHEM HILL                                                                                                                                       | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE (The private well owner must be an individual who personally abandons his/her residential well                                                                                                          |
| STREET ADDRESS 4824 PARKWAY PLAZA BLUD                                                                                                                            | in accordance with 15A NCAC 2C .0113.)                                                                                                                                                                                                                           |
| CHARW77E NC City or Town State Zip Code                                                                                                                           | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                            |
| (704) - 975 - 2980<br>Area code - Phone number                                                                                                                    |                                                                                                                                                                                                                                                                  |



| 1. WELL CONTRACTOR:                                                                 |                                                 | 5.     | WELL DETAILS:                                                         |                                                  |
|-------------------------------------------------------------------------------------|-------------------------------------------------|--------|-----------------------------------------------------------------------|--------------------------------------------------|
| TIM THOMAS                                                                          |                                                 |        | a. Total Depth: 16 ft.                                                | Diameter: 1 in.                                  |
| Well Contractor (Individual) Name                                                   |                                                 |        | b. Water Level (Below Measuring                                       |                                                  |
| SAEDACCO, INC.                                                                      |                                                 |        | Measuring point is                                                    | ft. above land surface.                          |
| Well Contractor Company Name                                                        |                                                 |        |                                                                       |                                                  |
| STREET ADDRESS 9088 NO                                                              |                                                 | 6.     | CASING:                                                               | Length Diameter                                  |
| FORT MILL SC<br>City or Town State                                                  | 29707                                           |        | a. Casing Depth (if known):                                           | ft. <u>1</u> in.                                 |
| City or Town State                                                                  | Zip Code                                        |        | b. Casing Removed:                                                    | fi. in.                                          |
| 803 - 548-2180<br>Area code - Phone number                                          |                                                 | 7.     | DISINFECTION: 0,16                                                    | 16                                               |
| Area code - I notic number                                                          |                                                 |        |                                                                       |                                                  |
| 2. WELL INFORMATION: SITE WELL ID # (if applicable)                                 | 13-4                                            |        | (Amount of 65%-75% calcium hy                                         | /pochlorite used)                                |
| SITE WELL ID # (II applicable) / C                                                  |                                                 | 8.     | SEALING MATERIAL:                                                     |                                                  |
| STATE WELL PERMIT # (if applicable)                                                 |                                                 |        | Neat Cement                                                           | Sand Cement                                      |
| COUNTY WELL PERMIT # (if applicable)_                                               |                                                 |        | Cementlb.<br>Watergal.                                                | Cementlb.<br>Watergał,                           |
| DWQ or OTHER PERMIT # (if applicable)                                               |                                                 |        | Bentonite                                                             |                                                  |
| Recovery Injection Irrigation                                                       | cial Agricultural                               |        | Bentonite lb. Type: Slurry Pellets \( \) Water \( \) \( \) \( \) gal. |                                                  |
| Other (list use)                                                                    | -14-T-116                                       |        | Other                                                                 |                                                  |
| 3. WELL LOCATION:                                                                   |                                                 | ΙÍ     | <del></del>                                                           |                                                  |
| COUNTY CNSLOW QUADRANGLE                                                            | NAME                                            |        | Type material                                                         |                                                  |
| NEAREST TOWN: JACKSONVIL                                                            | LE NC                                           |        | Amount                                                                |                                                  |
| CAMP JOHNSON                                                                        | -                                               |        | •                                                                     |                                                  |
| (Street/Road Name, Number, Community, Subdivis                                      | ion, Lot No., Parcel, Zip Code)                 | 9.     | EXPLAIN METHOD OF EMPL                                                | ACEMENT OF MATERIAL:                             |
| TOPOGRAPHIC / LAND SETTING:                                                         |                                                 |        | BOREHOLE WAS FILL                                                     |                                                  |
| Slope Valley Flat Ridge Other<br>(Circle appropriate setting)                       |                                                 |        | WELL WAS ZEMOVED                                                      | )                                                |
| ( · · · · ·                                                                         |                                                 |        | •                                                                     |                                                  |
| LATITUDE                                                                            | May be in degrees,<br>minutes, seconds, or in a |        |                                                                       |                                                  |
| LONGITUDE                                                                           | decimal format                                  | 10.    | WELL DIAGRAM: Draw a detail                                           | ed sketch of the well on the back of this        |
| Latitude/longitude source: GPS                                                      | Topographic map                                 | ] [    |                                                                       | nd diameter of screens (if any) remaining        |
| (Location of well must be shown on a Us<br>attached to this form if not using GPS.) |                                                 |        | in the well, gravel interval, interval types of fill materials used.  | ls of casing perforations, and depths and        |
| 4a. FACILITY-The name of the business where the we                                  |                                                 |        | types of fin materials used.                                          | 7/29/09                                          |
| (If a residential well, akip 4a; complete 4b, well owner                            | • *                                             | 11.    | DATE WELL ABANDONED                                                   | 114101                                           |
| FACILITY ID #(if applicable)  NAME OF FACILITY CAMP (C                              |                                                 | 11     |                                                                       | WAS ABANDONED IN ACCORDANCE                      |
|                                                                                     |                                                 |        | I 15A NCAC 2C, WELL CONSTRUCTION<br>RECORD HAS BEEN PROVIDED TO T     | ON STANDARDS, AND THAT A COPY OF THE WELL OWNER. |
| STREET ADDRESS                                                                      |                                                 |        |                                                                       | 1/2/04                                           |
| City or Town State                                                                  | Zip Code                                        | SIGN   | ATURE OF CERTIFIED WELL CON                                           | TRACTOR DATE                                     |
| 4b. CONTACT PERSON/WELL OWNER:                                                      |                                                 | []     |                                                                       |                                                  |
| NAME KUDI HAURUDE, CI                                                               | 12m HICC                                        | SIGN   | ATURE OF PRIVATE WELL OWNER                                           | R ABANDONING THE WELL DATE                       |
| STREET ADDRESS 4824 PACKLE                                                          |                                                 | (The p |                                                                       | tho personally abandons his/her residential well |
|                                                                                     |                                                 | 1 [    | · ·                                                                   |                                                  |
| CHARCUTTE NC City or Town State Z                                                   | Sip Code                                        | PRIN   | M THOMAS<br>TED NAME OF PERSON ABANDONI                               | NG THE WELL                                      |
| -                                                                                   |                                                 |        |                                                                       |                                                  |
| (704) - 975 - 2980<br>Area code - Phone number                                      |                                                 |        |                                                                       |                                                  |



2012

North Carolina Department of Environment and Natural Resources- Division of Water Quality

| 1. WELL CONTRACTOR:                                                                                                                 |                                          | 5.   | WELL DETAILS:                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------|
| TIM THOMAS                                                                                                                          | ····                                     |      | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                           |
| Well Contractor (Individual) Name                                                                                                   |                                          |      | b. Water Level (Below Measuring Point): ft.                                                                                      |
| SAEDACCO ZNC. Well Contractor Company Name                                                                                          |                                          |      | Measuring point isft. above land surface.                                                                                        |
| STREET ADDRESS 9088 N                                                                                                               |                                          | 6.   | CASING: Length Diameter                                                                                                          |
| FORT MILL SC<br>City or Town State                                                                                                  | 29707<br>Zip Code                        |      | a. Casing Depth (if known): ft. in. b. Casing Removed: ft. in.                                                                   |
| Area code - Phone number                                                                                                            |                                          | 7.   | DISINFECTION: 0,1615                                                                                                             |
| . WELL INFORMATION:                                                                                                                 |                                          |      | (Amount of 65%-75% calcium hypochlorite used)                                                                                    |
| SITE WELL ID # (if applicable) /                                                                                                    | <u> で - 5</u>                            | 8.   | SEALING MATERIAL:                                                                                                                |
| STATE WELL PERMIT # (if applicable)                                                                                                 |                                          |      | Neat Cement Sand Cement                                                                                                          |
| COUNTY WELL PERMIT # (if applicable)                                                                                                |                                          |      | Cement         lb.         Cement         lb.           Water         gal.         Water         gal.                            |
| DWQ or OTHER PERMIT # (if applicable)                                                                                               |                                          |      | Bentonite                                                                                                                        |
| WELL USE (Circle applicable use): (Monit<br>Municipal/Public Industrial/Commen<br>Recovery Injection Irrigation<br>Other (list use) | rcial Agricultural                       |      | Bentonite lb. Type: Slurry Pellets_X Water O _ G G gal.                                                                          |
|                                                                                                                                     |                                          |      | Other                                                                                                                            |
| 3. WELL LOCATION:                                                                                                                   |                                          |      | Type material                                                                                                                    |
| COUNTY CASLOW QUADRANGLE                                                                                                            | <u></u>                                  |      | Amount                                                                                                                           |
| NEAREST TOWN: TACKSONVICE CAMP JOHNSON                                                                                              | ce, roc                                  |      | / Industry                                                                                                                       |
| (Street/Road Name, Number, Community, Subdivi                                                                                       | ision, Lot No., Parcel, Zip Code)        | 9.   | EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                       |
| TOPOGRAPHIC / LAND SETTING:                                                                                                         |                                          |      | BORCHOLE WAS FILLED WITH CHIPS AFTER                                                                                             |
| Slope Valley Flat Ridge Other_<br>(Circle appropriate setting)                                                                      |                                          |      | well was zemoved                                                                                                                 |
| LATITUDE                                                                                                                            | May be in degrees,                       |      |                                                                                                                                  |
| LATITUDE                                                                                                                            | minutes, seconds, or in a decimal format | 10.  | WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                             |
| Latitude/longitude source: GPS                                                                                                      | Topographic map                          |      | form showing total depth, depth and diameter of screens (if any) remaining                                                       |
| (Location of well must be shown on a L<br>attached to this form if not using GPS                                                    | ISGS topo map and                        |      | in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used.                     |
| a. FACILITY: The name of the business where the w<br>(If a residential well, ckip 4a; complete 4b, well own                         |                                          | 11.  | DATE WELL ABANDONED 7/29/09                                                                                                      |
| FACILITY ID #(if applicable)                                                                                                        | 1                                        | IDO  | HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                        |
| NAME OF FACILITY CAMP JC                                                                                                            | 21102C2                                  |      | H 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF<br>RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                    |
| STREET ADDRESS                                                                                                                      |                                          |      |                                                                                                                                  |
| TACK SCHOOLE NC  City or Town State                                                                                                 | Zip Code                                 | SIGN | NATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                        |
| o. CONTACT PERSON/WELL OWNER:                                                                                                       | •                                        |      |                                                                                                                                  |
| NAME KERI HAURORG C                                                                                                                 | HZM HICC                                 |      | ATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                             |
| STREET ADDRESS 4824 PARKL                                                                                                           |                                          |      | private well owner must be an individual who <u>personally</u> abandons his/her residential we cordance with 15A NCAC 2C .0113.) |
| CHAV2CC77C NC City or Town State                                                                                                    |                                          | 11 7 | im THOMAS                                                                                                                        |
| City or Town State                                                                                                                  | Zip Code                                 | PRIN | TED NAME OF PERSON ABANDONING THE WELL                                                                                           |
| (704) - 775 - 298() Area code - Phone number                                                                                        | -                                        |      |                                                                                                                                  |
| Area code - Phone number                                                                                                            |                                          | 11   |                                                                                                                                  |



| 1. WELL CONTRACTOR:                                                                                                                                             | 5. WELL DETAILS:                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIM THOMAS                                                                                                                                                      | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                                                                                  |
| Well Contractor (Individual) Name                                                                                                                               | b. Water Level (Below Measuring Point): fi.                                                                                                                                             |
| SAE DACCO, INC. Well Contractor Company Name                                                                                                                    | Measuring point is ft. above land surface.                                                                                                                                              |
| STREET ADDRESS <u>GC 8 8 NORTHFIELD</u> DR                                                                                                                      | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC 29707  City of Town State Zip Code                                                                                                                 | a. Casing Depth (if known): ft in. b. Casing Removed: ft in.                                                                                                                            |
| Area code - Phone number                                                                                                                                        | 7. DISINFECTION: O.16 15                                                                                                                                                                |
| 2. WELL INFORMATION:                                                                                                                                            | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable) 760 - 6                                                                                                                          | 8. SEALING MATERIAL:                                                                                                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                                                             | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                            | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                           | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable use): Monitoring Residential Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation                      | Bentonite lb. Type: Slurry Pellets 🖔 Water O , G G gal.                                                                                                                                 |
| Other (list use)                                                                                                                                                | Other                                                                                                                                                                                   |
| 3. WELL LOCATION:                                                                                                                                               |                                                                                                                                                                                         |
| COUNTY CNSLOW QUADRANGLE NAME                                                                                                                                   | Type material                                                                                                                                                                           |
| NEAREST TOWN: TACKSONVICLE, NC                                                                                                                                  | Amount                                                                                                                                                                                  |
| CAMP JOHNSON                                                                                                                                                    |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                   | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING:                                                                                                                                     | BUZCHOLE WAS FILLED WITH CHIPS AFTER                                                                                                                                                    |
| Slope Valley Flat Ridge Other                                                                                                                                   | WELL WAS ZEMOUED                                                                                                                                                                        |
| . (Circle appropriate setting)                                                                                                                                  |                                                                                                                                                                                         |
| LATITUDE May be in degrees, minutes, seconds, or in a decimal format                                                                                            |                                                                                                                                                                                         |
| LONGITUDE                                                                                                                                                       | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)                  | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| 4a. FACILITY-The name of the business where the well is located. Complete 4a and 4t (If a residential well, Jkip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                                                                    | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                   | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF                                                                                                                       |
| STREET ADDRESS  Or ACIE SCIPLLE COMPANY  City or Town State Zip Code                                                                                            | THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                                                                                        |
| TACKSCHULLE NC                                                                                                                                                  | SIGNATURE OF CERTIFIED WELL CONTRACTOR DATE                                                                                                                                             |
| Ciry or Town State Zip Code                                                                                                                                     | SIGNATURE OF CERTIFIED WELL CONTRACTOR DATE                                                                                                                                             |
| 4b. CONTACT PERSON/WELL OWNER:                                                                                                                                  |                                                                                                                                                                                         |
| NAME KETZI HAURGZE, CHZM HILL                                                                                                                                   | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                                                                |
| STREET ADDRESS 4824 PARKWAY PLAZA BLUD                                                                                                                          | (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C .0113.)                                                   |
| CHARLO77E NC  City or Town State Zip Code                                                                                                                       | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                   |
| City or Town State Zip Code                                                                                                                                     | PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                              |
| (709)- 975-298C                                                                                                                                                 |                                                                                                                                                                                         |
| Area code - Phone number                                                                                                                                        |                                                                                                                                                                                         |



| 1. WELL CONTRACTOR:                                                                                                        |                                          | 5.                                     | WELL DETAILS:                                                                                                                                             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| TIM THOMAS                                                                                                                 |                                          | a. Total Depth: 16 ft. Diameter: 1 in. |                                                                                                                                                           |  |  |  |
| Well Contractor (Individual) Name                                                                                          |                                          |                                        | b. Water Level (Below Measuring Point):ft.                                                                                                                |  |  |  |
| SAE DACCO, TNC. Well Contractor Company Name                                                                               |                                          |                                        | Measuring point isft. above land surface.                                                                                                                 |  |  |  |
| STREET ADDRESS 9088 NO                                                                                                     | _                                        | 6.                                     | . CASING: Length Diameter                                                                                                                                 |  |  |  |
|                                                                                                                            |                                          |                                        |                                                                                                                                                           |  |  |  |
| FORT MILL SC<br>City or Town State                                                                                         | Zip Code                                 |                                        | a. Casing Depth (if known):       ft.       in.         b. Casing Removed:       ft.       in.                                                            |  |  |  |
| (893) 548 ZIBO                                                                                                             |                                          |                                        |                                                                                                                                                           |  |  |  |
| Area code - Phone number                                                                                                   |                                          | 7.                                     | DISINFECTION: 0.16 15                                                                                                                                     |  |  |  |
| 2. WELL INFORMATION:                                                                                                       | w - <b>7</b>                             |                                        | (Amount of 65%-75% calcium hypochlorite used)                                                                                                             |  |  |  |
| SITE WELL ID # (if applicable) / (                                                                                         | C = I                                    | 8.                                     | SEALING MATERIAL:                                                                                                                                         |  |  |  |
| STATE WELL PERMIT # (if applicable)                                                                                        |                                          |                                        | Neat Cement Sand Cement                                                                                                                                   |  |  |  |
| COUNTY WELL PERMIT # (if applicable)_                                                                                      |                                          |                                        | Cement         lb.         Cement         lb.           Water         gal.         Water         gal.                                                     |  |  |  |
| DWQ or OTHER PERMIT # (if applicable)_                                                                                     |                                          |                                        | Bentonite                                                                                                                                                 |  |  |  |
| WELL USE (Circle applicable use): Monite Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                        |                                        | Bentonite lb. Type: Slurry Peliets Water <b>C. G.G.</b> gal.                                                                                              |  |  |  |
| (100 200)                                                                                                                  |                                          |                                        | <u>Other</u>                                                                                                                                              |  |  |  |
| 3. WELL LOCATION:                                                                                                          |                                          |                                        | Type material                                                                                                                                             |  |  |  |
| COUNTY CNSLOW QUADRANGLE                                                                                                   |                                          |                                        |                                                                                                                                                           |  |  |  |
| NEAREST TOWN: <u>TACKSONVIC</u> CAMD JOHNSON                                                                               |                                          |                                        | Amount                                                                                                                                                    |  |  |  |
| (Street/Road Name, Number, Community, Subdivis                                                                             |                                          | 9.                                     | EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                |  |  |  |
| TOPOGRAPHIC / LAND SETTING:                                                                                                |                                          |                                        | BUREHOLE WAS FILLED WITH CHIPS AFTER                                                                                                                      |  |  |  |
| Slope Valley Flat Ridge Other                                                                                              |                                          |                                        | WELL WAS ZEMOVED                                                                                                                                          |  |  |  |
|                                                                                                                            | May be in degrees,                       |                                        |                                                                                                                                                           |  |  |  |
| LATITUDE                                                                                                                   | minutes, seconds, or in a decimal format |                                        |                                                                                                                                                           |  |  |  |
| LONGITUDE                                                                                                                  | <u> </u>                                 | 10.                                    | . WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                    |  |  |  |
| Latitude/longitude source: GPS (Location of well must be shown on a U.                                                     |                                          |                                        | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and |  |  |  |
| attached to this form if not using GPS.                                                                                    |                                          |                                        | types of fill materials used.                                                                                                                             |  |  |  |
| 4a. FACILITY- The name of the business where the w<br>(If a residential well, skip 4a; complete 4b, well owne              | •                                        | 11.                                    | DATE WELL ABANDONED 7/29/09                                                                                                                               |  |  |  |
| FACILITY ID #(if applicable)                                                                                               | -                                        | 100                                    | HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                 |  |  |  |
| NAME OF FACILITY CAMP JC                                                                                                   | HWS CW                                   | wr                                     | TH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF                                                                                           |  |  |  |
| STREET ADDRESS                                                                                                             |                                          | Ini                                    | S RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                                                             |  |  |  |
| City or Town State Zip Code                                                                                                |                                          | SIG                                    | NATURE OF CERTIFIED WELL CONTRACTOR DATE                                                                                                                  |  |  |  |
| 4b. CONTACT PERSON/WELL OWNER:                                                                                             |                                          |                                        |                                                                                                                                                           |  |  |  |
| NAME KERT HAURURE CH                                                                                                       | 42111111CC                               |                                        | NATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                                     |  |  |  |
| STREET ADDRESS 4824 PARKL                                                                                                  | JAY PLAZA BLUD                           |                                        | private well owner must be an individual who personally abandons his/her residential well ecordance with 15A NCAC 2C .0113.)                              |  |  |  |
|                                                                                                                            |                                          | 1 -7                                   | in THOMA                                                                                                                                                  |  |  |  |
| City or Town State                                                                                                         | Zip Code                                 | PRI                                    | NTED NAME OF PERSON ABANDONING THE WELL                                                                                                                   |  |  |  |
| (704)- 975-2980                                                                                                            |                                          |                                        |                                                                                                                                                           |  |  |  |
| Area code - Phone number                                                                                                   |                                          |                                        |                                                                                                                                                           |  |  |  |



| 1. WELL CONTRACTOR:                                                                                                                                         | 5. WELL DETAILS:                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIM THOMAS                                                                                                                                                  | a. Total Depth: 17 ft. Diameter: 1 in.                                                                                                                                                  |
| Well Contractor (Individual) Name                                                                                                                           | b. Water Level (Below Measuring Point): ft.                                                                                                                                             |
| SAE DACCO TNC. Well Contractor Company Name                                                                                                                 | Measuring point is ft. above land surface.                                                                                                                                              |
| STREET ADDRESS SORY NORTHFIELD DR                                                                                                                           | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC 29707  City or Town State Zip Code  (843) 548 2180                                                                                             | a. Casing Depth (if known):  b. Casing Removed:  ft.  in.  in.                                                                                                                          |
| Area code - Phone number                                                                                                                                    | 7. DISINFECTION:                                                                                                                                                                        |
| 2. WELL INFORMATION:                                                                                                                                        | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable) 700 - 8                                                                                                                      | 8. SEALING MATERIAL:                                                                                                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                                                         | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                        | Cement lb. Cement lb. Water gal. Water gal.                                                                                                                                             |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                       | <u>Bentonite</u>                                                                                                                                                                        |
| WELL USE (Circle applicable use): Monitoring Residential Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation Other (list use) | Bentonite                                                                                                                                                                               |
|                                                                                                                                                             | Other Other                                                                                                                                                                             |
| 3. WELL LOCATION:  COUNTY CNSUCLU QUADRANGLE NAME                                                                                                           | Type material                                                                                                                                                                           |
|                                                                                                                                                             | Amount                                                                                                                                                                                  |
| NEAREST TOWN: <u>TACKSONVICE</u> , NC<br>CAMP JOHNSON                                                                                                       |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                               | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other (Circle appropriate setting)                                                                      | BORCHOLE WAS FILLED WITH CHIPS AFTER WELL WAS REMOVED                                                                                                                                   |
|                                                                                                                                                             |                                                                                                                                                                                         |
| LATITUDE May be in degrees, minutes, seconds, or in a decimal format                                                                                        |                                                                                                                                                                                         |
| LONGITUDE                                                                                                                                                   | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS Topographic map  (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)             | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of easing perforations, and depths and types of fill materials used. |
| a. FACILITY-The name of the business where the well is located. Complete 4a and 4b.                                                                         | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| (If a residential well, :kip 4a; complete 4b, well owner information only.)  FACILITY ID #(if applicable)                                                   | II. DATE WELL ABANDONED                                                                                                                                                                 |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                               | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF                                                        |
| STREET ADDRESS                                                                                                                                              | THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                                                                                        |
| NAME OF FACILITY CAMP JOHNS CO.  STREET ADDRESS  JACK SCIUCLE NC  City or Town State Zip Code                                                               | SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                                                            |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                               |                                                                                                                                                                                         |
|                                                                                                                                                             | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                                                                |
| NAME KUDI HAWRONG CHZM HILL<br>STREET ADDRESS 4824 PARKWAY PLAZA BUD                                                                                        | (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C .0113.)                                                   |
|                                                                                                                                                             | Tim Thomas                                                                                                                                                                              |
| City or Town State Zip Code                                                                                                                                 | PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                              |
| (704)- 975-298C                                                                                                                                             |                                                                                                                                                                                         |
| Area code - Phone number                                                                                                                                    |                                                                                                                                                                                         |



well contractor certification # 2012

| 1. WELL CONTRACTOR:                                                                 |                                                 | 5.     | WELL DETAILS:                                                      |                              |                    |
|-------------------------------------------------------------------------------------|-------------------------------------------------|--------|--------------------------------------------------------------------|------------------------------|--------------------|
| TIM THOMAS                                                                          |                                                 |        | a. Total Depth: 16                                                 | ft. Diameter: 1              | in.                |
| Well Contractor (Individual) Name                                                   |                                                 |        | b. Water Level (Below Measur                                       |                              |                    |
| SAEDACCO, INC.                                                                      |                                                 |        | Measuring point is                                                 | ft, above land surface.      | ,                  |
| Well Contractor Company Name                                                        | - 0-211 > >>                                    |        | 0.000                                                              |                              |                    |
| STREET ADDRESS GC 8 8 NO                                                            |                                                 | 6.     | CASING:                                                            | Length Diant                 | icter              |
| FORT MILL SC<br>City of Town State                                                  | 29/0/                                           |        | a. Casing Depth (if known):                                        |                              |                    |
| (843) = 548 2180                                                                    | Zip Code                                        |        | b. Casing Removed:                                                 | fi.                          | in.                |
| Area code - Phone number                                                            |                                                 | 7.     | DISINFECTION: 0.1                                                  | o 15                         |                    |
| 2. WELL INFORMATION:                                                                |                                                 |        | (Amount of 65%-75% calcium                                         |                              |                    |
| SITE WELL ID # (if applicable)                                                      | · v - 9                                         | 8.     | SEALING MATERIAL:                                                  | ,                            |                    |
|                                                                                     |                                                 |        | Neat Cement                                                        | Sand Cement                  |                    |
| STATE WELL PERMIT # (if applicable)                                                 |                                                 |        | <u> </u>                                                           |                              |                    |
| COUNTY WELL PERMIT # (if applicable)_                                               |                                                 |        | Cement lb. Water gal.                                              | Cement<br>Water              |                    |
| DWQ or OTHER PERMIT # (if applicable)_                                              |                                                 |        | Bentonite                                                          |                              |                    |
| WELL USE (Circle applicable use): Monito Municipal/Public Industrial/Commerce       |                                                 |        | Bentonite 5 lb.                                                    |                              |                    |
| Recovery Injection Irrigation                                                       |                                                 | 11     | Type: Slurry_ Pellets <b>X</b><br>Water_ <b>0,66</b> ga            | a i                          |                    |
| Other (list use)                                                                    |                                                 |        |                                                                    | ir,                          |                    |
| 3. WELL LOCATION:                                                                   |                                                 |        | <u>Other</u>                                                       |                              |                    |
| COUNTY CNSLOW QUADRANGLE                                                            | NAME                                            | 11     | Type material                                                      |                              |                    |
| NEAREST TOWN: JACKSONVIL                                                            |                                                 |        | Amount                                                             |                              |                    |
| CAMP JOHNSON                                                                        |                                                 |        |                                                                    |                              |                    |
| (Street/Road Name, Number, Community, Subdivis                                      | ion, Lot No., Parcel, Zip Code)                 | 9.     | EXPLAIN METHOD OF EM                                               | IPLACEMENT OF MAT            | ΓERIAL:            |
| TOPOGRAPHIC / LAND SETTING:                                                         |                                                 |        | BORCHOLE WAS FI                                                    | LLED WITH CHIPS              | AFTER              |
| Slope Valley Flat Ridge Other                                                       |                                                 |        | WELL WAS ZEMON                                                     | EO                           |                    |
| (Circle appropriate setting)                                                        |                                                 |        |                                                                    | <u> </u>                     |                    |
| LATITUDE                                                                            | May be in degrees,<br>minutes, seconds, or in a |        |                                                                    |                              |                    |
| LONGITUDE                                                                           | decimal format                                  | 10.    | WELL DIAGRAM: Draw a de                                            | etailed sketch of the well o | n the back of this |
| Latitude/longitude source: GPS                                                      | Topographic map                                 |        | form showing total depth, deptl                                    |                              | . ,                |
| (Location of well must be shown on a US<br>attached to this form if not using GPS.) |                                                 |        | in the well, gravel interval, inte                                 | rvals of casing perforation  | s, and depths and  |
| In. FACILITY- The name of the business where the we                                 |                                                 |        | types of fill materials used.                                      | 1-1-0                        |                    |
| (If a residential well, skip 4a; complete 4b, well owner                            |                                                 | ]] 11. | DATE WELL ABANDONED_                                               | 7/29/09                      |                    |
| FACILITY ID #(if applicable)                                                        |                                                 | IDO    | HEREBY CERTIFY THAT THIS WI                                        | ELL WAS ABANDONED IN         | ACCORDANCE         |
| NAME OF FACILITY CAMP JO                                                            |                                                 |        | I 15A NCAC 2C, WELL CONSTRUC<br>RECORD HAS BEEN PROVIDED T         |                              | THAT A COPY OF     |
| STREET ADDRESS                                                                      |                                                 |        |                                                                    |                              | 1 1.62             |
| City or Town State Zip Code                                                         |                                                 | SIGN   | ATURE OF CERTIFIED WELL C                                          | ONTRACTOR                    | 10/13/09           |
| b. CONTACT PERSON/WELL OWNER:                                                       | Zip Code                                        |        |                                                                    |                              | DAIL               |
| NAME KERT HAURES CI                                                                 | 12 m ilii C                                     |        | Artibe Arabay and door Are                                         | MED AD ANDOUND THE           | WELL P. Th         |
| STREET ADDRESS 4824 PARKLE                                                          | LOW DE ATT A PLANT                              | (The p | ATURE OF PRIVATE WELL OW<br>orivate well owner must be an individu |                              |                    |
|                                                                                     |                                                 | 11 _   | ordance with 15A NCAC 2C .0113.)                                   |                              |                    |
| CHAWW77E NC City or Town State Z                                                    | Vin Code                                        | PRIN   | M THOMAS TED NAME OF PERSON ABANDO                                 | ONING THE WELL               |                    |
|                                                                                     |                                                 |        |                                                                    |                              |                    |
| (704) - 975-2980                                                                    |                                                 |        |                                                                    |                              |                    |
| Area code - Phone number                                                            |                                                 | 1 1    |                                                                    |                              |                    |



| " DDD CONTINCT ON CERTIF                                                                                                                                         | TCATION # 2010                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                                                              | 5. WELL DETAILS:                                                                                                   |
| TIM THOMAS                                                                                                                                                       | a. Total Depth: 16 ft. Diameter: 1 in.                                                                             |
| Well Contractor (Individual) Name                                                                                                                                | b. Water Level (Below Measuring Point):ft.                                                                         |
| SAEDACCO TNC. Well Contractor Company Name                                                                                                                       | Measuring point is ft. above land surface.                                                                         |
| STREET ADDRESS 9088 NORTHFIELD DR                                                                                                                                | 6. CASING: Length Diameter                                                                                         |
|                                                                                                                                                                  |                                                                                                                    |
| FORT MILL SC 29707  City or Town State Zip Code                                                                                                                  | a. Casing Depth (if known): ft. in. b. Casing Removed: ft. in.                                                     |
| (83) 548 Z(80                                                                                                                                                    |                                                                                                                    |
| Area codc - Phone number                                                                                                                                         | 7. DISINFECTION: 0.1615                                                                                            |
| 2. WELL INFORMATION:                                                                                                                                             | (Amount of 65%-75% calcium hypochlorite used)                                                                      |
| SITE WELL ID # (if applicable) / W 10                                                                                                                            | 8. SEALING MATERIAL:                                                                                               |
| STATE WELL PERMIT # (if applicable)                                                                                                                              | Neat Cement Sand Cement                                                                                            |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                             | Cement lb. Cement lb. Water gal. Water gal.                                                                        |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                            | <u>Bentonite</u>                                                                                                   |
| WELL USE (Circle applicable use): (Monitoring Residential Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation Other (list use)     | Bentonite 5 lb. Type: Slurry Pellets 6 gal.                                                                        |
| Other (list use)                                                                                                                                                 | Other                                                                                                              |
| 3. WELL LOCATION:                                                                                                                                                | Type material                                                                                                      |
| COUNTY CNSLOW QUADRANGLE NAME                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                              |
| NEAREST TOWN: JACKSONVICE, NC                                                                                                                                    | Amount                                                                                                             |
| CAMD JOHNSON                                                                                                                                                     |                                                                                                                    |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                    | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:  BURCHOLE WAS FILLED WITH CHIPS AFTER                                |
| TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other                                                                                                        | WELL WAS ZEMOVED                                                                                                   |
| (Circle appropriate setting)                                                                                                                                     |                                                                                                                    |
| LATITUDE May be in degrees,                                                                                                                                      |                                                                                                                    |
| LATITUDE minutes, seconds, or in a decimal format                                                                                                                | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                           |
| Latitude/longitude source: GPS Topographic map                                                                                                                   | form showing total depth, depth and diameter of screens (if any) remaining                                         |
| (Location of well must be shown on a USGS topo map and                                                                                                           | in the well, gravel interval, intervals of casing perforations, and depths and                                     |
| attached to this form if not using GPS.)                                                                                                                         | types of fill materials used.                                                                                      |
| 2. FACILITY: The name of the business where the well is located. Complete 4a and4<br>(If a residential well, ckip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                    |
| FACILITY ID #(if applicable)                                                                                                                                     | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                     |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                    | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER. |
| STREET ADDRESS                                                                                                                                                   | 1                                                                                                                  |
| STREET ADDRESS  Original State  City or Town  State  Zip Code                                                                                                    | SIGNATURE OF CERTIFIED WELL CONTRACTOR DATE                                                                        |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                                    |                                                                                                                    |
| NAME KORT HAUROZO CHZMHICL                                                                                                                                       | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                           |
| STREET ADDRESS 4824 PARKLERY PLAZA BLUD                                                                                                                          |                                                                                                                    |
|                                                                                                                                                                  | <b>!</b>                                                                                                           |
| City or Town State Zip Code                                                                                                                                      | PRINTED NAME OF PERSON ABANDONING THE WELL                                                                         |
| (704)- 775-7980                                                                                                                                                  |                                                                                                                    |
| Area code - Phone number                                                                                                                                         |                                                                                                                    |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

well contractor certification # 20/2

| THE COL                                                                                                                   | TICKET ON CENTIFIC                       | <u> </u> |                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                       | <u> </u>                                 | 5.       | WELL DETAILS:                                                                                                                                      |
| TIM THOMAS                                                                                                                |                                          |          | a. Total Depth: 20 ft. Diameter: 1 in.                                                                                                             |
| Well Contractor (Individual) Name                                                                                         | <del>-</del>                             |          | b. Water Level (Below Measuring Point): ft.                                                                                                        |
| SAEDACCO, INC.                                                                                                            |                                          |          | Measuring point is fi. above land surface.                                                                                                         |
| Well Contractor Company Name                                                                                              | 207115ELX NO                             |          | CASING: Lauth Dispuse                                                                                                                              |
| STREET ADDRESS 9088 NO                                                                                                    |                                          | 6.       | CASING: Length Diameter                                                                                                                            |
| FORT MILL SC<br>City of Town State                                                                                        | 27/0/                                    |          | a. Casing Depth (if known): ft. ft. in.                                                                                                            |
| (803) - 548 2180                                                                                                          | Zip Code                                 |          | b. Casing Removed: ft. in.                                                                                                                         |
| Area code - Phone number                                                                                                  |                                          | 7.       | DISINFECTION: 0,16 15                                                                                                                              |
| . WELL INFORMATION:                                                                                                       |                                          |          | (Amount of 65%-75% calcium hypochlorite used)                                                                                                      |
| SITE WELL ID # (if applicable)                                                                                            | v - 11                                   | 8.       | SEALING MATERIAL:                                                                                                                                  |
|                                                                                                                           |                                          |          | North Comment                                                                                                                                      |
| STATE WELL PERMIT # (if applicable)                                                                                       |                                          |          | Neat Coment Sand Coment                                                                                                                            |
| COUNTY WELL PERMIT # (if applicable)                                                                                      |                                          |          | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                       |
| DWQ or OTHER PERMIT # (if applicable)                                                                                     |                                          |          | Bentonite                                                                                                                                          |
| WELL USE (Circle applicable use): Monit Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                        |          | Bentonite                                                                                                                                          |
| Other (fist use)                                                                                                          | <del></del>                              |          | Other                                                                                                                                              |
| 3. WELL LOCATION:                                                                                                         |                                          |          | Type material                                                                                                                                      |
| COUNTY CNSLOW QUADRANGLE                                                                                                  |                                          |          |                                                                                                                                                    |
| NEAREST TOWN: JACKSONVIC                                                                                                  | ie, nc                                   |          | Amount                                                                                                                                             |
| CAMP JOHNSON                                                                                                              |                                          |          |                                                                                                                                                    |
| (Street/Road Name, Number, Community, Subdivi                                                                             | sion, Lot No., Parcel, Zip Code)         | 9.       | EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                         |
| TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other_                                                                |                                          |          | BORCHOLE WAS FILLED WITH CHIPS AFTER WELL WAS ZEENWED.                                                                                             |
| (Circle appropriate setting)                                                                                              |                                          |          | well was zemoles                                                                                                                                   |
|                                                                                                                           | May be in degrees,                       |          |                                                                                                                                                    |
| LATITUDE                                                                                                                  | minutes, seconds, or in a decimal format |          |                                                                                                                                                    |
| LONGITUDE                                                                                                                 |                                          | 10.      | WELL DIAGRAM: Draw a detailed sketch of the well on the back of this<br>form showing total depth, depth and diameter of screens (if any) remaining |
| Latitude/longitude source: GPS (Location of well must be shown on a L attached to this form if not using GPS              |                                          |          | in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used.                                       |
| a. FACILITY-The name of the business where the w<br>(If a residential well, ckip 4a; complete 4b, well own                |                                          | 11.      | DATE WELL ABANDONED 7/29/09                                                                                                                        |
| FACILITY ID #(if applicable)                                                                                              |                                          |          | HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                          |
| NAME OF FACILITY CAMP JC                                                                                                  | office co                                |          | H 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF S RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                       |
| STREET ADDRESS  TACK SCHOOLEGE AS C  City or Town State                                                                   |                                          |          | 1 1 2                                                                                                                                              |
| Cincor Town                                                                                                               | 7in Code                                 | SIG      | NATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                          |
|                                                                                                                           | Zip Code                                 |          |                                                                                                                                                    |
| NAME <u>FCRT 1-laurur</u> C                                                                                               | H2m Hu C                                 |          | NATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                              |
| STREET ADDRESS 4824 PARKL                                                                                                 | MU DINON DINO                            | (The     | private well owner must be an individual who personally abandons his/her residential well                                                          |
|                                                                                                                           |                                          | 1        | eordance with 15A NCAC 2C .0113.)                                                                                                                  |
| CHAWW77E NC City or Town State                                                                                            | 7 in Code                                | PRI      | THE THOMA S                                                                                                                                        |
|                                                                                                                           |                                          |          |                                                                                                                                                    |
| (704) - 775 - 7980) Area code - Phone number                                                                              | -                                        |          |                                                                                                                                                    |
| ,00+ / HOME MAINUT                                                                                                        |                                          |          |                                                                                                                                                    |



|                                                                                                                             | TIETOTOR OBITITION                       |                                                                                                                                              |        |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1. WELL CONTRACTOR:                                                                                                         |                                          | 5. WELL DETAILS:                                                                                                                             |        |
| TIM THOMAS                                                                                                                  | <del> </del>                             | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                                       |        |
| Well Contractor (Individual) Name                                                                                           |                                          | b. Water Level (Below Measuring Point): ft.                                                                                                  |        |
| SAE DACCO TNC. Well Contractor Company Name                                                                                 |                                          | Measuring point is ft. above land surface.                                                                                                   |        |
| STREET ADDRESS 9088 NO                                                                                                      | OPTHFIELD DR                             | 6. CASING: Length Diameter                                                                                                                   |        |
|                                                                                                                             |                                          | a Caring Double (if brown).                                                                                                                  |        |
| FORT MILL SC<br>City or Town State                                                                                          | Zip Code                                 | a. Casing Depth (if known): ft. in. b. Casing Removed: ft. in.                                                                               |        |
| (843) - 548-2180                                                                                                            |                                          | Įį.                                                                                                                                          |        |
| Area code - Phone number                                                                                                    |                                          | 7. DISINFECTION: 0.1615                                                                                                                      |        |
| 2. WELL INFORMATION: SITE WELL ID # (if applicable)                                                                         | - 12                                     | (Amount of 65%-75% calcium hypochlorite used)                                                                                                |        |
| SITE WELL ID # (it applicable) /                                                                                            | <u> </u>                                 | 8. SEALING MATERIAL:                                                                                                                         |        |
| STATE WELL PERMIT # (if applicable)                                                                                         |                                          | Neat Cement Sand Cement                                                                                                                      |        |
| COUNTY WELL PERMIT # (if applicable)_                                                                                       |                                          | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                 |        |
| DWQ or OTHER PERMIT # (if applicable)_                                                                                      |                                          | <u>Bentonite</u>                                                                                                                             |        |
| WELL USE (Circle applicable use): (Monite Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                        | Bentonitelb. Type: SlurryPellets & WaterO                                                                                                    |        |
|                                                                                                                             |                                          | Other                                                                                                                                        |        |
| 3. WELL LOCATION:  COUNTY CNS LOCAL QUADRANGLE                                                                              | NAME                                     | Type material                                                                                                                                |        |
| NEAREST TOWN: TACKSONVIL                                                                                                    |                                          | Amount                                                                                                                                       |        |
| CAMP JOHNSON                                                                                                                |                                          |                                                                                                                                              |        |
| (Street/Road Name, Number, Community, Subdivis                                                                              | sion, Lot No., Parcel, Zip Code)         | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                |        |
| TOPOGRAPHIC / LAND SETTING:                                                                                                 |                                          | BURCHOLE WAS FILLED WITH CHIPS AFTER                                                                                                         |        |
| Slope Valley Flat Ridge Other                                                                                               |                                          | WELL WAS ZEMOUED                                                                                                                             |        |
|                                                                                                                             | May be in degrees,                       |                                                                                                                                              |        |
| LATITUDE                                                                                                                    | minutes, seconds, or in a decimal format |                                                                                                                                              |        |
| LONGITUDECRS                                                                                                                | T                                        | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of form showing total depth, depth and diameter of screens (if any) remains |        |
| Latitude/longitude source: GPS (Location of well must be shown on a U                                                       | Topographic map<br>SGS topo map and      | in the well, gravel interval, intervals of casing perforations, and depths                                                                   |        |
| attached to this form if not using GPS.                                                                                     |                                          | types of fill materials used.                                                                                                                |        |
| a. FACILITY- The name of the business where the w<br>(If a residential well, skip 4a; complete 4b, well owned)              |                                          | 11. DATE WELL ABANDONED 7/29/09                                                                                                              |        |
| FACILITY ID #(if applicable)                                                                                                |                                          | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                               |        |
| NAME OF FACILITY CAMP JC                                                                                                    | 1050m                                    | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                              | ′ OF   |
| STREET ADDRESS                                                                                                              |                                          | vliz /c                                                                                                                                      | ٠j     |
| STREET ADDRESS                                                                                                              |                                          | SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                 | _      |
| b. CONTACT PERSON/WELL OWNER:                                                                                               |                                          |                                                                                                                                              |        |
| NAME K-CTZI HAURUZE C                                                                                                       | HZM HICC                                 | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DAT                                                                                      |        |
| STREET ADDRESS 4824 PARKE                                                                                                   | JAY PLAZA BLUD                           | (The private well owner must be an individual who <u>personally</u> abandons his/her residentia in accordance with 15A NCAC 2C .0113.)       | ı well |
| City or Town State                                                                                                          |                                          | PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                   |        |
| City or Town State                                                                                                          | Zip Code                                 | PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                   |        |
| (704)- 975-2980                                                                                                             |                                          |                                                                                                                                              |        |
| Area code - Phone number                                                                                                    |                                          |                                                                                                                                              |        |



2012

WELL ABANDONMENT RECORD

North Carolina Department of Environment and Natural Resources- Division of Water Quality

| 1. WELL CONTRACTOR:                                                                                                       | · · · · · · · · · · · · · · · · · · ·    | 5.   | WELL DETAILS:                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| TIM THOMAS                                                                                                                |                                          |      | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                                          |
| Well Contractor (Individual) Name                                                                                         |                                          |      | b. Water Level (Below Measuring Point):fi.                                                                                                      |
| SAEDACCO, TNC. Well Contractor Company Name                                                                               |                                          |      | Measuring point is ft. above land surface.                                                                                                      |
| STREET ADDRESS 9088 N                                                                                                     |                                          | 6.   | CASING: Length Diameter                                                                                                                         |
| FORT MILL SC<br>City or Town State                                                                                        | 29707<br>Zip Code                        |      | a. Casing Depth (if known):  b. Casing Removed:  ft.  in.                                                                                       |
| Area code - Phone number                                                                                                  | '                                        | 7.   | 0.1111                                                                                                                                          |
| 2. WELL INFORMATION:                                                                                                      |                                          |      | (Amount of 65%-75% calcium hypochlorite used)                                                                                                   |
| SITE WELL ID # (if applicable)                                                                                            | ₩ - 13                                   | 8.   | SEALING MATERIAL:                                                                                                                               |
| STATE WELL PERMIT # (if applicable)                                                                                       |                                          |      | Neat Cement Sand Cement                                                                                                                         |
| COUNTY WELL PERMIT # (if applicable)                                                                                      |                                          |      | Cement lb. Cement lb. Water gal.                                                                                                                |
| DWQ or OTHER PERMIT # (if applicable)                                                                                     |                                          |      | Bentonite                                                                                                                                       |
| WELL USE (Circle applicable use): Monit Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | rcial Agricultural                       |      | Bentonite 5 lb. Type: Slurry Pellets 4 Water 0,66 gal.                                                                                          |
|                                                                                                                           |                                          |      | <u>Other</u>                                                                                                                                    |
| 3. WELL LOCATION:                                                                                                         |                                          |      | Type material                                                                                                                                   |
| COUNTY CNSLOW QUADRANGLE                                                                                                  |                                          |      | Amount                                                                                                                                          |
| NEAREST TOWN: TACKSONVICE CAMP JOHNSON                                                                                    | ie, Ne                                   |      | Attioun                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivi                                                                             | ision, Lot No., Parcel, Zip Code)        | 9.   | EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                      |
| TOPOGRAPHIC / LAND SETTING:                                                                                               |                                          |      | BORCHOLE WAS FILLED WITH CHIPS AFTER                                                                                                            |
| Slope Valley Flat Ridge Other<br>(Circle appropriate setting)                                                             |                                          |      | WELL WAS ZEMWED                                                                                                                                 |
|                                                                                                                           | May be in degrees,                       |      |                                                                                                                                                 |
| LATITUDE                                                                                                                  | minutes, seconds, or in a decimal format |      |                                                                                                                                                 |
| LONGITUDE                                                                                                                 |                                          | 10.  | WELL DIAGRAM: Draw a detailed sketch of the well on the back of this form showing total depth, depth and diameter of screens (if any) remaining |
| Latitude/longitude source: GPS (Location of well must be shown on a U attached to this form if not using GPS              |                                          |      | in the well, gravel interval, intervals of easing perforations, and depths and types of fill materials used.                                    |
| 2. FACILITY- The name of the business where the v<br>(If a residential well, skip 4a; complete 4b, well own               |                                          | 11.  | DATE WELL ABANDONED 7/29/09                                                                                                                     |
| FACILITY ID #(if applicable)                                                                                              |                                          |      | HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                       |
| NAME OF FACILITY CAMP JC                                                                                                  | 2405CM                                   |      | H 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF<br>S RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                 |
| STREET ADDRESS                                                                                                            |                                          |      | who/69                                                                                                                                          |
| City or Town State Zip Code                                                                                               |                                          | SIG  | NATURE OF CERTIFIED WELL CONTRACTOR DATE                                                                                                        |
| b. CONTACT PERSON/WELL OWNER:                                                                                             |                                          |      |                                                                                                                                                 |
| NAME KERT HAUREDE, C                                                                                                      | HZM HILL                                 |      | NATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                           |
| STREET ADDRESS 4824 PARKL                                                                                                 |                                          |      | private well owner must be an individual who <u>personally</u> abandons his/her residential well cordance with 15A NCAC 2C .0113.)              |
| CHAPLOTTE NC City or Town State                                                                                           |                                          | 11 7 | M THOMAS  NTED NAME OF PERSON ABANDONING THE WELL                                                                                               |
| City or Town State                                                                                                        | Zip Code                                 | PRI  | NTED NAME OF PERSON ABANDONING THE WELL                                                                                                         |
| (704)- 975-2980                                                                                                           | •                                        |      |                                                                                                                                                 |
| Area code - Phone number                                                                                                  |                                          | 11   |                                                                                                                                                 |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

|                                                                                                                            | THE COR CERTIFY                          | CALLO    |                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                        |                                          | 5.       | WELL DETAILS:                                                                                                                                   |
| TIM THOMAS                                                                                                                 |                                          |          | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                                          |
| Well Contractor (Individual) Name                                                                                          |                                          |          | b. Water Level (Below Measuring Point):fi.                                                                                                      |
| SAEDACCO, INC.                                                                                                             |                                          |          | Measuring point is fi. above land surface.                                                                                                      |
| Well Contractor Company Name                                                                                               |                                          |          |                                                                                                                                                 |
| STREET ADDRESS 9088 N                                                                                                      |                                          | 6.       | CASING: Length Diameter                                                                                                                         |
| FORT MILL SC<br>City or Town State                                                                                         | 29707<br>Zip Code                        |          | a. Casing Depth (if known): ft. ft. in. b. Casing Removed: ft. in.                                                                              |
| Area code - Phone number                                                                                                   |                                          | 7.       | 5-11-11.                                                                                                                                        |
| 2. WELL INFORMATION:                                                                                                       |                                          |          | (Amount of 65%-75% calcium hypochlorite used)                                                                                                   |
| SITE WELL ID # (if applicable)                                                                                             | Tw - 14                                  | 8.       | SEALING MATERIAL:                                                                                                                               |
| STATE WELL PERMIT # (if applicable)                                                                                        |                                          |          | Neat Cement Sand Cement                                                                                                                         |
| COUNTY WELL PERMIT # (if applicable)                                                                                       |                                          |          | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                    |
| DWQ or OTHER PERMIT # (if applicable)                                                                                      | ···                                      |          | Bentonite                                                                                                                                       |
| WELL USE (Circle applicable use): (Monit Municipal/Public Industrial/Commet Recovery Injection Irrigation Other (list use) | rcial Agricultural                       |          | Bentonite lb. Type: Slurry Pellets \( \Lambda \) Water \( \O \) (6 (6 \) gal.                                                                   |
|                                                                                                                            |                                          |          | <u>Other</u>                                                                                                                                    |
| 3. WELL LOCATION:                                                                                                          |                                          |          | Type material                                                                                                                                   |
| COUNTY CNSLOW QUADRANGLE                                                                                                   | <del>.</del>                             |          |                                                                                                                                                 |
| NEAREST TOWN: TACK SONVIC                                                                                                  | IE, NC                                   |          | Amount                                                                                                                                          |
| CAMP JOHNSON                                                                                                               |                                          |          |                                                                                                                                                 |
| (Street/Road Name, Number, Community, Subdivi                                                                              | ision, Lot No., Parcel, Zip Code)        | 9.       | EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:  BORCHOLE WAS FILLED WITH CHIPX AFTER                                                                |
| TOPOGRAPHIC / LAND SETTING:<br>Slope Valley Flat Ridge Other                                                               |                                          |          | LOTIC WAS ZEMOUED                                                                                                                               |
| (Circle appropriate setting)                                                                                               |                                          |          |                                                                                                                                                 |
| A A THIT IDE                                                                                                               | May be in degrees,                       | $\Pi$    |                                                                                                                                                 |
| LATITUDE                                                                                                                   | minutes, seconds, or in a decimal format |          |                                                                                                                                                 |
| LONGITUDE                                                                                                                  |                                          | 10.      | WELL DIAGRAM: Draw a detailed sketch of the well on the back of this form showing total depth, depth and diameter of screens (if any) remaining |
| Latitude/longitude source: GPS (Location of well must be shown on a U                                                      | Topographic map  JSGS topo map and       |          | in the well, gravel interval, intervals of casing perforations, and depths and                                                                  |
| attached to this form if not using GPS                                                                                     | D)                                       |          | types of fill materials used.                                                                                                                   |
| a. FACILITY- The name of the business where the v<br>(If a residential well, Jkip 4a; complete 4b, well own                | •                                        | 11.      | DATE WELL ABANDONED 7/29/09                                                                                                                     |
| FACILITY ID #(if applicable)                                                                                               |                                          | IDO      | HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                       |
| NAME OF FACILITY CAMP JO                                                                                                   | JHW2 CIV                                 | WIT      | H 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF SRECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                     |
| STREET ADDRESS                                                                                                             |                                          |          |                                                                                                                                                 |
| STREET ADDRESS  JACK SCHOOLE NC  City or Town State                                                                        | 7:- Code                                 | SIG      | YATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                       |
|                                                                                                                            | Zip Code                                 |          | ANIONE OF CENTIFIED WEED CONTRACTOR                                                                                                             |
| b. CONTACT PERSON/WELL OWNER:                                                                                              | H2m His                                  |          | ALTERNA OF BRILLIAND WALL OWNERS AS AND AND AND THE WALL OF THE STREET                                                                          |
| NAME K-CTZI HALLROZG C                                                                                                     |                                          | (The     | NATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE private well owner must be an individual who personally abandons his/her residential well |
| STREET ADDRESS 4824 PARK                                                                                                   |                                          | <b>!</b> | pordance with 15A NCAC 2C .0113.)                                                                                                               |
| CHARCOTT NC City or Town State                                                                                             | 7 in Code                                | PRIN     | THOMA STEED NAME OF PERSON ABANDONING THE WELL                                                                                                  |
|                                                                                                                            |                                          |          |                                                                                                                                                 |
| (704) - 775 - 2980<br>Area code - Phone number                                                                             | -                                        |          |                                                                                                                                                 |
|                                                                                                                            |                                          |          |                                                                                                                                                 |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

well contractor certification # 2012

| 1, 555 667                                                                                                                | TIETET OK CENTIL                         |          |                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------|
| . WELL CONTRACTOR:                                                                                                        |                                          | 5.       | WELL DETAILS:                                                                                                                     |
| TIM THOMAS                                                                                                                |                                          |          | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                            |
| Well Contractor (Individual) Name                                                                                         |                                          |          | b. Water Level (Below Measuring Point):ft.                                                                                        |
| SAEDACCO, INC.                                                                                                            |                                          |          | Measuring point is ft. above land surface.                                                                                        |
| Well Contractor Company Name                                                                                              | - 0-1/ > > >                             |          |                                                                                                                                   |
| STREET ADDRESS 9088 N                                                                                                     |                                          | 6.       | CASING: Length Diameter                                                                                                           |
| FORT MILL SC<br>City or Town State                                                                                        | 29707                                    |          | a. Casing Depth (if known): ft in.                                                                                                |
| City or Town State                                                                                                        | Zip Code                                 |          | b. Casing Removed: ft. in.                                                                                                        |
| Area code - Phone number                                                                                                  |                                          | 7.       | DISINFECTION: 0.1616                                                                                                              |
|                                                                                                                           |                                          |          | (Amount of 65%-75% calcium hypochlorite used)                                                                                     |
| . WELL INFORMATION: SITE WELL ID # (if applicable)                                                                        | <u>ت - ۱۲</u>                            | _     8. | SEALING MATERIAL:                                                                                                                 |
|                                                                                                                           |                                          |          |                                                                                                                                   |
| STATE WELL PERMIT # (if applicable)                                                                                       |                                          | -        | Neat Cement Sand Cement                                                                                                           |
| COUNTY WELL PERMIT # (if applicable)                                                                                      |                                          | -        | Cement lb. Cement lb.  Water gal. Water gal.                                                                                      |
| DWQ or OTHER PERMIT # (if applicable)                                                                                     |                                          | -        | Bentonite                                                                                                                         |
| WELL USE (Circle applicable use): Monit Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                        |          | Bentonite lb. Type: Slurry Pellets \( \( \) gal.                                                                                  |
|                                                                                                                           |                                          |          | Other                                                                                                                             |
| 3. WELL LOCATION:                                                                                                         |                                          |          | Type material                                                                                                                     |
| COUNTY CNSLOW QUADRANGLE                                                                                                  |                                          |          | Amount                                                                                                                            |
| NEAREST TOWN: <u>TAUKSONVIC</u> CAMD JOHNSON                                                                              | CE, NC                                   |          | Amount                                                                                                                            |
| (Street/Road Name, Number, Community, Subdivi                                                                             | sion Lat No. Bargal Zin Codu)            | 9.       | EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                        |
|                                                                                                                           | sion, Lot No., Parcel, Zip Code)         | 9.       | ROZUHOLE WAS FILLED WITH CHIPS AFTER                                                                                              |
| TOPOGRAPHIC / LAND SETTING:<br>Slope Valley Flat Ridge Other_                                                             |                                          |          | WELL WAS ZEMENED                                                                                                                  |
| (Circle appropriate setting)                                                                                              |                                          |          |                                                                                                                                   |
| LATITUDE                                                                                                                  | May be in degrees,                       |          |                                                                                                                                   |
| LONGITUDE                                                                                                                 | minutes, seconds, or in a decimal format | 10       | WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                              |
| Latitude/longitude source: GPS                                                                                            | Topographic map                          |          | form showing total depth, depth and diameter of screens (if any) remaining                                                        |
| (Location of well must be shown on a L                                                                                    |                                          |          | in the well, gravel interval, intervals of casing perforations, and depths and                                                    |
| attached to this form if not using GPS                                                                                    | :)                                       |          | types of fill materials used.                                                                                                     |
| a. FACILITY- The name of the business where the w<br>(If a residential well, 2kip 4a; complete 4b, well own               |                                          | 11.      | DATE WELL ABANDONED 7/29/09                                                                                                       |
| FACILITY ID #(if applicable)                                                                                              |                                          | IDOI     | HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                         |
| NAME OF FACILITY CAMP JO                                                                                                  | 54402 C√                                 | WITH     | I 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                        |
| STREET ADDRESS                                                                                                            |                                          | 1        |                                                                                                                                   |
| STREET ADDRESS  JACK SCHOOL NC  City or Town State                                                                        | 7 in Code                                | SIGN     | ATURE OF CERTIFIED WELL CONTRACTOR DATE                                                                                           |
| . CONTACT PERSON/WELL OWNER:                                                                                              | Zip code                                 |          |                                                                                                                                   |
| NAME KURT HAURER C                                                                                                        | HZM HICC                                 | SIGN     | ATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                              |
| STREET ADDRESS 4824 PARK                                                                                                  |                                          | (The p   | private well owner must be an individual who <u>personally</u> abandons his/her residential well ordance with 15A NCAC 2C .0113.) |
|                                                                                                                           |                                          | 11       |                                                                                                                                   |
| CHARCUTTE NC City or Town State                                                                                           | Zip Code                                 | PRIN     | M THOMAS TED NAME OF PERSON ABANDONING THE WELL                                                                                   |
|                                                                                                                           |                                          |          |                                                                                                                                   |
| 704) - 775-7980  Area code - Phone number                                                                                 | ~                                        |          |                                                                                                                                   |
|                                                                                                                           |                                          |          |                                                                                                                                   |



| <del></del>                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. WELL DETAILS:                                                                                                                                    |
| TIM THOMAS                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                                              |
| Well Contractor (Individual) Name                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b. Water Level (Below Measuring Point):ft.                                                                                                          |
| SAE DACCO TNC. Well Contractor Company Name                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measuring point is ft. above land surface.                                                                                                          |
| STREET ADDRESS 9088 NO                                                                                                      | <u>dethfield</u> De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6. CASING: Length Diameter                                                                                                                          |
| FORT MILL SC City or Town State (843) - 548 2180                                                                            | 29707<br>Zip Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a. Casing Depth (if known):  b. Casing Removed:  ft.  in.                                                                                           |
| Area code - Phone number                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. DISINFECTION: 0.1615                                                                                                                             |
| 2. WELL INFORMATION:                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Amount of 65%-75% calcium hypochlorite used)                                                                                                       |
| SITE WELL ID # (if applicable)                                                                                              | v - 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8. SEALING MATERIAL:                                                                                                                                |
| STATE WELL PERMIT # (if applicable)                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Neat Cement Sand Cement                                                                                                                             |
| COUNTY WELL PERMIT # (if applicable)_                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cementlb. Cementlb. Watergal. Watergal.                                                                                                             |
| DWQ or OTHER PERMIT # (if applicable)_                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentonite                                                                                                                                           |
| WELL USE (Circle applicable use): (Monite Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bentonite lb. Type: Slurry Pellets X  Water O. 6 6 gal.                                                                                             |
| 3. WELL LOCATION:                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other                                                                                                                                               |
| COUNTY CASE CALL QUADRANGLE                                                                                                 | NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Type material                                                                                                                                       |
| NEAREST TOWN: JACKSON VIC                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amount                                                                                                                                              |
| CAMP JOHNSON                                                                                                                | National Control of the Control of t |                                                                                                                                                     |
| (Street/Road Name, Number, Community, Subdivis                                                                              | sion, Lot No., Parcel, Zip Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                       |
| TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other (Circle appropriate setting)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BORCHOLE WAS FILLED WITH CHIPS AFTER WELL WAS ZEMOUED                                                                                               |
| _                                                                                                                           | May be in degrees,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |
| LATITUDE                                                                                                                    | minutes, seconds, or in a decimal format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |
| LONGITUDE                                                                                                                   | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this form showing total depth, depth and diameter of screens (if any) remaining |
| Latitude/longitude source: GPS (Location of well must be shown on a U. attached to this form if not using GPS.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used.                                        |
| a. FACILITY-The name of the business where the w<br>(If a residential well, skip 4a; complete 4b, well owne                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. DATE WELL ABANDONED 7/29/09                                                                                                                     |
| FACILITY ID #(if applicable)                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                      |
| NAME OF FACILITY CAMP JO                                                                                                    | HWSCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                  |
| STREET ADDRESS                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
| City or Town State                                                                                                          | Zip Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                        |
| b. CONTACT PERSON/WELL OWNER:                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
| NAME KURT HALREDE CI                                                                                                        | 42m HICC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                            |
| STREET ADDRESS 4824 PARKL                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (The private well owner must be an individual who <u>personally</u> abandons his/her residential well in accordance with 15A NCAC 2C .0113.)        |
| CHARLOTTE NC City or Town State 2                                                                                           | 7. C.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                               |
| •                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     |
| (704) - <u>775 7980</u><br>Area code - Phone number                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |



|                                                                                                                                     |                                          |         | <u> </u>                                              | <del></del>                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|-------------------------------------------------------|----------------------------------------------------------------------------------------|
| I. WELL CONTRACTOR:                                                                                                                 | ,                                        | 5.      | WELL DETAILS:                                         |                                                                                        |
| TIM THOMAS                                                                                                                          |                                          |         | a. Total Depth: 16 fi                                 | t. Diameter: 1 in.                                                                     |
| Well Contractor (Individual) Name                                                                                                   |                                          |         | b. Water Level (Below Measurin                        | ng Point):ft.                                                                          |
| SAEDACCO, INC.                                                                                                                      |                                          |         | Measuring point is                                    | _ ft. above land surface.                                                              |
| Well Contractor Company Name                                                                                                        |                                          |         |                                                       |                                                                                        |
| STREET ADDRESS 9088 N                                                                                                               |                                          | 6.      | CASING:                                               | Length Diameter                                                                        |
| FORT MILL SC. City or Town State                                                                                                    | 297c7                                    |         | a. Casing Depth (if known):                           | ft. <u></u> in.                                                                        |
| City or Town State                                                                                                                  | Zip Code                                 |         | b. Casing Removed:                                    | ft in.                                                                                 |
| Area code - Phone number                                                                                                            | •                                        | 7.      | DISINFECTION: 0.1                                     | . 16                                                                                   |
| . WELL INFORMATION:                                                                                                                 |                                          |         | (Amount of 65%-75% calcium l                          |                                                                                        |
| SITE WELL ID # (if applicable)                                                                                                      | w - 17                                   | 8.      | SEALING MATERIAL:                                     |                                                                                        |
| STATE WELL PERMIT # (if applicable)                                                                                                 |                                          |         | Neat Cement                                           | Sand Cement                                                                            |
| COUNTY WELL PERMIT # (if applicable)                                                                                                |                                          |         | Cement lb. Water gal.                                 | Cementlb.<br>Watergal.                                                                 |
| DWQ or OTHER PERMIT # (if applicable)                                                                                               |                                          |         | Bentonite                                             |                                                                                        |
| WELL USE (Circle applicable use): (Monit<br>Municipal/Public Industrial/Commen<br>Recovery Injection Irrigation<br>Other (list use) | rcial Agricultural                       |         | Bentonitelb. Type: SlurryPellets X Water 0 , 6 6 gal. |                                                                                        |
| ·                                                                                                                                   | 180                                      |         | <u>Other</u>                                          |                                                                                        |
| 3. WELL LOCATION:<br>COUNTY CNSLC QUADRANGLE                                                                                        | NAME                                     |         | Type material                                         |                                                                                        |
| NEAREST TOWN: JACKSONVIC                                                                                                            |                                          |         | Amount                                                |                                                                                        |
| CAMP JOHNSON                                                                                                                        | ce, rou                                  |         |                                                       |                                                                                        |
| (Street/Road Name, Number, Community, Subdiv.                                                                                       | ision Lot No. Parcel Zin Code)           | 9.      | EVDI AIN METHOD OF EMP                                | PLACEMENT OF MATERIAL:                                                                 |
| TOPOGRAPHIC / LAND SETTING:                                                                                                         | mon, Borrion, Pareen, Dip Code,          | "       |                                                       | LED WITH CHIPS AFTER                                                                   |
|                                                                                                                                     |                                          |         | well was zemous                                       |                                                                                        |
|                                                                                                                                     | May be in degrees,                       |         |                                                       |                                                                                        |
| LATITUDE                                                                                                                            | minutes, seconds, or in a decimal format |         |                                                       |                                                                                        |
| LONGITUDE                                                                                                                           |                                          | 10.     |                                                       | ailed sketch of the well on the back of this                                           |
| Latitude/longitude source: GPS                                                                                                      | Topographic map                          |         |                                                       | and diameter of screens (if any) remaining vals of casing perforations, and depths and |
| (Location of well must be shown on a latached to this form if not using GPS                                                         |                                          |         | types of fill materials used.                         |                                                                                        |
| a. FACILITY- The name of the business where the v<br>(If a residential well, ckip 4a; complete 4b, well own                         |                                          | 11.     | DATE WELL ABANDONED                                   | 7/29/09                                                                                |
| FACILITY ID #(if applicable)                                                                                                        |                                          | l.l     |                                                       | LL WAS ABANDONED IN ACCORDANCE                                                         |
| NAME OF FACILITY CAMP JO                                                                                                            | SHOSON                                   | WITH    | I 15A NCAC 2C, WELL CONSTRUCT                         | TION STANDARDS, AND THAT A COPY OF                                                     |
| STREET ADDRESS  JACK SCHOOL CO N C  City or Town State                                                                              |                                          | THIS    | RECORD HAS BEEN PROVIDED TO                           | THE WELL OWNER.                                                                        |
| JACKSCHULLE NC                                                                                                                      | ·                                        | <u></u> |                                                       | NTPACTOR DATE                                                                          |
| City or Town State                                                                                                                  | Zip Code                                 | SIGN    | ATURE OF CERTIFIED WELL CO                            | INTRACTOR DATE                                                                         |
| O. CONTACT PERSON/WELL OWNER:                                                                                                       |                                          |         |                                                       |                                                                                        |
| NAME KERT HALLROSG C                                                                                                                |                                          |         | ATURE OF PRIVATE WELL OWN                             |                                                                                        |
| STREET ADDRESS 4824 PARK                                                                                                            | CHIS RS ANG YALL                         | in acc  | ordance with 15A NCAC 2C .0113.)                      | l who <u>personally</u> abandons his/her residential well                              |
| CHARCUTTE NC City or Town State                                                                                                     | Zin Code                                 | PRIN    | M THOMA S<br>TED NAME OF PERSON ABANDO                | NING THE WELL                                                                          |
|                                                                                                                                     |                                          |         |                                                       |                                                                                        |
| (704) - 775-2980<br>Area code - Phone number                                                                                        | _                                        |         |                                                       |                                                                                        |



| 1. WELL CONTRACTOR:                                                                                                         |                                          | 5.   | WELL DETAILS:                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------|
| TIM THOMAS                                                                                                                  |                                          |      | a. Total Depth: 17 ft. Diameter: 1 in.                                                                                             |
| Well Contractor (Individual) Name                                                                                           |                                          |      | b. Water Level (Below Measuring Point): ft.                                                                                        |
| SAE DACCO TNC. Well Contractor Company Name                                                                                 |                                          |      | Measuring point is ft. above land surface.                                                                                         |
| STREET ADDRESS 9088 NO                                                                                                      | ORTHFIELD DR                             | 6.   | CASING: Length Diameter                                                                                                            |
| FORT MILL SC<br>City or Town State                                                                                          | 29707<br>Zip Code                        |      | a. Casing Depth (if known): ft. in. b. Casing Removed: ft. in.                                                                     |
| Area code - Phone number                                                                                                    |                                          | 7.   | D 11 16                                                                                                                            |
| z. WELL INFORMATION:                                                                                                        |                                          |      | (Amount of 65%-75% calcium hypochlorite used)                                                                                      |
| SITE WELL ID # (if applicable)                                                                                              | <u>v - 18</u>                            | 8.   | SEALING MATERIAL:                                                                                                                  |
| STATE WELL PERMIT # (if applicable)                                                                                         |                                          |      | Neat Cement Sand Cement                                                                                                            |
| COUNTY WELL PERMIT # (if applicable)                                                                                        |                                          |      | Cementlb.Cementlb.Watergal.Watergal.                                                                                               |
| DWQ or OTHER PERMIT # (if applicable)_                                                                                      |                                          |      | <u>Bentonite</u>                                                                                                                   |
| WELL USE (Circle applicable use): (Monite Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                        |      | Bentonite lb. Type: Slurry Pellets gal.                                                                                            |
|                                                                                                                             |                                          |      | <u>Other</u>                                                                                                                       |
| 3. WELL LOCATION:                                                                                                           | X1.4.4.0°                                |      | Type material                                                                                                                      |
| COUNTY CNSLOW QUADRANGLE                                                                                                    |                                          |      | Amount                                                                                                                             |
| NEAREST TOWN: <u>JACKSONVIC</u> CAMP JOHNSON                                                                                | CE, NC                                   |      | Amount                                                                                                                             |
| (Street/Road Name, Number, Community, Subdivis                                                                              | sion, Lot No., Parcel, Zip Code)         | 9.   | EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                         |
| TOPOGRAPHIC / LAND SETTING:                                                                                                 |                                          |      | BORCHOLE WAS FILLED WITH CHIPS AFTER                                                                                               |
|                                                                                                                             |                                          |      | WELL WAS ZEMWED                                                                                                                    |
| LATITUDE                                                                                                                    | May be in degrees,                       | Ħ    |                                                                                                                                    |
|                                                                                                                             | minutes, seconds, or in a decimal format | 10   | WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                               |
| LONGITUDE CRS                                                                                                               | Tananahis                                | 10.  | form showing total depth, depth and diameter of screens (if any) remaining                                                         |
| Latitude/longitude source: GPS (Location of well must be shown on a U attached to this form if not using GPS.               | SGS topo map and                         |      | in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used.                       |
| a. FACILITY- The name of the business where the w<br>(If a residential well, ckip 4a; complete 4b, well owner               | · · · · · · · · · · · · · · · · · · ·    | 11.  | DATE WELL ABANDONED 7/29/09                                                                                                        |
| FACILITY ID #(if applicable)                                                                                                |                                          | I DO | HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                          |
| NAME OF FACILITY CAMP JC                                                                                                    | HWSCW                                    | WIT  | H 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                         |
| STREET ADDRESS                                                                                                              |                                          | '''  |                                                                                                                                    |
| TAUKSCHULLE NC City or Town State                                                                                           | Zip Code                                 | SIG  | NATURE OF CERTIFIED WELL CONTRACTOR DATE                                                                                           |
| b. CONTACT PERSON/WELL OWNER:                                                                                               | <b>-</b> -                               |      |                                                                                                                                    |
| NAME KERI HAURGE C                                                                                                          | HZM HICC                                 |      | NATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                              |
| STREET ADDRESS 4824 PARKL                                                                                                   |                                          |      | private well owner must be an individual who <u>personally</u> abandons his/her residential well cordance with ISA NCAC 2C .0113.) |
| CHARLOTT NC City or Town State                                                                                              |                                          | 7    | THOMAS                                                                                                                             |
| City or Town State                                                                                                          | Zip Code                                 | PRI  | NTED NAME OF PERSON ABANDONING THE WELL                                                                                            |
| (704) - 975 - 2980                                                                                                          | -                                        |      |                                                                                                                                    |
|                                                                                                                             |                                          |      |                                                                                                                                    |



| 1. WELL CONTRACTOR:                                                                                                                                              | 5. WELL DETAILS:                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIM THOMAS Well Contractor (Individual) Name                                                                                                                     | a. Total Depth: 18 ft. Diameter: 1 in.                                                                                                                                                  |
|                                                                                                                                                                  | b. Water Level (Below Measuring Point): ft.                                                                                                                                             |
| SAE DACCO, TNC. Well Contractor Company Name                                                                                                                     | Measuring point is ft. above land surface.                                                                                                                                              |
| STREET ADDRESS GORREN NORTHFIELD DR                                                                                                                              | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC 29707  City or Town State Zip Code  (83) - 548 2180                                                                                                 | a. Casing Depth (if known):  b. Casing Removed:  ft.  in.                                                                                                                               |
| Area code - Phone number                                                                                                                                         | 7. DISINFECTION: 0.1615                                                                                                                                                                 |
| 2. WELL INFORMATION:                                                                                                                                             | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable) 703 - 19                                                                                                                          | 8. SEALING MATERIAL:                                                                                                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                                                              | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                             | Cement lb. Cement lb. Water gal.                                                                                                                                                        |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                            | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable use): Monitoring Residential Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation Other (list use)      | Bentonite lb. Type: Slurry Pellets X  Water 0.74 gal.                                                                                                                                   |
|                                                                                                                                                                  | Other                                                                                                                                                                                   |
| 3. WELL LOCATION:  COUNTY CASLOW QUADRANGLE NAME                                                                                                                 | Type material                                                                                                                                                                           |
| NEAREST TOWN: TACKSONVICE NC                                                                                                                                     | Amount                                                                                                                                                                                  |
| CAMP JOHNSON                                                                                                                                                     |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                    | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING:                                                                                                                                      | ROPEHOLE WAS FILLED WITH CHIPS AFTER                                                                                                                                                    |
| Slope Valley Flat Ridge Other(Circle appropriate setting)                                                                                                        | well was zeroued                                                                                                                                                                        |
| May be in degrees,                                                                                                                                               |                                                                                                                                                                                         |
| LATITUDE minutes, seconds, or in a decimal format                                                                                                                |                                                                                                                                                                                         |
| LONGITUDE                                                                                                                                                        | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS Topographic map  (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)                  | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| a. FACILITY- The name of the business where the well is located. Complete 4a and 4b. (If a residential well, .kip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                                                                     | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                    | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                      |
| STREET ADDRESS                                                                                                                                                   |                                                                                                                                                                                         |
| City or Town State Zip Code                                                                                                                                      | $\frac{ (C/(3/C)^2)}{\text{SIGNATURE OF CERTIFIED WELL CONTRACTOR}}$                                                                                                                    |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                                    |                                                                                                                                                                                         |
| NAME KERT HAWRERS CHEMHICE                                                                                                                                       | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                                                                |
| STREET ADDRESS 4824 PARKWAY PLAZA BLUD                                                                                                                           | (The private well owner must be an individual who <u>oersonaliv</u> abandons his/her residential well in accordance with 15A NCAC 2C .0113.)                                            |
| CHARLOTTE NC City or Town State Zip Code                                                                                                                         | TIM THOMA S PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                  |
|                                                                                                                                                                  |                                                                                                                                                                                         |
| 704) - 77529 8 C                                                                                                                                                 |                                                                                                                                                                                         |



|                                                                                                                           | <u> </u>                                 |          |                                                                             |                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                       |                                          | 5.       | WELL DETAILS:                                                               | · ·                                                                                      |
| TIM THOMAS                                                                                                                |                                          | -        | a. Total Depth: 18                                                          | ft. Diameter: 1 in.                                                                      |
| Well Contractor (Individual) Name                                                                                         |                                          |          | b. Water Level (Below Measuri                                               |                                                                                          |
| Well Contractor Company Name                                                                                              |                                          |          | Measuring point is                                                          |                                                                                          |
| STREET ADDRESS 9088 N                                                                                                     | ORTHFIELD DR                             | 6.       | CASING:                                                                     | Length Diameter                                                                          |
| FORT MILL SC<br>City or Town State                                                                                        | 29707<br>Zip Code                        |          | a. Casing Depth (if known): b. Casing Removed:                              | ftininin.                                                                                |
| Area code - Phone number                                                                                                  |                                          | 7.       | DISINFECTION: 0.1                                                           |                                                                                          |
| 2. WELL INFORMATION:                                                                                                      |                                          | ] ]      | (Amount of 65%-75% calcium                                                  |                                                                                          |
| SITE WELL ID # (if applicable)                                                                                            | <u> </u>                                 | .     8. | SEALING MATERIAL:                                                           |                                                                                          |
| STATE WELL PERMIT # (if applicable)                                                                                       |                                          | -        | Neat Cement                                                                 | Sand Cement                                                                              |
| COUNTY WELL PERMIT # (if applicable)                                                                                      |                                          |          | Cement lb. Water gal.                                                       | Cement lb. Water gal.                                                                    |
| DWQ or OTHER PERMIT # (if applicable)                                                                                     | <u> </u>                                 | .        | Bentonite                                                                   |                                                                                          |
| WELL USE (Circle applicable use): Monit Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | rcial Agricultural                       |          | Bentonite lb. Type: Slurry Pellets X Water 0 , 7 9 ga                       | I.                                                                                       |
|                                                                                                                           |                                          |          | <u>Other</u>                                                                |                                                                                          |
| 3. WELL LOCATION:  COUNTY CNSCOLD QUADRANGLE                                                                              | NAME                                     |          | Type material                                                               |                                                                                          |
| NEAREST TOWN: JACKSONVIC                                                                                                  |                                          |          |                                                                             | ·                                                                                        |
| CAMP JOHNSON                                                                                                              |                                          |          |                                                                             |                                                                                          |
| (Street/Road Name, Number, Community, Subdivi                                                                             | ision. Lot No., Parcel, Zip Code)        | 9.       | EXPLAIN METHOD OF FM                                                        | PLACEMENT OF MATERIAL:                                                                   |
| TOPOGRAPHIC / LAND SETTING:                                                                                               | ,,                                       |          |                                                                             | LED WITH CHIPS AFTER                                                                     |
| Slope Valley Flat Ridge Other_<br>(Circle appropriate setting)                                                            |                                          |          |                                                                             | eO                                                                                       |
| LATITUDE                                                                                                                  | May be in degrees,                       |          |                                                                             |                                                                                          |
|                                                                                                                           | minutes, seconds, or in a decimal format |          | WELL BLACK AND A                                                            |                                                                                          |
| Latitude/longitude source: GPS                                                                                            | Topographic map                          | 10.      |                                                                             | tailed sketch of the well on the back of this and diameter of screens (if any) remaining |
| Latitude/longitude source: GPS<br>(Location of well must be shown on a L<br>attached to this form if not using GPS        | ISGS topo map and                        |          |                                                                             | vals of casing perforations, and depths and                                              |
| a. FACILITY-The name of the business where the w<br>(If a residential well, skip 4a; complete 4b, well own                |                                          | ]] 11.   | DATE WELL ABANDONED_                                                        | 7/29/09                                                                                  |
| FACILITY ID #(if applicable)                                                                                              |                                          | IDO      | HEREBY CERTIFY THAT THIS WE                                                 | LL WAS ABANDONED IN ACCORDANCE                                                           |
| NAME OF FACILITY CAMP JE                                                                                                  | 54105CV                                  |          | I ISA NCAC 2C, WELL CONSTRUC<br>RECORD HAS BEEN PROVIDED TO                 | TION STANDARDS, AND THAT A COPY OF                                                       |
| STREET ADDRESS                                                                                                            |                                          |          | ICCORD HAS BEEN FROVIDED TO                                                 |                                                                                          |
| STREET ADDRESS  IV ACIC SCIENCIC CONC.  City or Town State                                                                | Zip Code                                 | SIGN     | ATURE OF CERTIFIED WELL CO                                                  | ONTRACTOR DATE                                                                           |
| . CONTACT PERSON/WELL OWNER:                                                                                              |                                          |          |                                                                             |                                                                                          |
| NAME KERT HAUREDE, C                                                                                                      | HZMHIC                                   | 1 1      |                                                                             | ER ABANDONING THE WELL DATE                                                              |
| STREET ADDRESS 4824 PACK                                                                                                  | CAY PLAZA BLUD                           |          | orivate well owner must be an individua<br>ordance with 15A NCAC 2C .0113.) | il who <u>personally</u> abandons his/her residential well                               |
| CHARLUTTE NC City or Town State                                                                                           |                                          | 7 / PDIN | M THOMAS TED NAME OF PERSON ABANDO                                          | DNING THE WELL                                                                           |
|                                                                                                                           |                                          |          | TED HAME OF TERSON ABANDO                                                   | MINO THE WELL                                                                            |
| (704)- 975-7980                                                                                                           | -                                        |          |                                                                             |                                                                                          |



well contractor certification # 2012

| The state of the s |                                          |      |                                                                            |                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | 5.   | WELL DETAILS:                                                              | ,                                                                                           |
| TIM THOMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |      | a. Total Depth: 20                                                         | t. Diameter: <u>I</u> in.                                                                   |
| Well Contractor (Individual) Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |      | b. Water Level (Below Measuring                                            |                                                                                             |
| Well Contractor Company Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |      | Measuring point is                                                         | ft. above land surface.                                                                     |
| STREET ADDRESS 9088 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | 6.   | CASING:                                                                    | Length Diameter                                                                             |
| FORT MILL SC. City or Town State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29707<br>Zip Codc                        |      | a. Casing Depth (if known):<br>b. Casing Removed:                          | ft in in in.                                                                                |
| Area code - Phone number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | 7.   | DISINFECTION: 0,10                                                         | 016                                                                                         |
| 2. WELL INFORMATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |      | (Amount of 65%-75% calcium                                                 | hypochlorite used)                                                                          |
| SITE WELL ID # (if applicable) / (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>v - U</u>                             | 8.   | SEALING MATERIAL:                                                          |                                                                                             |
| STATE WELL PERMIT # (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |      | Neat Cement                                                                | Sand Cement                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111111111111111111111111111111111111111  |      | Cement lb. Water gal.                                                      | Cementlb.<br>Watergal.                                                                      |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |      | <u>Bentonite</u>                                                           |                                                                                             |
| WELL USE (Circle applicable use): Monit Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cial Agricultural                        |      | Bentonite 6 lb. Type: Slurry Peliets X Water 0, 82 gai                     | i.                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                      |      | <u>Other</u>                                                               |                                                                                             |
| 3. WELL LOCATION:  COUNTY CNS LOW QUADRANGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | );                                       |      | Type material                                                              |                                                                                             |
| NEAREST TOWN: TACK SONVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |      | Amount                                                                     |                                                                                             |
| CAMP JOHNSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>C. / C</u>                            |      |                                                                            |                                                                                             |
| (Street/Road Name, Number, Community, Subdivi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sion Lot No., Parcel Zip Code)           | 9    | EXPLAIN METHOD OF FM                                                       | PLACEMENT OF MATERIAL:                                                                      |
| TOPOGRAPHIC / LAND SETTING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | "    | = :                                                                        | LEO WITH CHIPS AFTER                                                                        |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |      | well was zenou                                                             | EO                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May be in degrees,                       |      |                                                                            |                                                                                             |
| LATITUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | minutes, seconds, or in a decimal format |      | WELL DIAGRAM Day of                                                        | seiled about afabra well as the big Cold                                                    |
| LONGITUDE GPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T                                        | 10.  |                                                                            | tailed sketch of the well on the back of this<br>and diameter of screens (if any) remaining |
| Latitude/longitude source: GPS (Location of well must be shown on a U attached to this form if not using GPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ISGS topo map and                        |      |                                                                            | vals of casing perforations, and depths and                                                 |
| a. FACILITY- The name of the business where the w<br>(If a residential well, skip 4a; complete 4b, well own                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                        | 11.  | DATE WELL ABANDONED_                                                       | 7/29/09                                                                                     |
| FACILITY ID #(if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |      |                                                                            | LL WAS ABANDONED IN ACCORDANCE                                                              |
| NAME OF FACILITY CAMP JO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |      | H 15A NCAC 2C, WELL CONSTRUC<br>S RECORD HAS BEEN PROVIDED T               | TION STANDARDS, AND THAT A COPY OF OTHE WELL OWNER.                                         |
| STREET ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |      |                                                                            | who los                                                                                     |
| TACK SCHOOLER NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zip Code                                 | SIGN | NATURE OF CERTIFIED WELL CO                                                | ONTRACTOR DATE                                                                              |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                        |      |                                                                            |                                                                                             |
| NAME K-UZI HAURUZG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HZM HILL                                 |      |                                                                            | NER ABANDONING THE WELL DATE                                                                |
| STREET ADDRESS 4824 MELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JAY PLAZA BLUD                           |      | private well owner must be an individual cordance with 15A NCAC 2C .0113.) | al who <u>personally</u> abandons his/her residential well                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 1    | IM 71-10MA S<br>VIED NAME OF PERSON ABANDO                                 |                                                                                             |
| City or Town State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zip Code                                 | PRIN | TED NAME OF PERSON ABANDO                                                  | DNING THE WELL                                                                              |
| (704)- 975-298C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |      |                                                                            |                                                                                             |
| Area code - Phone number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                        |      |                                                                            |                                                                                             |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

|                                                                                                               | TRACTOR CERTIF                           | CALIO    | 5N#                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                           |                                          | 5.       | . WELL DETAILS:                                                                                                                     |
| TIM THOMAS                                                                                                    |                                          |          | a. Total Depth; / 5 ft. Diameter: 1 in.                                                                                             |
| Well Contractor (Individual) Name                                                                             |                                          |          | b. Water Level (Below Measuring Point): ft.                                                                                         |
| SAEDACCO, INC.                                                                                                |                                          |          | Measuring point is ft. above land surface.                                                                                          |
| Well Contractor Company Name                                                                                  |                                          |          |                                                                                                                                     |
| STREET ADDRESS 9088 N                                                                                         |                                          | 6.       | c. CASING: Length Diameter                                                                                                          |
| FORT MILL SC<br>City of Town State                                                                            | 297c7                                    |          | a. Casing Depth (if known): ft. ft. in.                                                                                             |
| City of Town State $(83)_{-}$ $548-2180$                                                                      | Zip Code                                 |          | b. Casing Removed: ft. in.                                                                                                          |
| Area code - Phone number                                                                                      |                                          | 7.       | DISINFECTION: 0,16 16                                                                                                               |
| 2. WELL INFORMATION:                                                                                          |                                          |          | (Amount of 65%-75% calcium hypochlorite used)                                                                                       |
| SITE WELL ID # (if applicable)                                                                                | <u> 25 – 0.</u>                          | .     8. |                                                                                                                                     |
| CTATE WELL BOOMER 4/20 NO LINE                                                                                |                                          |          | Neat Cement Sand Cement                                                                                                             |
| STATE WELL PERMIT # (if applicable)                                                                           |                                          | ·        |                                                                                                                                     |
| COUNTY WELL PERMIT # (if applicable)                                                                          |                                          | -        | Cement lb. Cement lb.  Water gal. Water gal.                                                                                        |
| DWQ or OTHER PERMIT # (if applicable)                                                                         |                                          | .        | Bentonite                                                                                                                           |
| WELL USE (Circle applicable use): Monito Municipal/Public Industrial/Commer                                   |                                          | - [ ]    | Bentonite 4 lb.                                                                                                                     |
| Municipal/Public Industrial/Commer<br>Recovery Injection Irrigation                                           | cial Agricultural                        |          | Type: Slurry Pellets                                                                                                                |
| Other (list use)                                                                                              |                                          |          | Water 0,62 gal.                                                                                                                     |
| A WELL LOCATION                                                                                               |                                          |          | <u>Other</u>                                                                                                                        |
| 3. WELL LOCATION:  COUNTY CNS LOW QUADRANGLE:                                                                 | NI A N #470                              |          | Type material                                                                                                                       |
| NEAREST TOWN: JACKSONVIL                                                                                      |                                          |          | Amount                                                                                                                              |
| CAMP JOHNSON                                                                                                  | <u></u>                                  |          |                                                                                                                                     |
| (Street/Road Name, Number, Community, Subdivis                                                                | sion Lot No. Parcel Zin Code)            | 9        | EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                          |
| TOPOGRAPHIC / LAND SETTING:                                                                                   | ton, bot No., I alter, bip code,         | "        | BORCHOLE WAS FILLED WITH CHIPS AFTER                                                                                                |
|                                                                                                               |                                          |          | WELL WAS ZEMOVED                                                                                                                    |
| (Circle appropriate setting)                                                                                  |                                          |          |                                                                                                                                     |
| LATITUDE                                                                                                      | May be in degrees,                       |          |                                                                                                                                     |
|                                                                                                               | minutes, seconds, or in a decimal format | 10.      | . WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                              |
| LONGITUDE GPS                                                                                                 | Tenegraphic man                          | 10.      | form showing total depth, depth and diameter of screens (if any) remaining                                                          |
| (Location of well must be shown on a U.                                                                       | Topographic map SGS topo map and         |          | in the well, gravei interval, intervals of casing perforations, and depths and                                                      |
| attached to this form if not using GPS.                                                                       |                                          |          | types of fill materials used.                                                                                                       |
| a. FACILITY- The name of the business where the w<br>(If a residential well, akip 4a; complete 4b, well owner | r information only.)                     | 11.      | DATE WELL ABANDONED 7/29/09                                                                                                         |
| FACILITY ID #(if applicable)                                                                                  |                                          | IDO      | D HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                         |
| NAME OF FACILITY CAMP JO                                                                                      | H0500                                    | WITI     | TH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF S RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                       |
| STREET ADDRESS                                                                                                |                                          | Ims      |                                                                                                                                     |
| City or Town State                                                                                            | Zin Code                                 | SIGN     | nature of Certified Well Contractor DATE                                                                                            |
| b. CONTACT PERSON/WELL OWNER:                                                                                 | Zip Code                                 |          | DATE                                                                                                                                |
| NAME KERT HAURGE CI                                                                                           | 42 in HILL                               | 900      | NATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                               |
| STREET ADDRESS 4824 PARKL                                                                                     |                                          | (The     | private well owner must be an individual who <u>personally</u> abandons his/her residential well scordance with 15A NCAC 2C .0113.) |
| (100) 100                                                                                                     | <u>, 1 -1, Cl 300</u> 0                  | 1 1      | ·                                                                                                                                   |
| CHARLOTTE NC City or Town State 7                                                                             | Zip Code                                 | PRIN     | THOMA S  NTED NAME OF PERSON ABANDONING THE WELL                                                                                    |
|                                                                                                               |                                          |          |                                                                                                                                     |
| (704) - 775 - 7980)<br>Area code - Phone number                                                               |                                          |          |                                                                                                                                     |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

well contractor certification # 20/2

| WELLCON                                                                                                                    | TRACIOR CERTIFIC                                                  | CATIO  | # <u>2012</u>                                                 |                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                        |                                                                   | 5.     | WELL DETAILS:                                                 |                                                                                       |
| TIM THOMAS                                                                                                                 |                                                                   |        | a. Total Depth: 18 ft.                                        | Diameter: 1 in.                                                                       |
| Well Contractor (Individual) Name                                                                                          |                                                                   |        | b. Water Level (Below Measuring                               |                                                                                       |
| SAEDACCO, TNC. Well Contractor Company Name                                                                                |                                                                   |        | Measuring point is                                            | ft. above land surface.                                                               |
| STREET ADDRESS 9088 NO                                                                                                     | OPTHFIELD DR                                                      | 6.     | CASING:                                                       | Length Diameter                                                                       |
| FORT MILL SC  City or Town State  City or Town State                                                                       | 29707<br>Zip Code                                                 |        | a. Casing Depth (if known): b. Casing Removed:                | ftinftin.                                                                             |
| Area code - Phone number                                                                                                   |                                                                   | 7.     | DISINFECTION: 0,16                                            | 16                                                                                    |
| WELL INCODMATION.                                                                                                          |                                                                   |        | (Amount of 65%-75% calcium h                                  |                                                                                       |
| 2. WELL INFORMATION: SITE WELL ID # (if applicable)                                                                        | 23 – ئ                                                            | 8.     | SEALING MATERIAL:                                             |                                                                                       |
| STATE WELL PERMIT # (if applicable)                                                                                        |                                                                   |        | Neat Cement                                                   | Sand Cement                                                                           |
| COUNTY WELL PERMIT # (if applicable)                                                                                       | _ :                                                               |        | Cement lb. Water gal.                                         | Cementlb. Watergal.                                                                   |
| DWQ or OTHER PERMIT # (if applicable)                                                                                      |                                                                   |        | <u>Bentonite</u>                                              |                                                                                       |
| WELL USE (Circle applicable use): Monite Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                                                 |        | Bentonite lb. Type: Slurry Pellets \( \) Water 0.7 \( \) gal. |                                                                                       |
| 1 WELL LOCATION                                                                                                            |                                                                   |        | <u>Other</u>                                                  |                                                                                       |
| 3. WELL LOCATION:  COUNTY CNS LOW QUADRANGLE                                                                               | BLAREC                                                            |        | Type material                                                 |                                                                                       |
| NEAREST TOWN: TACK SONVICE                                                                                                 |                                                                   |        | Amount                                                        |                                                                                       |
| CAMP JOHNSON                                                                                                               | 10, 100                                                           | 11     |                                                               |                                                                                       |
| (Street/Road Name, Number, Community, Subdivi                                                                              | sion Lot No. Parcel Zin Code)                                     | 9.     | EXPLAIN METHOD OF EMPI                                        | I ACEMENT OF MATERIAL.                                                                |
| TOPOGRAPHIC / LAND SETTING:                                                                                                | Holl. Dot 16th, I albeit, Dip Code)                               | "      |                                                               | ED WITH CHIPS AFTER                                                                   |
|                                                                                                                            |                                                                   |        | WELL WAS ZEMOVE                                               |                                                                                       |
| ( (enote appropriate setting)                                                                                              |                                                                   |        |                                                               |                                                                                       |
| LATITUDE                                                                                                                   | May be in degrees,<br>minutes, seconds, or in a<br>decimal format |        |                                                               |                                                                                       |
| LONGITUDE                                                                                                                  |                                                                   | 10.    |                                                               | iled sketch of the well on the back of this                                           |
| Latitude/longitude source: GPS (Location of well must be shown on a L attached to this form if not using GPS.              |                                                                   |        |                                                               | and diameter of screens (if any) remaining als of casing perforations, and depths and |
| a. FACILITY- The name of the business where the w<br>(If a residential well, skip 4a; complete 4b, well own                |                                                                   | 11.    | DATE WELL ABANDONED                                           | 7/29/09                                                                               |
| FACILITY ID #(if applicable)                                                                                               |                                                                   |        |                                                               | L WAS ABANDONED IN ACCORDANCE                                                         |
| NAME OF FACILITY CAMP JC                                                                                                   |                                                                   |        | I 15A NCAC 2C, WELL CONSTRUCTI<br>RECORD HAS BEEN PROVIDED TO | ION STANDARDS, AND THAT A COPY OF<br>THE WELL OWNER.                                  |
| STREET ADDRESS                                                                                                             |                                                                   |        |                                                               | w/13/09                                                                               |
| TACK SCHOOLER NC                                                                                                           | Zip Code                                                          | SIGN   | ATURE OF CERTIFIED WELL CON                                   | NTRACTOR DATE                                                                         |
| b. CONTACT PERSON/WELL OWNER:                                                                                              |                                                                   |        |                                                               |                                                                                       |
| NAME K-CRI HAUREDE C                                                                                                       |                                                                   |        |                                                               | R ABANDONING THE WELL DATE                                                            |
| STREET ADDRESS 4824 PARK                                                                                                   |                                                                   | in acc | ordance with 15A NCAC 2C .0113.)                              | who personally abandons his/her residential well                                      |
| CHARCOTTE NC City or Town State                                                                                            |                                                                   | 1 7    | M 7HOMA S<br>TED NAME OF PERSON ABANDON                       | VINC THE WELL                                                                         |
| City or Town State                                                                                                         | Zip Code                                                          | PRIN   | TED NAME OF PERSON ABANDON                                    | NING THE WELL                                                                         |
| (704)- 975-2980                                                                                                            | _                                                                 |        |                                                               |                                                                                       |
| Area code - Phone number                                                                                                   | -                                                                 | ]      |                                                               |                                                                                       |



| WELL CON                                                                                                         | TRACTOR CERTIFIC                                | CATION  | N# 2012                                                                                                 |                    |                             |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|
| 1. WELL CONTRACTOR:                                                                                              |                                                 | 5.      | WELL DETAILS: a. Total Depth: 19                                                                        | 6 Diameter 1       | in                          |
| Well Contractor (Individual) Name                                                                                |                                                 |         | b. Water Level (Below Measuri                                                                           |                    |                             |
| SAE DACCO TNC. Well Contractor Company Name                                                                      |                                                 |         | Measuring point is                                                                                      |                    |                             |
| STREET ADDRESS 9088 NO                                                                                           | DR74FIELD DR                                    | 6.      | CASING:                                                                                                 | Length D           | Diameter                    |
| FORT MILL SC<br>City or Town State                                                                               | 29707                                           |         | a. Casing Depth (if known):                                                                             | ft.                | in.                         |
| (893) 548 Z(80                                                                                                   | Zip Code                                        |         | b. Casing Removed:                                                                                      | ft.                |                             |
| Area code - Phone number                                                                                         |                                                 | 7.      | DISINFECTION: O.16                                                                                      | , (5               |                             |
| 2. WELL INFORMATION:                                                                                             | . 2/1                                           |         | (Amount of 65%-75% calcium                                                                              | hypochlorite used) |                             |
| SITE WELL ID # (if applicable)                                                                                   | <u> </u>                                        | 8.      | SEALING MATERIAL:                                                                                       |                    |                             |
| STATE WELL PERMIT # (if applicable)                                                                              |                                                 |         | Neat Cement                                                                                             | Sand Cement        | •                           |
| COUNTY WELL PERMIT # (if applicable)_                                                                            |                                                 |         | Cementlb.<br>Watergal.                                                                                  | Cement<br>Water    |                             |
| DWQ or OTHER PERMIT # (if applicable)_                                                                           |                                                 |         | <b>Bentonite</b>                                                                                        | ·                  |                             |
| WELL USE (Circle applicable use): (Monito<br>Municipal/Public Industrial/Commer<br>Recovery Injection Irrigation | ring Residential                                |         | Bentonitelb. Type: SlurryPellets_X Water                                                                | 1                  |                             |
| Other (list use)                                                                                                 |                                                 |         |                                                                                                         | 1.                 |                             |
| 3. WELL LOCATION:                                                                                                | •                                               |         | <u>Other</u>                                                                                            |                    |                             |
| COUNTY CNSLOW QUADRANGLE                                                                                         | NAME                                            |         | Type material                                                                                           | <del> </del>       | <del></del>                 |
| NEAREST TOWN: TAULSONVIL                                                                                         | ENC                                             |         | Amount                                                                                                  |                    |                             |
| _ CAMP JOHNSON                                                                                                   |                                                 |         |                                                                                                         |                    |                             |
| (Street/Road Name, Number, Community, Subdivis                                                                   | ion. Lot No., Parcel, Zip Code)                 | 9.      | EXPLAIN METHOD OF EM                                                                                    |                    |                             |
| TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other                                                        |                                                 |         | BORCHOLE WAS FILL WELL WAS RÉMOU                                                                        |                    | 13 ALTER                    |
| (Circle appropriate setting)                                                                                     |                                                 |         | WELL BOXY PERFORM                                                                                       | <u></u>            |                             |
| LATITUDE                                                                                                         | May be in degrees,<br>minutes, seconds, or in a |         |                                                                                                         |                    |                             |
| LONGITUDE                                                                                                        | decimal format                                  | 10.     | WELL DIAGRAM: Draw a de                                                                                 |                    |                             |
| Latitude/longitude source: GPS (Location of well must be shown on a U. attached to this form if not using GPS.   |                                                 |         | form showing total depth, depth<br>in the well, gravel interval, inter<br>types of fill materials used. | ,                  | -                           |
| 4a. FACILITY- The name of the business where the well (If a residential well, 2kip 4a; complete 4b, well owner)  | r information only.)                            | 11.     | DATE WELL ABANDONED_                                                                                    | 7/29/0             | 9                           |
| FACILITY ID #(if applicable)                                                                                     |                                                 |         | HEREBY CERTIFY THAT THIS WE                                                                             |                    |                             |
| NAME OF FACILITY CAMP TO                                                                                         | F102 C10                                        |         | I 15A NCAC 2C, WELL CONSTRUC<br>RECORD HAS BEEN PROVIDED T                                              |                    |                             |
| STREET ADDRESS                                                                                                   |                                                 |         |                                                                                                         |                    | who 109                     |
| City or Town State                                                                                               | Zip Code                                        | SIGN.   | ATURE OF CERTIFIED WELL CO                                                                              | ONTRACTOR          | DATE DATE                   |
| 4b. CONTACT PERSON/WELL OWNER:                                                                                   |                                                 |         |                                                                                                         |                    |                             |
| NAME KURT HAURURG CI                                                                                             | 12m HICC                                        | 1       | ATURE OF PRIVATE WELL OW                                                                                |                    |                             |
| STREET ADDRESS 4824 PARKL                                                                                        | LAY PLAZA BLUD                                  | in acco | orivate well owner must be an individu<br>ordance with 15A NCAC 2C .0113.)                              |                    | ns his/her residential well |
| City or Town State 2                                                                                             | Tip Code                                        | PRIN    | M 7HOMA S<br>TED NAME OF PERSON ABANDO                                                                  | ONING THE WELL     | *                           |
| (704) - 775 - 2980)                                                                                              |                                                 |         |                                                                                                         |                    |                             |



| WELL CON                                                                                                    | TRACTOR CERTIFIC                                | CATION# 2012                                                                                                                              |             |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1. WELL CONTRACTOR:                                                                                         |                                                 | 5. WELL DETAILS:                                                                                                                          |             |
| TIM THOMAS                                                                                                  |                                                 | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                                    |             |
| Well Contractor (Individual) Name                                                                           |                                                 | b. Water Level (Below Measuring Point): ft.                                                                                               |             |
| Well Contractor Company Name                                                                                |                                                 | Measuring point is fi. above land surface.                                                                                                |             |
| STREET ADDRESS 9088 NO                                                                                      |                                                 | 6. CASING: Length Diameter                                                                                                                |             |
| FORT MILL SC<br>City or Town State                                                                          | 29707                                           | a. Casing Depth (if known): ft ft in.                                                                                                     |             |
| City or Town State                                                                                          | Zip Code                                        | b. Casing Removed: ft. in.                                                                                                                |             |
| Area code - Phone number                                                                                    |                                                 | 7. disinfection: 0,1615                                                                                                                   |             |
| 2. WELL INFORMATION:                                                                                        | _                                               | (Amount of 65%-75% calcium hypochlorite used)                                                                                             |             |
| SITE WELL ID # (if applicable)                                                                              | <u>0 - 25 - 0</u>                               | 8. SEALING MATERIAL:                                                                                                                      |             |
| STATE WELL PERMIT # (if applicable)                                                                         |                                                 | Neat Cement Sand Cement                                                                                                                   |             |
| COUNTY WELL PERMIT # (if applicable)_                                                                       |                                                 | Cement lb. Cement lb.  Water gal. Water gal.                                                                                              |             |
| DWQ or OTHER PERMIT # (if applicable)_                                                                      |                                                 | Bentonite                                                                                                                                 |             |
| WELL USE (Circle applicable use): (Monito                                                                   | ring Residential                                | Bentonite51b.                                                                                                                             |             |
| Municipal/Public Industrial/Commerc<br>Recovery Injection Irrigation                                        | ial Agricultural                                | Type: Slurry_ Pellets 🔨                                                                                                                   |             |
| Other (list use)                                                                                            |                                                 | Water O, G, gal.                                                                                                                          |             |
| 3. WELL LOCATION:                                                                                           |                                                 | Other                                                                                                                                     |             |
| COUNTY CASE COLD QUADRANGLE N                                                                               | iamp                                            | Type material                                                                                                                             |             |
| NEAREST TOWN: JACKSONVILL                                                                                   |                                                 | Amount                                                                                                                                    |             |
| CAMP JOHNSON                                                                                                |                                                 |                                                                                                                                           |             |
| (Street/Road Name, Number, Community, Subdivisi                                                             | ion, Lot No., Parcel, Zip Code)                 | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL                                                                                              | <b>,:</b>   |
| TOPOGRAPHIC / LAND SETTING:                                                                                 |                                                 | ROPEHOLE WAS FILLED WITH CHIPS AFTE                                                                                                       | R           |
| Slope Valley Flat Ridge Other (Circle appropriate setting)                                                  | <u> </u>                                        | WELL WAS ZEMWED                                                                                                                           | <del></del> |
| Γ                                                                                                           | No. 1. No. 1.                                   |                                                                                                                                           |             |
| LATITUDE                                                                                                    | May be in degrees,<br>minutes, seconds, or in a |                                                                                                                                           |             |
| LONGITUDE                                                                                                   | decimal format                                  | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the bar                                                                           |             |
| Latitude/longitude source: GPS (Location of well must be shown on a US                                      |                                                 | form showing total depth, depth and diameter of screens (if any) r in the well, gravel interval, intervals of casing perforations, and de | _           |
| attached to this form if not using GPS.)                                                                    |                                                 | types of fill materials used.                                                                                                             | •           |
| 4a. FACILITY-The name of the business where the we (If a residential well, ckip 4a; complete 4b, well owner |                                                 | 11. DATE WELL ABANDONED 7/29/09                                                                                                           |             |
| FACILITY ID #(if applicable)  NAME OF FACILITY CAMP JO                                                      |                                                 | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORD                                                                                | DANCE       |
|                                                                                                             |                                                 | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                |             |
| STREET ADDRESS                                                                                              |                                                 | ,                                                                                                                                         | 10.5        |
| STREET ADDRESS  TACK SCHOOLEGE AS C  City or Town State                                                     | Zip Code                                        | signature of certified well contractor D.                                                                                                 | ATE         |
| 4b. CONTACT PERSON/WELL OWNER:                                                                              | <b></b>                                         |                                                                                                                                           |             |
| NAME KERI HAURORE CH                                                                                        | 12m HICC                                        | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL                                                                                       | DATE        |
| STREET ADDRESS 4824 PARKLO                                                                                  | COUSE OF FULL ACT                               | (The private well owner must be an individual who <u>personally</u> abandons his/her resi in accordance with 15A NCAC 2C .0113.)          |             |
| CHARCOTTE NC City or Town State Z                                                                           |                                                 | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                     |             |
| City or Town State Z                                                                                        | ip Code                                         | PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                |             |
| (704)- 975-2980                                                                                             |                                                 |                                                                                                                                           |             |



WELL ABANDONMENT RECORD

North Carolina Department of Environment and Natural Resources- Division of Water Quality

| 1. WELL CONTRACTOR:                                                                                                       |                                               | 5.   | WELL DETAILS:                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| TIM THOMAS                                                                                                                |                                               |      | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                                          |
| Well Contractor (Individual) Name                                                                                         |                                               |      | b. Water Level (Below Measuring Point): ft.                                                                                                     |
| SAEDACCO, TNC. Well Contractor Company Name                                                                               |                                               |      | Measuring point is ft. above land surface.                                                                                                      |
| STREET ADDRESS 9088 N                                                                                                     |                                               | 6.   | CASING: Length Diameter                                                                                                                         |
| FORT MILL SC<br>City or Town State                                                                                        | 29707<br>Zip Code                             |      | a. Casing Depth (if known): ft. ft. in. b. Casing Removed: ft. in.                                                                              |
| Area code - Phone number                                                                                                  |                                               | 7.   | 011 11                                                                                                                                          |
| 2. WELL INFORMATION:                                                                                                      |                                               |      | (Amount of 65%-75% calcium hypochlorite used)                                                                                                   |
| SITE WELL ID # (if applicable)                                                                                            | <u>v - 76</u>                                 | 8.   | SEALING MATERIAL:                                                                                                                               |
| STATE WELL PERMIT # (if applicable)                                                                                       | <u>, , , , , , , , , , , , , , , , , , , </u> |      | Neat'Cement Sand Cement                                                                                                                         |
| COUNTY WELL PERMIT # (if applicable)                                                                                      |                                               |      | Cement   lb.   Cement   lb.     Water   gal.   Water   gal.                                                                                     |
| DWQ or OTHER PERMIT # (if applicable)_                                                                                    |                                               |      | Bentonite                                                                                                                                       |
| WELL USE (Circle applicable use): Monit Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                             |      | Bentonite lb. Type: Slurry Pellets X Water gai.                                                                                                 |
|                                                                                                                           |                                               |      | <u>Other</u>                                                                                                                                    |
| 3. WELL LOCATION:                                                                                                         | NAME                                          |      | Type material                                                                                                                                   |
| COUNTY COSLOW QUADRANGLE                                                                                                  |                                               |      | Amount                                                                                                                                          |
| NEAREST TOWN: TACKSONVICE CAMP JOHNSON                                                                                    | CE NC                                         |      | Amount                                                                                                                                          |
| (Street/Road Name, Number, Community, Subdivi                                                                             | sion, Lot No., Parcel, Zip Code)              | 9.   | EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                      |
| TOPOGRAPHIC / LAND SETTING:                                                                                               |                                               |      | BORCHOLE WAS FILLED WITH CHIPS AFTER                                                                                                            |
|                                                                                                                           |                                               |      | well may removed                                                                                                                                |
| v contrar Inch                                                                                                            | May be in degrees,                            |      |                                                                                                                                                 |
| LATITUDE                                                                                                                  | minutes, seconds, or in a decimal format      | 1    | White Programs Books 2 Library Col. 19 July 1 Col.                                                                                              |
| LONGITUDE                                                                                                                 |                                               | 10.  | WELL DIAGRAM: Draw a detailed sketch of the well on the back of this form showing total depth, depth and diameter of screens (if any) remaining |
| Latitude/longitude source: GPS (Location of well must be shown on a L attached to this form if not using GPS              |                                               |      | in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used.                                    |
| a. FACILITY- The name of the business where the w<br>(If a residential well, skip 4a; complete 4b, well own               |                                               | 11.  | DATE WELL ABANDONED 7/29/09                                                                                                                     |
| FACILITY ID #(if applicable)                                                                                              |                                               |      | HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                       |
| NAME OF FACILITY CAMP JO                                                                                                  | 1022CH                                        |      | H 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF<br>S RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                 |
| STREET ADDRESS                                                                                                            |                                               |      |                                                                                                                                                 |
| TACK SCHOOLER &C                                                                                                          | Zip Code                                      | SIGI | NATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                       |
| b. CONTACT PERSON/WELL OWNER:                                                                                             | ·                                             |      |                                                                                                                                                 |
| NAME KERI HALRURG C                                                                                                       | HZMHICL                                       |      | NATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                           |
| STREET ADDRESS 4824 PACKE                                                                                                 | CONS OF ALCO                                  |      | private well owner must be an individual who personally abandons his/her residential well cordance with 15A NCAC 2C .0113.)                     |
| CHARLUTTE NC City or Town State                                                                                           |                                               | 7    | THONA S                                                                                                                                         |
|                                                                                                                           |                                               | FRIF | TIED HAME OF PERSON ADARDONING THE WEDE                                                                                                         |
| (704)- 775-298C) Area code - Phone number                                                                                 | -                                             |      |                                                                                                                                                 |



WELL ABANDONMENT RECORD

North Carolina Department of Environment and Natural Resources- Division of Water Quality

|                                                                                                                                   |                                          |          |                                                     | <del></del>                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|-----------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                               |                                          | 5.       | WELL DETAILS:                                       |                                                                                              |
| TIM THOMAS                                                                                                                        |                                          |          | a. Total Depth: 18                                  | ft. Diameter: 1 in.                                                                          |
| Well Contractor (Individual) Name                                                                                                 |                                          |          | b. Water Level (Below Measuri                       |                                                                                              |
| SAE DACCO, TNC. Well Contractor Company Name                                                                                      | <del></del>                              |          | Measuring point is                                  |                                                                                              |
| STREET ADDRESS 9088 N                                                                                                             | ORTHFIELD DR                             | 6.       | CASING:                                             | Length Diameter                                                                              |
| FORT MILL SC<br>City or Town State                                                                                                | 29707<br>Zip Code                        |          | a. Casing Depth (if known): b. Casing Removed:      | ft in.                                                                                       |
| (803) - 548 2(80)<br>Area code - Phone number                                                                                     |                                          | 7.       | DISINFECTION:                                       |                                                                                              |
| . WELL INFORMATION:                                                                                                               |                                          |          | (Amount of 65%-75% calcium                          |                                                                                              |
| SITE WELL ID # (if applicable)                                                                                                    | w - 27                                   | .     8. | SEALING MATERIAL:                                   |                                                                                              |
| STATE WELL PERMIT # (if applicable)                                                                                               |                                          | . []     | Neat Cement                                         | Sand Cement                                                                                  |
| COUNTY WELL PERMIT # (if applicable)                                                                                              |                                          |          | Cement lb. Water gal.                               | Cementlb. Watergal.                                                                          |
| DWQ or OTHER PERMIT # (if applicable)                                                                                             |                                          |          | Bentonite                                           | •                                                                                            |
| WELL USE (Circle applicable use): Monit<br>Municipal/Public Industrial/Comme<br>Recovery Injection Irrigation<br>Other (list use) | rcial Agricultural                       |          | Bentonite lb. Type: Slurry Pellets X Water 0.7 4 ga | 1.                                                                                           |
|                                                                                                                                   | <del></del>                              |          | <u>Other</u>                                        |                                                                                              |
| 3. WELL LOCATION:                                                                                                                 |                                          |          | Type material                                       |                                                                                              |
| COUNTY CNSLOW QUADRANGLE                                                                                                          | <u> </u>                                 |          |                                                     |                                                                                              |
| NEAREST TOWN: JACKSONVILL<br>CAMP JOHNSON                                                                                         | CE, NC                                   |          | Amount                                              |                                                                                              |
| (Street/Road Name, Number, Community, Subdiv.                                                                                     | ision, Lot No., Parcel, Zip Code)        | 9.       | EXPLAIN METHOD OF EM                                | PLACEMENT OF MATERIAL:                                                                       |
| TOPOGRAPHIC / LAND SETTING:                                                                                                       |                                          |          |                                                     | LLED WITH CHIPS AFTER                                                                        |
| Slope Valley Flat Ridge Other  (Circle appropriate setting)                                                                       |                                          |          | WELL WAS ZEMOU                                      | <u> </u>                                                                                     |
| LATITUDE                                                                                                                          | May be in degrees,                       |          |                                                     |                                                                                              |
| LONGITUDE                                                                                                                         | minutes, seconds, or in a decimal format | 10.      | WELL DIAGRAM: Draw a de                             | tailed sketch of the well on the back of this                                                |
| Latitude/longitude source: GPS  (Location of well must be shown on a U attached to this form if not using GPS                     |                                          |          | form showing total depth, depth                     | n and diameter of screens (if any) remaining<br>rvals of casing perforations, and depths and |
| a. FACILITY- The name of the business where the valled residential well, skip 4a; complete 4b, well own                           |                                          | 11.      | DATE WELL ABANDONED_                                | 7/29/09                                                                                      |
| FACILITY ID #(if applicable)                                                                                                      |                                          | 11,00    | HEDERY CERTIEV THAT THIS WE                         | ELL WAS ABANDONED IN ACCORDANCE                                                              |
| NAME OF FACILITY CAMP JO                                                                                                          | <u> </u>                                 | WITH     | ł 15A NCAC 2C, WELL CONSTRUC                        | TION STANDARDS, AND THAT A COPY OF                                                           |
| STREET ADDRESS                                                                                                                    |                                          | THIS     | RECORD HAS BEEN PROVIDED T                          | O THE WELL OWNER.                                                                            |
| TACK SOLUCION NC City or Town State                                                                                               |                                          |          |                                                     | 10/13/0°                                                                                     |
|                                                                                                                                   | Zip Code                                 | SIGN     | ATURE OF CERTIFIED WELL CO                          | ONTRACTOR DATE                                                                               |
| o. CONTACT PERSON/WELL OWNER:                                                                                                     |                                          |          |                                                     |                                                                                              |
| NAME K-CIZI 1-laurize, C                                                                                                          |                                          |          | ATURE OF PRIVATE WELL OW!                           | NER ABANDONING THE WELL DATE al who personally abandons his/her residential well             |
| STREET ADDRESS 4824 PARKE                                                                                                         |                                          | in acc   | ordance with 15A NCAC 2C .0113.)                    |                                                                                              |
| CHARCOTTE NC City or Town State                                                                                                   | Zip Code                                 | PRIN     | M 714091A S<br>TED NAME OF PERSON ABANDO            | ONING THE WELL                                                                               |
|                                                                                                                                   |                                          |          |                                                     |                                                                                              |
| (704) - 975 - 2980                                                                                                                | aura.                                    | $\Pi$    |                                                     |                                                                                              |



1. WELL CONTRACTOR:

TIM THOMAS
Well Contractor (Individual) Name

FORT MILL
City or Town S

2. WELL INFORMATION:

Recovery

LATITUDE

LONGITUDE

Other (list use) \_

3. WELL LOCATION:

(843) 548 ZIBC

SITE WELL ID # (if applicable)

STATE WELL PERMIT # (if applicable)

COUNTY WELL PERMIT # (if applicable)

DWQ or OTHER PERMIT # (if applicable)

WELL USE (Circle applicable use): (Monitoring)

Municipal/Public Industrial/Commercial

Injection Irrigation

COUNTY CNSCOLD QUADRANGLE NAME

CAMP JOHNSON

TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other\_ (Circle appropriate setting)

Latitude/longitude source: GPS

JACKSCHURCE NC

4b. CONTACT PERSON/WELL OWNER:

CHARCOTT NC
City or Town State

(704)- 975-2980

Area code - Phone number

FACILITY ID #(if applicable)

STREET ADDRESS

City or Town

attached to this form if not using GPS.)

NEAREST TOWN: TACKSONVICE NC

(Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)

(Location of well must be shown on a USGS topo map and

4a. FACILITY- The name of the business where the well is located. Complete 4a and 4b. (If a residential well, 2kip 4a; complete 4b, well owner information only.)

NAME OF FACILITY CAMP JOHNSON

NAME KORT. HAURUZE CHZM HILL STREET ADDRESS 4824 PARKWAY PLAZA BLUD

SAE DACCO, TNC.
Well Contractor Company Name

STREET ADDRESS SCREEN NORTHFIELD DR

State

### WELL ABANDONMENT RECORD

North Carolina Department of Environment and Natural Resources- Division of Water Quality

WELL CONTRACTOR CERTIFICATION #

Tw-18

Residential

Agricultural

May be in degrees,

Zip Code

minutes, seconds, or in a decimal format

Topographic map

| TIO             | N#                                                                                                                                            |                             |                                                      |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------|
| 5.              | well details:  a. Total Depth; 18  b. Water Level (Below Measur Measuring point is                                                            | ing Point);                 | fì.                                                  |
| 6.              | CASING:                                                                                                                                       | Length                      |                                                      |
|                 | a. Casing Depth (if known):     b. Casing Removed:                                                                                            | ft.                         |                                                      |
| 7.              | DISINFECTION: O.16                                                                                                                            | , 16                        |                                                      |
|                 | (Amount of 65%-75% calcium                                                                                                                    |                             | i)                                                   |
| 8.              | SEALING MATERIAL:                                                                                                                             |                             |                                                      |
|                 | Neat Coment                                                                                                                                   | Sand Cem                    | <u>ient</u>                                          |
|                 | Cementlb. Watergal.                                                                                                                           |                             | lb.<br>gal.                                          |
|                 | Bentonite                                                                                                                                     |                             |                                                      |
|                 | Bentonite lb.<br>Type: Slurry Pellets<br>Water 6,74 ga                                                                                        | ı <b>i</b> .                |                                                      |
|                 | <u>Other</u>                                                                                                                                  |                             |                                                      |
|                 | Type material                                                                                                                                 |                             |                                                      |
|                 | Amount                                                                                                                                        | •                           |                                                      |
| 9.              | EXPLAIN METHOD OF EM<br>BORCHOLE WAS FI<br>WELL WAS ZEMAN                                                                                     | LLED WITH C                 |                                                      |
| 10.             | WELL DIAGRAM: Draw a deform showing total depth, depth in the well, gravel interval, intertypes of fill materials used.  DATE WELL ABANDONED_ | and diameter of s           | screens (if any) remaining forations, and depths and |
| I DO I<br>WITH  | HEREBY CERTIFY THAT THIS WI<br>I 15A NCAC 2C, WELL CONSTRUC<br>RECORD HAS BEEN PROVIDED T                                                     | ELL WAS ABANDO              | NED IN ACCORDANCE<br>S, AND THAT A COPY OF           |
| SIGN            | ATURE OF CERTIFIED WELL C                                                                                                                     | ONTRACTOR                   | 10/13/0°)<br>DATE                                    |
| (The print acco | ATURE OF PRIVATE WELL OW private well owner must be an individuordance with 15A NCAC 2C .0113.)  Milleria S                                   | al who <u>personally</u> ab | andons his/her residential well                      |
|                 | TED NAME OF PERSON ABAND                                                                                                                      | ONING THE WEL               | L                                                    |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

| WELL CONTRACTOR CERTIFIC                                                                                                                                     | CATION# 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                                                          | 5. WELL DETAILS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TIM THOMAS  Well Contractor (Individual) Name                                                                                                                | a. Total Depth: 16 ft. Diameter: 1 in. b. Water Level (Below Measuring Point): ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SAE DACCO, TNC. Well Contractor Company Name                                                                                                                 | Measuring point is ft. above land surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| STREET ADDRESS 9088 NORTHFIELD DR                                                                                                                            | 6. CASING: Length Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FORT MILL SC 29707  City or Town State Zip Code                                                                                                              | a. Casing Depth (if known):  b. Casing Removed:  ft.  in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Area code - Phone number                                                                                                                                     | 7. DISINFECTION: 0.16 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                              | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2. WELL INFORMATION: SITE WELL ID # (if applicable) 7 \omega - 29                                                                                            | 8. SEALING MATERIAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| STATE WELL PERMIT # (if applicable)                                                                                                                          | Neat Cement Sand Cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                         | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                        | Bentonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WELL USE (Circle applicable use): Monitoring Residential Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation                   | Bentonite lb. Type: Slurry Peliets K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Other (list use)                                                                                                                                             | Water O, 66 gal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3. WELL LOCATION:                                                                                                                                            | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| COUNTY CASE CILD QUADRANGLE NAME                                                                                                                             | Type material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NEAREST TOWN: JACKSONVILLE, NC                                                                                                                               | Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CAMP JOHNSON                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other (Circle appropriate setting)                                                                       | BORCHOLE WAS FILLED WITH CHIPS AFTER WELL WAS ZEMWED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LATITUDE May be in degrees,                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LATITUDE minutes, seconds, or in a decimal format                                                                                                            | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)               | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and rypes of fill materials used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FACILITY-The name of the business where the well is located. Complete 4a and 4b, (If a residential well, :kip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FACILITY ID #(if applicable)                                                                                                                                 | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| STREET ADDRESS                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ciry or Town State Zip Code                                                                                                                                  | SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                                | JAIL SAME SEE SAME SAM |
| NAME KORT HAUROZE, CHZIN HILL                                                                                                                                | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| STREET ADDRESS 4824 PARKWAY PLAZA BLUD                                                                                                                       | (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C .0113.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                              | TIM THOMAS  PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CHARLOTTE NC City or Town State Zip Code                                                                                                                     | PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (704) - 575 - 7980) Area code - Phone number                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

|                                                                                                           | THE TON CENTIFIC                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1. WELL CONTRACTOR:                                                                                       |                                                 | 5.      | WELL DETAILS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| TIM THOMAS                                                                                                |                                                 |         | a. Total Depth: 12 ft. Diameter: 1 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | п.               |
| Well Contractor (Individual) Name                                                                         |                                                 |         | b. Water Level (Below Measuring Point): ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| SAE DACCO, TNC. Well Contractor Company Name                                                              |                                                 |         | Measuring point is ft. above land surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| STREET ADDRESS 9088 NO                                                                                    | ORTHFIELD DR                                    | 6.      | CASING: Length Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| FORT MILL SC<br>City or Town State                                                                        | 29707                                           |         | a. Casing Depth (if known):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in               |
| City or Town State                                                                                        | Zip Code                                        |         | b. Casing Removed: ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in.              |
| (89)- 548-2180                                                                                            |                                                 | $\prod$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| Area code - Phone number                                                                                  |                                                 | 7.      | The state of the s |                  |
| 2. WELL INFORMATION:                                                                                      | <i>v</i> − 30                                   |         | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| SITE WELL ID # (if applicable) / C                                                                        | <u> </u>                                        | 8.      | SEALING MATERIAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| STATE WELL PERMIT # (if applicable)                                                                       |                                                 |         | Neat Cement Sand Cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| COUNTY WELL PERMIT # (if applicable)                                                                      |                                                 |         | Cement lb. Cement lb.  Water gal. Water ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ł.               |
| DWQ or OTHER PERMIT # (if applicable)_                                                                    | , ,                                             |         | Bentonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| WELL USE (Circle applicable use): Monito                                                                  |                                                 | [ ]     | Bentonite 4 lb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| Municipal/Public Industrial/Commer<br>Recovery Injection Irrigation                                       | cial Agricultural                               |         | Type: Slurry_ Pellets 🔨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| Other (list use)                                                                                          |                                                 |         | Water <u>O,49</u> gal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| 3. WELL LOCATION:                                                                                         |                                                 |         | <u>Other</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| COUNTY CNSLOW QUADRANGLE                                                                                  | NAME I                                          |         | Type material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| NEAREST TOWN: JACKSONVIL                                                                                  |                                                 |         | Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| CAMP JOHNSON                                                                                              |                                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| (Street/Road Name, Number, Community, Subdivis                                                            | sion, Lot No., Parcel, Zip Code)                | 9.      | EXPLAIN METHOD OF EMPLACEMENT OF MATERI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AL:              |
| TOPOGRAPHIC / LAND SETTING:                                                                               |                                                 |         | ROPEHOLE WAS FILLED WITH CHIPS AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TER              |
| Slope Valley Flat Ridge Other<br>(Circle appropriate setting)                                             |                                                 |         | WELL WAS ZEMOVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| (entire appropriate sectory)                                                                              | <del>  </del>                                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| LATITUDE                                                                                                  | May be in degrees,<br>minutes, seconds, or in a |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| LONGITUDE                                                                                                 | decimal format                                  | 10.     | WELL DIAGRAM: Draw a detailed sketch of the well on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | back of this     |
| Latitude/longitude source: GPS                                                                            | Topographic map                                 |         | form showing total depth, depth and diameter of screens (if an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .,               |
| (Location of well must be shown on a U.  attached to this form if not using GPS.                          |                                                 |         | in the well, gravel interval, intervals of easing perforations, and<br>types of fill materials used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d depths and     |
| 4a. FACILITY-The name of the business where the w (If a residential well, skip 4a; complete 4b, well owne | ell is located. Complete 4a and4b.              | ,,      | DATE WELL ABANDONED 7/29/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
|                                                                                                           | - · · · · · · · · · · · · · · · · · · ·         | 11.     | DATE WELL ABANDONED 17-77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del>      |
| FACILITY ID #(if applicable)                                                                              | HWSCA                                           |         | HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCOMENTATION STANDARDS, AND THAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| STREET ADDRESS                                                                                            |                                                 |         | S RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| JACKSCHULLE NIC                                                                                           |                                                 |         | 10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13/09            |
| STREET ADDRESS  JACK Scyclic AC  City or Town State Zip Code                                              |                                                 | SIGN    | NATURE OF CERTIFIED WELL CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE             |
| 4b. CONTACT PERSON/WELL OWNER:                                                                            |                                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| NAME KERT HALRESE CI                                                                                      |                                                 |         | NATURE OF PRIVATE WELL OWNER ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| STREET ADDRESS 4524 MACKL                                                                                 |                                                 |         | private well owner must be an individual who personally abandons his/her cordance with I5A NCAC 2C .0113.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | residentia: well |
|                                                                                                           |                                                 | 171     | THOMAS  NTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| City or Town State 2                                                                                      | Zip Code                                        | PRIN    | NTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| (704)- 975-2980                                                                                           |                                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| Area code - Phone number                                                                                  |                                                 | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |



WELL ABANDONMENT RECORD

North Carolina Department of Environment and Natural Resources- Division of Water Quality

| 1. WELL CONTRACTOR:                                                                                                             |                                       | 5. WELL DETAILS:                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIM THOMAS                                                                                                                      |                                       | a. Total Depth: 18 ft. Diameter: 1 in.                                                                                                                                                  |
| Well Contractor (Individual) Name                                                                                               |                                       | b. Water Level (Below Measuring Point): ft.                                                                                                                                             |
| SAEDACCO TNC. Well Contractor Company Name                                                                                      |                                       | Measuring point is ft. above land surface.                                                                                                                                              |
| STREET ADDRESS 9088 NO                                                                                                          | ARTHFIELD DR                          | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC City or Town State                                                                                                 |                                       | a. Casing Depth (if known): ft in. b. Casing Removed: ft in.                                                                                                                            |
| (803) - 548 2180<br>Area code - Phone number                                                                                    |                                       | 7. DISINFECTION: OIL 15                                                                                                                                                                 |
| 2. WELL INFORMATION:                                                                                                            | _                                     | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable)                                                                                                  | <u>0 - 31</u>                         | 8. SEALING MATERIAL:                                                                                                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                             |                                       | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)_                                                                                           |                                       | Cement lb. Ccment lb.  Water gal. Water gal.                                                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)                                                                                           |                                       | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable use): (Monito Municipal/Public Industrial/Commercial Recovery Injection Irrigation Other (list use) | ial Agricultural                      | Bentonite lb. Type: Slurry Pellets \( \( \) Water \( \) , 7 \( \) gal.                                                                                                                  |
|                                                                                                                                 |                                       | <u>Other</u>                                                                                                                                                                            |
| 3. WELL LOCATION:                                                                                                               |                                       | Type material                                                                                                                                                                           |
| COUNTY CNSLOW QUADRANGLE                                                                                                        |                                       | Amount                                                                                                                                                                                  |
| NEAREST TOWN: <u>JACKSONVIC</u> <u>CAMP</u> JOHNSON                                                                             |                                       | Amoun                                                                                                                                                                                   |
| (Street/Road Name, Number, Community, Subdivis                                                                                  | ion, Lot No., Parcel, Zip Code)       | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING:                                                                                                     |                                       | BORCHOLE WAS FILLED WITH CHIPS AFTER                                                                                                                                                    |
| Slope Valley Flat Ridge Other (Circle appropriate setting)                                                                      |                                       | WELL WAS ZEMOUED                                                                                                                                                                        |
|                                                                                                                                 | May be in degrees,                    |                                                                                                                                                                                         |
| LATITUDE                                                                                                                        | minutes, seconds, or in a             |                                                                                                                                                                                         |
| LONGITUDE                                                                                                                       | decimal format                        | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS (Location of well must be shown on a Usattached to this form if not using GPS.)                  | SGS topo map and                      | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| 4a. FACILITY- The name of the business where the we (If a residential well, skip 4a; complete 4b, well owne                     |                                       | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                                    | 1                                     | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
| NAME OF FACILITY CAMP JO                                                                                                        |                                       | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                      |
| STREET ADDRESS                                                                                                                  | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                         |
| STREET ADDRESS  TAUL SCIENCE ACC  City or Town State Zip Code                                                                   |                                       | SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                                                            |
|                                                                                                                                 | Zip Code                              | SIGNATURE OF CERTIFIED WEEL CONTRACTOR                                                                                                                                                  |
| 4b. CONTACT PERSON/WELL OWNER:                                                                                                  | 12m 11u 1                             |                                                                                                                                                                                         |
| NAME K-CRI HAURORE CI                                                                                                           |                                       | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE (The private well owner must be an individual who personally abandons his/her residential well                                 |
| STREET ADDRESS 4824 PARKL                                                                                                       |                                       | in accordance with 15A NCAC 2C .0113.)                                                                                                                                                  |
| CHARLETTE NC City or Town State Z                                                                                               |                                       | PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                              |
|                                                                                                                                 | •                                     |                                                                                                                                                                                         |
| (704)- 975-798C                                                                                                                 |                                       |                                                                                                                                                                                         |
| Area code - Phone number                                                                                                        |                                       |                                                                                                                                                                                         |



| WELL CONTRACTOR CERTIFIC                                                                                                                                          | ATION # 2012                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                                                               | 5. WELL DETAILS:                                                                                                                                                                        |
| TIM THOMAS                                                                                                                                                        | a. Total Depth: 20 ft. Diameter: 1 in.                                                                                                                                                  |
| Well Contractor (Individual) Name                                                                                                                                 | b. Water Level (Below Measuring Point): ft.                                                                                                                                             |
| SAE DACCO TNC. Well Contractor Company Name                                                                                                                       | Measuring point is fl. above land surface.                                                                                                                                              |
| STREET ADDRESS 9088 NORTHFIELD DR                                                                                                                                 | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC 29707 City of Town State Zip Code                                                                                                                    | a. Casing Depth (if known): ft in.                                                                                                                                                      |
| City of Town State Zip Code                                                                                                                                       | b. Casing Removed: ft. in.                                                                                                                                                              |
| $\frac{(803)}{\text{Area code - Phone number}} = \frac{548 - 2180}{\text{Area code - Phone number}}$                                                              | 7. DISINFECTION: 0.16.15                                                                                                                                                                |
| 2. WELL INFORMATION:                                                                                                                                              | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable) 700 - 32                                                                                                                           | 8. SEALING MATERIAL:                                                                                                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                                                               | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                              | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                             | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable use): (Monitoring) Residential                                                                                                        | Bentonite 6 1b.                                                                                                                                                                         |
| Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation                                                                                 | Type: Slurry_Pollets 🖔                                                                                                                                                                  |
| Other (list use)                                                                                                                                                  | Water O, & 2 gal.                                                                                                                                                                       |
| 3. WELL LOCATION:                                                                                                                                                 | <u>Other</u>                                                                                                                                                                            |
| COUNTY CNSLOW QUADRANGLE NAME                                                                                                                                     | Type material                                                                                                                                                                           |
| NEAREST TOWN: JACKSONVICE NC                                                                                                                                      | Amount                                                                                                                                                                                  |
| CAMP JOHNSON                                                                                                                                                      |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                     | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING:                                                                                                                                       | BORCHOLE WAS FILLED WITH CHIPS AFTER                                                                                                                                                    |
| Slope Valley Flat Ridge Other (Circle appropriate setting)                                                                                                        | WELL WAS ZEMOVED                                                                                                                                                                        |
|                                                                                                                                                                   |                                                                                                                                                                                         |
| LATITUDE May be in degrees, minutes, seconds, or in a                                                                                                             |                                                                                                                                                                                         |
| LONGITUDE decimal format                                                                                                                                          | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)                    | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| a. FACILITY- The name of the business where the well is located. Complete 4a and 4b.  (If a residential well, ckip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                                                                      | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                     | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                      |
| STREET ADDRESS                                                                                                                                                    |                                                                                                                                                                                         |
| City or Town State Zip Code                                                                                                                                       | SIGNATURE OF CERTIFIED WELL CONTRACTOR  OATE                                                                                                                                            |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                                     |                                                                                                                                                                                         |
| NAME KERT HAURER CHEMHILL                                                                                                                                         | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                                                                |
| STREET ADDRESS 4824 PRIVILLAY PLAZA BLUD                                                                                                                          | (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C .0113.)                                                   |
| CHAIRCO 77 C NC  City or Town State Zip Code                                                                                                                      | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                   |
|                                                                                                                                                                   | TRAINED BARRE OF LEBOOR ADDITIONAL THE WARD                                                                                                                                             |
| (704) - 775 - 298C) Area code - Phone number                                                                                                                      | ·                                                                                                                                                                                       |



| WELL CONT                                                                                                        | TRACTOR CERTIFI                                 | CATIO  | N# 2012                                                                     |                                                                                              |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                              |                                                 | 5.     | WELL DETAILS:                                                               |                                                                                              |
| TIM THOMAS                                                                                                       |                                                 |        | a. Total Depth: 18                                                          | ft. Diameter: 1 in.                                                                          |
| Well Contractor (Individual) Name                                                                                |                                                 |        | b. Water Level (Below Measur                                                |                                                                                              |
| SAEDACCO, INC.                                                                                                   |                                                 |        | Measuring point is                                                          | ft. above land surface.                                                                      |
| Well Contractor Company Name                                                                                     | _                                               |        | G. ONLG                                                                     |                                                                                              |
| STREET ADDRESS 9088 NO                                                                                           |                                                 | 6.     | CASING:                                                                     | Length Diameter                                                                              |
| FORT MILL SC<br>City or Town State                                                                               | 27/C/                                           |        | a. Casing Depth (if known).                                                 | ft. <u> </u>                                                                                 |
| (83)- 548 2180                                                                                                   | ZIP Coue                                        |        | b. Casing Removed:                                                          | ft. in.                                                                                      |
| Area code - Phone number                                                                                         |                                                 | 7.     | disinfection: 0,16                                                          | 16                                                                                           |
| Z. WELL INFORMATION:                                                                                             |                                                 |        | (Amount of 65%-75% calcium                                                  |                                                                                              |
| SITE WELL ID # (if applicable) 7 G                                                                               | <u> </u>                                        | .   8. | SEALING MATERIAL:                                                           |                                                                                              |
| STATE WELL PERMIT # (if applicable)                                                                              |                                                 | .      | Neat Cement                                                                 | Sand Cement                                                                                  |
|                                                                                                                  |                                                 |        | Cementlb.                                                                   | Cemen(lb.                                                                                    |
| COUNTY WELL PERMIT # (if applicable)                                                                             | ·                                               |        | Watergal.                                                                   | Water gal.                                                                                   |
| DWQ or OTHER PERMIT # (if applicable)                                                                            |                                                 | .      | Bentonite                                                                   |                                                                                              |
| WELL USE (Circle applicable use): Monitor Municipal/Public Industrial/Commercial                                 |                                                 |        | Bentonite 5 lb.                                                             |                                                                                              |
| Recovery Injection Irrigation                                                                                    | ial Agricultural                                | l i    | Type: Slurry_ Pellets 🔏<br>Water ga                                         | .1                                                                                           |
| Other (list use)                                                                                                 |                                                 |        |                                                                             |                                                                                              |
| 3. WELL LOCATION:                                                                                                |                                                 |        | <u>Other</u>                                                                |                                                                                              |
| COUNTY CNSLCW QUADRANGLE N                                                                                       | AME                                             | 11     | Type material                                                               |                                                                                              |
| NEAREST TOWN: _TACKSONVICE                                                                                       |                                                 |        | Amount                                                                      |                                                                                              |
| CAMP JOHNSON                                                                                                     |                                                 |        |                                                                             |                                                                                              |
| (Street/Road Name, Number, Community, Subdivision                                                                | on, Lot No., Parcel, Zip Code)                  | 9.     | EXPLAIN METHOD OF EM                                                        | PLACEMENT OF MATERIAL:                                                                       |
| TOPOGRAPHIC / LAND SETTING:                                                                                      |                                                 |        | BURCHOLE WAS FI                                                             | LLED WITH CHIPS AFTER                                                                        |
| Slope Valley Flat Ridge Other<br>(Circle appropriate setting)                                                    |                                                 |        | WELL WAS ZEMOU                                                              | <u> </u>                                                                                     |
| r (energy appropriate setting)                                                                                   |                                                 |        |                                                                             |                                                                                              |
| LATITUDE                                                                                                         | May be in degrees,<br>minutes, seconds, or in a |        |                                                                             |                                                                                              |
| LONGITUDE                                                                                                        | decimal format                                  | 10.    | WELL DIAGRAM: Draw a do                                                     | tailed sketch of the well on the back of this                                                |
| Latitude/longitude source: GPS  (Location of well must be shown on a US attached to this form if not using GPS.) |                                                 |        |                                                                             | n and diameter of screens (if any) remaining<br>rvals of casing perforations, and depths and |
| a. FACILITY-The name of the business where the wel<br>(If a residential well, akip 4a; complete 4b, well owner   |                                                 | 11.    | DATE WELL ABANDONED_                                                        | 7/29/09                                                                                      |
| FACILITY ID #(if applicable)                                                                                     |                                                 | OGI    | HEREBY CERTIFY THAT THIS WE                                                 | ELL WAS ABANDONED IN ACCORDANCE                                                              |
| NAME OF FACILITY CAMP JO                                                                                         |                                                 |        | H 15A NCAC 2C, WELL CONSTRUC<br>RECORD HAS BEEN PROVIDED T                  | TION STANDARDS, AND THAT A COPY OF                                                           |
| STREET ADDRESS                                                                                                   |                                                 |        |                                                                             |                                                                                              |
| City or Town State                                                                                               | Zip Code                                        | SIGN   | ATURE OF CERTIFIED WELL C                                                   | ONTRACTOR DATE                                                                               |
| b. CONTACT PERSON/WELL OWNER:                                                                                    |                                                 |        |                                                                             |                                                                                              |
| NAME KERT HALREDE, CH                                                                                            | 12m HILL                                        |        |                                                                             | NER ABANDONING THE WELL DATE                                                                 |
| STREET ADDRESS 4824 PARKLO                                                                                       | AY PLAZA BLUD                                   |        | private well owner must be an individu<br>cordance with 15A NCAC 2C .0113.) | al who <u>personally</u> abandons his/her residential well                                   |
| CHAVECUTTE NC City or Town State Zi                                                                              |                                                 | 11 7   | THOMAS                                                                      |                                                                                              |
| City or Town State Zi                                                                                            | p Code                                          | PRIN   | TED NAME OF PERSON ABANDO                                                   | ONING THE WELL                                                                               |
| (704) - 975 - 29 8 C                                                                                             |                                                 |        |                                                                             |                                                                                              |



| WELL CONTRACTOR CERTIFIC                                                                                                                                          | ation # 2012                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I. WELL CONTRACTOR:                                                                                                                                               | 5. WELL DETAILS:                                                                                                                                                                        |
| TIM THOMAS                                                                                                                                                        | a. Total Depth: 18 ft. Diameter: 1 in.                                                                                                                                                  |
| Well Contractor (Individual) Name                                                                                                                                 | b. Water Level (Below Measuring Point): ft.                                                                                                                                             |
| SAE DACCO, ZNC. Well Contractor Company Name                                                                                                                      | Measuring point isft. above land surface.                                                                                                                                               |
| STREET ADDRESS 9088 NORTHFIELD DR                                                                                                                                 | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC 29707  City or Town State Zip Code                                                                                                                   | a. Casing Depth (if known): ft. in. b. Casing Removed: ft. in.                                                                                                                          |
| Area code - Phone number                                                                                                                                          | 7. DISINFECTION: 0.16.15                                                                                                                                                                |
| . WELL INFORMATION:                                                                                                                                               | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable) Two - 34                                                                                                                           | 8. SEALING MATERIAL:                                                                                                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                                                               | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                              | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                             | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable usc): (Monitoring) Residential Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation                      | Bentonite lb. Type: Slurry Pellets &                                                                                                                                                    |
| Other (list use)                                                                                                                                                  | Water 0,74 gal.                                                                                                                                                                         |
| 3. WELL LOCATION:                                                                                                                                                 | Other                                                                                                                                                                                   |
| COUNTY ONS LOW QUADRANGLE NAME                                                                                                                                    | Type material                                                                                                                                                                           |
| NEAREST TOWN: TACKSONVICE, NC<br>CAMP JOHNSON                                                                                                                     | Amount                                                                                                                                                                                  |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                     | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING:                                                                                                                                       | BORCHOLE WAS FILLED WITH CHIPS AFTER                                                                                                                                                    |
| Slope Valley Flat Ridge Other                                                                                                                                     | WELL WAS ZEMOVED                                                                                                                                                                        |
| (Circle appropriate setting)                                                                                                                                      |                                                                                                                                                                                         |
| LATITUDE May be in degrees, minutes, seconds, or in a                                                                                                             |                                                                                                                                                                                         |
| LONGITUDE decimal format                                                                                                                                          | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)                    | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| a. FACILITY- The name of the business where the well is located. Complete 4a and 4b.  (If a residential well, 2kip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                                                                      | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                     | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                      |
| STREET ADDRESS                                                                                                                                                    |                                                                                                                                                                                         |
| City or Town State Zip Code                                                                                                                                       | SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                                                            |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                                     |                                                                                                                                                                                         |
| NAME KERT HAURER CHEM HILL                                                                                                                                        | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                                                                |
| STREET ADDRESS 4824 PARKWAY PLAZA BLUD                                                                                                                            | (The private well owner must be an individual who <u>personally</u> abandons his/her residential well in accordance with 15A NCAC 2C .0113.)                                            |
| CHARCUTTE NC  City or Town State Zip Code                                                                                                                         | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                   |
|                                                                                                                                                                   | TRINIED NAME OF TERSON ABANDONING THE WELL                                                                                                                                              |
| (704) - 575-7980<br>Area code - Phone number                                                                                                                      |                                                                                                                                                                                         |
|                                                                                                                                                                   |                                                                                                                                                                                         |



WELL ABANDONMENT RECORD

North Carolina Department of Environment and Natural Resources- Division of Water Quality

| I. WELL CONTRACTOR:                                                             |                                                 | 5.       | WELL DETAILS:                                                             | •                             |                               |
|---------------------------------------------------------------------------------|-------------------------------------------------|----------|---------------------------------------------------------------------------|-------------------------------|-------------------------------|
| TIM THOMAS                                                                      |                                                 |          | a. Total Depth: ZO f                                                      | i. Diameter:                  | <b></b> in.                   |
| Well Contractor (Individual) Name                                               |                                                 |          | b. Water Level (Below Measuring                                           |                               |                               |
| SAEDACCO, TNC.                                                                  |                                                 |          | Measuring point is                                                        | ft. above land su             | rface.                        |
| Well Contractor Company Name                                                    | 07115 E N NO                                    |          | CASING                                                                    | Lamush                        | Diameter                      |
| STREET ADDRESS 9088 NO                                                          |                                                 | 6.       | CASING:                                                                   | Length                        | Diameter                      |
| FORT MILL SC<br>City or Town State                                              | 27 / C /                                        |          | a. Casing Depth (if known):                                               |                               | <u> •</u> in.                 |
| (863) - 548 - 218C                                                              | Zip Code                                        |          |                                                                           | ft.                           | in.                           |
| Area code - Phone number                                                        |                                                 | 7.       | DISINFECTION: 016                                                         | ,15                           |                               |
| - WOLL VALEOUM A TION.                                                          |                                                 |          | (Amount of 65%-75% calcium                                                |                               |                               |
| 2. WELL INFORMATION:  SITE WELL ID # (if applicable)                            | _ 35 _ ب                                        | 8.       | SEALING MATERIAL:                                                         |                               |                               |
| STATE WELL PERMIT # (if applicable)                                             |                                                 |          | Neat Cement                                                               | Sand Cemer                    | <u>11</u>                     |
|                                                                                 |                                                 |          | Cementlb.                                                                 | Cement                        | lb.                           |
| COUNTY WELL PERMIT # (if applicable)_                                           |                                                 | ]        | Water gal.                                                                | Water                         |                               |
| DWQ or OTHER PERMIT # (if applicable)_                                          |                                                 |          | Bentonite                                                                 |                               |                               |
| WELL USE (Circle applicable use): Monito Municipal/Public Industrial/Commerce   |                                                 |          | Bentonite 6 lb.                                                           |                               |                               |
| Municipal/Public Industrial/Commerce Recovery Injection Irrigation              | ciai Agriculturai                               | 11       | Type: Slumy_Pellets X<br>Water                                            |                               |                               |
| Other (list use)                                                                | <del></del>                                     |          | water Or Q Z gar                                                          |                               |                               |
| 3. WELL LOCATION:                                                               |                                                 |          | <u>Other</u>                                                              |                               |                               |
| COUNTY CASS LOW QUADRANGLE                                                      | NAME                                            |          | Type material                                                             | <u>.</u>                      |                               |
| NEAREST TOWN: TACKSONVICE                                                       |                                                 |          | Amount                                                                    |                               | <u>.</u> _                    |
| CAMP JOHNSON                                                                    |                                                 |          |                                                                           |                               |                               |
| (Street/Road Name, Number, Community, Subdivis                                  | tion, Lot No., Parcel, Zip Code)                | g.       | EXPLAIN METHOD OF EMI                                                     | PLACEMENT OF                  | MATERIAL:                     |
| TOPOGRAPHIC / LAND SETTING:                                                     |                                                 | ]        | BURCHOLE WAS FIL                                                          | LED WITH CH                   | IPS AFTER                     |
|                                                                                 |                                                 |          | WELL WAS ZEMOUS                                                           | Z/)                           |                               |
| (Circle appropriate setting)                                                    |                                                 |          |                                                                           |                               |                               |
| LATITUDE                                                                        | May be in degrees,<br>minutes, seconds, or in a |          |                                                                           |                               |                               |
| LONGITUDE                                                                       | decimal format                                  | 10.      | WELL DIAGRAM: Draw a de                                                   | tailed sketch of the          | well on the back of this      |
| Latitude/longitude source: GPS                                                  |                                                 |          | form showing total depth, depth                                           |                               |                               |
| (Location of well must be shown on a U. attached to this form if not using GPS. |                                                 |          | in the well, gravel interval, inter<br>types of fill materials used.      | vals of casing perfo          | rations, and depths and       |
| a. FACILITY- The name of the business where the w                               |                                                 |          | types of fin materials used.                                              | 7/29/0                        | G                             |
| (If a residential well, akip 4a; complete 4b, well owner                        |                                                 | 11.      | DATE WELL ABANDONED_                                                      | 7/27/0                        |                               |
| FACILITY ID #(if applicable)                                                    | · · · · · · · · · · · · · · · · · · ·           |          | HEREBY CERTIFY THAT THIS WE                                               |                               |                               |
| NAME OF FACILITY CAMP JO                                                        |                                                 |          | I 15A NCAC 2C, WELL CONSTRUC<br>RECORD HAS BEEN PROVIDED TO               |                               |                               |
| STREET ADDRESS                                                                  |                                                 |          |                                                                           |                               | 10/10/09                      |
| STREET ADDRESS  JACK School Co. City or Town State Zip Code                     |                                                 | SIGN     | ATURE OF CERTIFIED WELL CO                                                | ONTRACTOR                     | DATE                          |
| b. CONTACT PERSON/WELL OWNER:                                                   | Sip See                                         |          |                                                                           |                               |                               |
|                                                                                 | 42m HICC                                        | SIGN     | ATURE OF PRIVATE WELL OW                                                  | ER ABANDONING                 | THE WELL DATE                 |
| NAME KURI HAURURG, CI<br>STREET ADDRESS 4824 PARKL                              | JAY PHAZA BULD                                  | (The     | private well owner must be an individual ordance with 15A NCAC 2C .0113.) | ił who <u>personally</u> aban | dons his/her residential well |
|                                                                                 |                                                 | <b>}</b> | M 7HOMA S                                                                 |                               |                               |
| City or Town State 3                                                            | Zip Code                                        | PRIN     | TED NAME OF PERSON ABANDO                                                 | NING THE WELL                 |                               |
| (704)- 975-7980                                                                 |                                                 |          |                                                                           |                               |                               |
| Area code - Phone number                                                        |                                                 |          |                                                                           |                               |                               |



WELL ABANDONMENT RECORD

North Carolina Department of Environment and Natural Resources- Division of Water Quality

| WELL CONTRACTOR CERTIFI                                                                                                                                          | ICATION # 2012                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I. WELL CONTRACTOR:                                                                                                                                              | 5. WELL DETAILS:                                                                                                                                                                        |
| TIM THOMAS Well Contractor (Individual) Name                                                                                                                     | a. Total Depth:ft. Diameter:fn. b. Water Level (Below Measuring Point):ft.                                                                                                              |
| SAE DACCO, TNC. Well Contractor Company Name                                                                                                                     | Measuring point isft. above land surface.                                                                                                                                               |
| STREET ADDRESS GORY NORTHFIELD DR                                                                                                                                | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC 29707  City or Town State Zip Code                                                                                                                  | a. Casing Depth (if known):  b. Casing Removed:  ft.  in.                                                                                                                               |
| (83) - 548 2 (80)<br>Area code - Phone number                                                                                                                    | 7. DISINFECTION: 0.1616                                                                                                                                                                 |
| 2. WELL INFORMATION:                                                                                                                                             | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable) 700-36                                                                                                                            | 8. SEALING MATERIAL:                                                                                                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                                                              | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                             | Cement   1b.   Cement   1b.   Water   gal.   Water   gal.                                                                                                                               |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                            | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable usc): Monitoring Residential Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation                       | Bentonite                                                                                                                                                                               |
| Other (list usc)                                                                                                                                                 | Water O, 9 gal.                                                                                                                                                                         |
| 3. WELL LOCATION:                                                                                                                                                | Other Other                                                                                                                                                                             |
| COUNTY CNSLCED QUADRANGLE NAME                                                                                                                                   | Type material                                                                                                                                                                           |
| NEAREST TOWN: TACKSONVILLE, NC                                                                                                                                   | Amount                                                                                                                                                                                  |
| CAMP JOHNSON                                                                                                                                                     |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                    | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other (Circle appropriate setting)                                                                           | BORCHOLE WAS FILLED WITH CHIPS AFTER WELL WAS ZEMOWED                                                                                                                                   |
| LATITUDE May be in degrees,                                                                                                                                      |                                                                                                                                                                                         |
| LATITUDE minutes, seconds, or in a decimal format                                                                                                                | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS Topographic map (Lacation of well must be shown on a USGS topo map and attached to this form if not using GPS.)                   | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| a. FACILITY- The name of the business where the well is located. Complete 4a and 4b. (If a residential well, akip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                                                                     | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                    | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                      |
| STREET ADDRESS                                                                                                                                                   |                                                                                                                                                                                         |
| City or Town State Zip Code                                                                                                                                      | SIGNATURE OF CERTIFIED WELL CONTRACTOR  10/13/C <sup>9</sup> DATE                                                                                                                       |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                                    |                                                                                                                                                                                         |
| NAME KODI HAUROZE CHZM HICC                                                                                                                                      | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE (The private well owner must be an individual who personally abandons his/her residential well                                 |
| STREET ADDRESS 4824 PARKWAY PLAZA RUD                                                                                                                            | in accordance with 15A NCAC 2C .0113.)                                                                                                                                                  |
| CHAPLUTTE NC  City or Town State Zip Code                                                                                                                        | FRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                              |
| (704) - 775 - 29 8 C) Area code - Phone number                                                                                                                   |                                                                                                                                                                                         |



| WELL CONTRACTOR CERTIFIC                                                                                                                                        | CATION # 2012                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                                                             | 5. WELL DETAILS:                                                                                                                                                                        |
| TIM THOMAS  Well Contractor (Individual) Name                                                                                                                   | a. Total Depth: 16 ft. Diameter: 1 in. b. Water Level (Below Measuring Point): ft.                                                                                                      |
| SAE DACCO, TNC. Well Contractor Company Name                                                                                                                    | Measuring point is ft. above land surface.                                                                                                                                              |
| STREET ADDRESS 9088 NORTHFIELD DR                                                                                                                               | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC 29707  City of Town State Zip Code  (83) 548 2180                                                                                                  | a. Casing Depth (if known):  b. Casing Removed:  ft in.  in.                                                                                                                            |
| Area code - Phone number                                                                                                                                        | 7. disinfection: 0.16 (6                                                                                                                                                                |
| 2. WELL INFORMATION: SITE WELL ID # (if applicable) 760 - 37                                                                                                    | (Amount of 65%-75% calcium hypoehlorite used)  8. SEALING MATERIAL:                                                                                                                     |
| STATE WELL PERMIT # (if applicable)                                                                                                                             | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                            | Cement lb. Cement lb.  Water gai. Water gal.                                                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                           | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable use): Monitoring Residential  Municipal/Public Industrial/Commercial Agricultural  Recovery Injection Irrigation                    | Bentonite lb. Type: Slurry Pellets \( \) Water O G G gal.                                                                                                                               |
| Other (list use)                                                                                                                                                | Water o.66 gal.                                                                                                                                                                         |
| 1 WELL LOCATION                                                                                                                                                 | Other                                                                                                                                                                                   |
| 3. WELL LOCATION:  COUNTY CNSLOW QUADRANGLE NAME                                                                                                                | Type material                                                                                                                                                                           |
| NEAREST TOWN: JACKSONVICE, NC                                                                                                                                   | Amount                                                                                                                                                                                  |
| CAMD JOHNSON                                                                                                                                                    |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                   | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other (Circle appropriate setting)                                                                          | BORTHOLE WAS FILLED WITH CHIPS AFTER WELL WAS ZEMONED                                                                                                                                   |
| LATITUDE May be in degrees,                                                                                                                                     |                                                                                                                                                                                         |
| LONGITUDE minutes, seconds, or in a decimal format                                                                                                              | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)                  | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| a. FACILITY: The name of the business where the well is located. Complete 4a and4b. (If a residential well, skip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                                                                    | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                   | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                      |
| STREET ADDRESS                                                                                                                                                  | 11/2/09                                                                                                                                                                                 |
| City or Town State Zip Code                                                                                                                                     | SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                                                            |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                                   |                                                                                                                                                                                         |
| NAME KUTZI HAWRUZG CHZMHILL                                                                                                                                     | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                                                                |
| STREET ADDRESS 4824 PARKLEAY PLAZA BLUD                                                                                                                         | (The private well owner must be an individual who <u>personally</u> abandons his/her residential well in accordance with 15A NCAC 2C .0!13.)                                            |
| CHARCUTTE NC City or Town State Zip Code                                                                                                                        | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                   |
| City or Town State Zip Code                                                                                                                                     | PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                              |
| (704)- 975-298C                                                                                                                                                 |                                                                                                                                                                                         |
| Area code - Phone number                                                                                                                                        |                                                                                                                                                                                         |



WELL ABANDONMENT RECORD

North Carolina Department of Environment and Natural Resources- Division of Water Quality

| <del> </del>                                                                                                       |                                                 |                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                |                                                 | 5. WELL DETAILS:                                                                                                                                                                        |
| TIM THOMAS                                                                                                         |                                                 | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                                                                                  |
| Well Contractor (Individual) Name                                                                                  |                                                 | b. Water Level (Below Measuring Point): ft.                                                                                                                                             |
| SAE DACCO ZNC. Well Contractor Company Name                                                                        |                                                 | Measuring point is fl. above land surface.                                                                                                                                              |
| STREET ADDRESS SCREEN ADDRESS                                                                                      |                                                 | 6. CASING: Length Diameter                                                                                                                                                              |
| • — •                                                                                                              |                                                 | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC City or Town State                                                                                    | 27 / C /                                        | a. Casing Depth (if known): ft in.                                                                                                                                                      |
| (843) - 548-2180                                                                                                   | Zip Code                                        | b. Casing Removed: ft. in.                                                                                                                                                              |
| Area code - Phone number                                                                                           |                                                 | 7. DISINFECTION: 0.16 (b                                                                                                                                                                |
| 2. WELL INFORMATION:                                                                                               |                                                 | (Amount of 65%-75% catcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable)                                                                                     | <i>v</i> - 38                                   | 8. SEALING MATERIAL:                                                                                                                                                                    |
|                                                                                                                    |                                                 |                                                                                                                                                                                         |
| STATE WELL PERMIT # (if applicable)                                                                                |                                                 | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)_                                                                              |                                                 | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)_                                                                             |                                                 | . Bentonite                                                                                                                                                                             |
| WELL USE (Circle applicable use): (Monite Municipal/Public Industrial/Commercial Recovery Injection Irrigation     | cial Agricultural                               | Bentonite S   lb. Type: Slurry Pellets X   Water O. 66 gal.                                                                                                                             |
| Other (list use)                                                                                                   |                                                 | Other                                                                                                                                                                                   |
| 3. WELL LOCATION:                                                                                                  |                                                 | H —                                                                                                                                                                                     |
| COUNTY CNSLOW QUADRANGLE                                                                                           | NAME                                            | Type material                                                                                                                                                                           |
| NEAREST TOWN: JACKSONVIC                                                                                           | LE, NC                                          | Amount                                                                                                                                                                                  |
| CAMP JOHNSON                                                                                                       | -                                               |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivis                                                                     | ion, Lot No., Parcel, Zip Code)                 | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING:                                                                                        |                                                 | BORCHOLE WAS FILLED WITH CHIPS AFTER                                                                                                                                                    |
| Slope Valley Flat Ridge Other<br>(Circle appropriate setting)                                                      |                                                 | WELL WAS ZEMOUED                                                                                                                                                                        |
| · (                                                                                                                |                                                 |                                                                                                                                                                                         |
| LATITUDE                                                                                                           | May be in degrees,<br>minutes, seconds, or in a |                                                                                                                                                                                         |
| LONGITUDE                                                                                                          | decimal format                                  | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS (Location of well must be shown on a U. attached to this form if not using GPS.     |                                                 | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| Ba. FACILITY- The name of the business where the week<br>(If a residential well, akip 4a; complete 4b, well owner) |                                                 | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                       |                                                 | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
| NAME OF FACILITY CAMP JO                                                                                           | 4050°                                           | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                      |
| STREET ADDRESS                                                                                                     |                                                 |                                                                                                                                                                                         |
| STREET ADDRESS  TACK SCHOOLE NC  City or Town State                                                                | Zin Codo                                        | SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                                                            |
|                                                                                                                    | Zip Code                                        | SIGNATURE OF CERTIFIED WEED CONTRACTOR                                                                                                                                                  |
| b. CONTACT PERSON/WELL OWNER:                                                                                      | 12m 1115                                        | CICAL TUDE OF PRINCIPLE AND                                                                                                                         |
| NAME K-CTZI 1-laurcze CI                                                                                           |                                                 | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE  (The private well owner must be an individual who personally abandons his/her residential well                                |
| STREET ADDRESS 4824 PARKL                                                                                          |                                                 | in accordance with 15A NCAC 2C .0113.)                                                                                                                                                  |
| CHARWTT NC City or Town State Z                                                                                    | <u> </u>                                        | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                   |
|                                                                                                                    |                                                 |                                                                                                                                                                                         |
| (704)- 775-758C) Area code - Phone number                                                                          |                                                 |                                                                                                                                                                                         |
| Area code - Phone number                                                                                           |                                                 |                                                                                                                                                                                         |



WELL ABANDONMENT RECORD

North Carolina Department of Environment and Natural Resources- Division of Water Quality

| WELL CO.                                                                                                                      | VIRACIOR CERTIFIC                               |          | N#                                                                    |                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------|-----------------------------------------------------------------------|----------------------------------------------------------------------|
| I. WELL CONTRACTOR:                                                                                                           |                                                 | 5.       | WELL DETAILS:                                                         |                                                                      |
| _TIM _THOMAS                                                                                                                  |                                                 | - } }    | a. Total Depth; 20 f                                                  | i. Diameter: L in                                                    |
| Well Contractor (Individual) Name                                                                                             | ·                                               |          | b. Water Level (Below Measuring                                       |                                                                      |
| SAEDACCO, INC.                                                                                                                |                                                 |          | Measuring point is                                                    | <del>-</del>                                                         |
| Well Contractor Company Name                                                                                                  | _                                               |          |                                                                       |                                                                      |
| STREET ADDRESS 9088 N                                                                                                         |                                                 | 6.       | CASING:                                                               | Length Diameter                                                      |
| FORT MILL SC<br>City or Town State                                                                                            | 29707                                           |          | a. Casing Depth (if known):                                           | ft in.                                                               |
| City or Town State                                                                                                            | Zip Code                                        |          | b. Casing Removed:                                                    | ft in.                                                               |
| Area code - Phone number                                                                                                      |                                                 | 7.       | DISINFECTION: 0.10                                                    | 016                                                                  |
| 2. WELL INFORMATION:                                                                                                          |                                                 |          | (Amount of 65%-75% calcium                                            |                                                                      |
| SITE WELL ID # (if applicable)                                                                                                | <del>w - 39</del>                               | .     8. | SEALING MATERIAL:                                                     | ,                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                           |                                                 |          | Neat Cement                                                           | Sand Cement                                                          |
| STATE WELD I EXAMIT # (II application)                                                                                        | <del></del>                                     |          | Company                                                               | <del></del>                                                          |
| COUNTY WELL PERMIT # (if applicable)                                                                                          |                                                 |          | Cement Ib. Water gal.                                                 | Cementlb.<br>Watergal.                                               |
| DWQ or OTHER PERMIT # (if applicable)                                                                                         |                                                 |          | Bentonite                                                             |                                                                      |
| WELL USE (Circle applicable use): Monit Municipal/Public Industrial/Commet Recovery Injection Irrigation                      | rcial Agricultural                              |          | Bentonite 6 lb.  Type: Slurry Pellets 6  Water 0 82 gal               |                                                                      |
| Other (list use)                                                                                                              |                                                 |          | Oth <u>er</u>                                                         |                                                                      |
| 3. WELL LOCATION:                                                                                                             |                                                 |          | <del></del>                                                           |                                                                      |
| COUNTY CNSLOW QUADRANGLE                                                                                                      |                                                 |          | 4                                                                     |                                                                      |
| NEAREST TOWN: JACKSONVIC                                                                                                      | IE, NC                                          |          | Amount                                                                |                                                                      |
| CAMP JOHNSON                                                                                                                  |                                                 |          |                                                                       |                                                                      |
| (Street/Road Name, Number, Community, Subdivi                                                                                 | ision, Lot No., Parcel, Zip Code)               | 9.       | EXPLAIN METHOD OF EMI                                                 | PLACEMENT OF MATERIAL:                                               |
| TOPOGRAPHIC / LAND SETTING:                                                                                                   |                                                 | 11       | BORCHOLE WAS FIL                                                      | LED WITH CHIPS AFTER                                                 |
|                                                                                                                               |                                                 |          | WELL WAS ZEMOUS                                                       | ZO                                                                   |
| (Circle appropriate setting)                                                                                                  |                                                 |          | <u></u>                                                               |                                                                      |
| LATITUDE                                                                                                                      | May be in degrees,<br>minutes, seconds, or in a |          |                                                                       |                                                                      |
| LONGITUDE                                                                                                                     | decimal format                                  | 10.      | WELL DIAGRAM: Draw a det                                              | ailed sketch of the well on the back of this                         |
| Latitude/longitude source: GPS                                                                                                | Topographic map                                 | 11       |                                                                       | and diameter of screens (if any) remaining                           |
| (Location of well must be shown on a U  attached to this form if not using GPS                                                | JSGS topo map and                               |          | in the well, gravel interval, inter-<br>types of fill materials used. | vals of casing perforations, and depths and                          |
| <ol> <li>FACILITY- The name of the business where the v<br/>(If a residential well, akip 4a; complete 4b, well own</li> </ol> | well is located. Complete 4a and4b.             |          | DATE WELL ABANDONED                                                   | 7/29/09                                                              |
| FACILITY ID #(if applicable)                                                                                                  | or morning only.)                               | 11 ***   | DALLE WELL ADANDONED_                                                 |                                                                      |
| NAME OF FACILITY CAMP JO                                                                                                      | HESCOS                                          |          |                                                                       | LL WAS ABANDONED IN ACCORDANCE<br>FION STANDARDS, AND THAT A COPY OF |
| STREET ADDRESS                                                                                                                |                                                 |          | RECORD HAS BEEN PROVIDED TO                                           |                                                                      |
| TANK COMMUNICATION AND                                                                                                        |                                                 |          |                                                                       | 10/13/09                                                             |
| City or Town State                                                                                                            | Zip Code                                        | SIGN     | ATURE OF CERTIFIED WELL CO                                            | NTRACTOR DATE                                                        |
| b. CONTACT PERSON/WELL OWNER:                                                                                                 |                                                 |          |                                                                       |                                                                      |
| NAME KERT HAURCOL, C                                                                                                          |                                                 |          |                                                                       | ER ABANDONING THE WELL. DATE                                         |
| STREET ADDRESS 4824 PARKL                                                                                                     |                                                 | in acc   | ordance with 15A NCAC 2C .0113.)                                      | l who <u>personally</u> abandons his/her residential well            |
| CHARLUTTE NC City or Town State                                                                                               |                                                 | 11       | M 740MA S                                                             | MINO THE MALL                                                        |
|                                                                                                                               |                                                 | PRIN     | TEU NAME OF PERSON ABANDO                                             | MING THE WELL                                                        |
| (704)- 975-2980                                                                                                               | •                                               |          |                                                                       |                                                                      |
| Area code - Phone number                                                                                                      |                                                 | 11       | •                                                                     |                                                                      |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

| WEBB COI                                                                                                                    | THE TOR CERTIFY                        |        | <u> </u>                                               |                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|--------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                         |                                        | 5.     | WELL DETAILS:                                          |                                                                                              |
| TIM THOMAS                                                                                                                  |                                        |        | a. Total Depth: ZO                                     | ft. Diameter: 1 in.                                                                          |
| Well Contractor (Individual) Name                                                                                           |                                        |        | b. Water Level (Below Measur                           |                                                                                              |
| SAEDACCO, INC.                                                                                                              |                                        |        | Measuring point is                                     | <del>-</del>                                                                                 |
| Well Contractor Company Name                                                                                                | _                                      |        |                                                        |                                                                                              |
| STREET ADDRESS 9088 NO                                                                                                      |                                        | 6.     | CASING:                                                | Length Diameter                                                                              |
| FORT MILL SC<br>City of Town State                                                                                          | 29707<br>Zip Code                      |        | a. Casing Depth (if known):<br>b. Casing Removed:      | ftininin.                                                                                    |
| (83) <u>548-2180</u>                                                                                                        |                                        |        |                                                        | _                                                                                            |
| Area code - Phone number                                                                                                    |                                        | 7.     | DISINFECTION: 0,11                                     | , 16                                                                                         |
| 2. WELL INFORMATION:                                                                                                        |                                        | 11     | (Amount of 65%-75% calcium                             |                                                                                              |
| SITE WELL ID # (if applicable)                                                                                              | <u>v - 40</u>                          | 8.     | SEALING MATERIAL:                                      |                                                                                              |
| STATE WELL PERMIT # (if applicable)                                                                                         |                                        |        | Neat Cement                                            | Sand Cement                                                                                  |
| COUNTY WELL PERMIT # (if applicable)_                                                                                       |                                        |        | Cement lb. Water gal.                                  | Cernentlb. Watergal.                                                                         |
| DWQ or OTHER PERMIT # (if applicable)_                                                                                      | ·····                                  |        | <b>Bentonite</b>                                       |                                                                                              |
| WELL USE (Circle applicable use): (Monite Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                      |        | Bentonite 6 lb. Type: Slurry Pellets 8 Water 0, 8 2 ga | d.                                                                                           |
|                                                                                                                             | ************************************** |        | Other                                                  |                                                                                              |
| 3. WELL LOCATION:                                                                                                           |                                        |        | Tune material                                          |                                                                                              |
| COUNTY CNSLOW QUADRANGLE                                                                                                    |                                        |        | Type material                                          | •                                                                                            |
| NEAREST TOWN: <u>TACKSONVIC</u> CAMP JOHNSON                                                                                | CE, NC                                 |        | Amount                                                 | <del></del>                                                                                  |
| (Street/Road Name, Number, Community, Subdivis                                                                              | ion, Lot No., Parcel, Zip Code)        | 9.     | EXPLAIN METHOD OF EM                                   | PLACEMENT OF MATERIAL:                                                                       |
| TOPOGRAPHIC / LAND SETTING:                                                                                                 | 2011.0., 1 = 10., 2., 400.             | "      |                                                        | LLED WITH CHIPS AFTER                                                                        |
|                                                                                                                             |                                        |        | WELL WAS ZEMEN                                         |                                                                                              |
|                                                                                                                             | May be in degrees,                     |        |                                                        |                                                                                              |
| LATITUDE                                                                                                                    | minutes, seconds, or in a              | ]}     |                                                        |                                                                                              |
| LONGITUDE                                                                                                                   | decimal format                         | 10.    | WELL DIAGRAM: Draw a do                                | tailed sketch of the well on the back of this                                                |
| Latitude/longitude source: GPS (Location of well must be shown on a U attached to this form if not using GPS.               |                                        |        | *                                                      | n and diameter of screens (if any) remaining<br>rvals of easing perforations, and depths and |
| a. FACILITY: The name of the business where the will (If a residential well, :kip 4a; complete 4b, well owner)              |                                        | 11.    | DATE WELL ABANDONED_                                   | 7/29/09                                                                                      |
| FACILITY ID #(if applicable)                                                                                                |                                        | 11     | HEDERY CERTIEV THAT THIS WE                            | ELL WAS ABANDONED IN ACCORDANCE                                                              |
| NAME OF FACILITY CAMP JO                                                                                                    | HINSCA                                 | WITH   | i 15A NCAC 2C, WELL CONSTRUC                           | TION STANDARDS, AND THAT A COPY OF                                                           |
| STREET ADDRESS                                                                                                              |                                        | THIS   | RECORD HAS BEEN PROVIDED T                             |                                                                                              |
| City or Town State                                                                                                          | 7:- 0-1-                               | SIGN   | ATURE OF CERTIFIED WELL C                              | 10/13/05                                                                                     |
|                                                                                                                             | Zip Code                               | 3,0    | ATORE OF CERTIFIED WELL C                              | DATE DATE                                                                                    |
| b. CONTACT PERSON/WELL OWNER:                                                                                               | 1700 1141                              |        | - · · · · · · · · · · · · · · · · · · ·                |                                                                                              |
| NAME K-CRI HAURGRE CI                                                                                                       |                                        |        |                                                        | NER ABANDONING THE WELL DATE all who personally abandons his/her residential well            |
| STREET ADDRESS 4524 PARKE                                                                                                   |                                        | in acc | ordance with 15A NCAC 2C .0113.)                       | <del></del>                                                                                  |
| CHAWW77E NC City or Town State 2                                                                                            | ·                                      | 7/     | M 71-WNA S<br>TED NAME OF PERSON ABANDO                | ONING THE WELL                                                                               |
|                                                                                                                             |                                        | PKIN   | TED NAME OF PERSON ABANDO                              | NAME AFT                                                                                     |
| (704)- 575-798C                                                                                                             |                                        |        |                                                        |                                                                                              |
| Area code - Phone number                                                                                                    |                                        |        |                                                        |                                                                                              |



2012

North Carolina Department of Environment and Natural Resources-Division of Water Quality

| I. WELL CONTRACTOR:                                                                                                        |                                                 | 5. WELL DETAILS:                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _TIM THOMAS                                                                                                                |                                                 | a. Total Depth: 18 ft. Diameter: 1 in.                                                                                                                                                  |
| Well Contractor (Individual) Name                                                                                          |                                                 | b. Water Level (Below Measuring Point):ft.                                                                                                                                              |
| SAE DACCO, TNC. Well Contractor Company Name                                                                               | -                                               | Measuring point isfi. above land surface.                                                                                                                                               |
| STREET ADDRESS 9088 NO                                                                                                     |                                                 | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC City or Town State                                                                                            | 29707<br>Zip Code                               | a. Casing Depth (if known):  b. Casing Removed:  ft.  in.  in.                                                                                                                          |
| $\frac{(80)}{\text{Area code}} = \frac{548 - 2180}{\text{Phone number}}$                                                   |                                                 | 7. DISINFECTION: 0.16 16                                                                                                                                                                |
| 2. WELL INFORMATION:                                                                                                       |                                                 | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable)                                                                                             | <i>20</i> − 41                                  | 8. SEALING MATERIAL:                                                                                                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                        |                                                 | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                       |                                                 | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)_                                                                                     | <del></del>                                     | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable use): Monite Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                               | Bentonite lb. Type: Slurry Pellets gal.                                                                                                                                                 |
| 3. WELL LOCATION:                                                                                                          |                                                 | <u>Other</u>                                                                                                                                                                            |
| COUNTY CNSLOW QUADRANGLE                                                                                                   | NAME                                            | Type material                                                                                                                                                                           |
| NEAREST TOWN: JACKSONVIL                                                                                                   |                                                 | Amount                                                                                                                                                                                  |
| CAMP JOHNSON                                                                                                               |                                                 |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivis                                                                             | sion, Lot No., Parcel, Zip Code)                | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING:                                                                                                |                                                 | BORCHOLE WAS FILLED WITH CHIPS AFTER                                                                                                                                                    |
| Slope Valley Flat Ridge Other (Circle appropriate setting)                                                                 | <del></del>                                     | WELL LAS ZEMOUSD                                                                                                                                                                        |
| LATITUDE                                                                                                                   | May be in degrees,<br>minutes, seconds, or in a |                                                                                                                                                                                         |
| LONGITUDE                                                                                                                  | decimal format                                  | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS  (Location of well must be shown on a U attached to this form if not using GPS.             |                                                 | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| a. FACILITY-The name of the business where the w (If a residential well, okip 4a; complete 4b, well owner                  |                                                 | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                               |                                                 | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
| NAME OF FACILITY CAMP JC                                                                                                   | 1102000                                         | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                      |
| STREET ADDRESS                                                                                                             |                                                 |                                                                                                                                                                                         |
| STREET ADDRESS  TAGE CONCLETE A C  City or Town State Zip Code                                                             |                                                 | SIGNATURE OF CERTIFIED WELL CONTRACTOR  10/13/C <sup>2</sup> DATE                                                                                                                       |
| b. CONTACT PERSON/WELL OWNER:                                                                                              |                                                 |                                                                                                                                                                                         |
| NAME K-CIZI HALREDE C                                                                                                      | HZMHICC                                         | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                                                                |
| STREET ADDRESS 4824 PARKL                                                                                                  | ८००७ हिस्से ५०,८                                | (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C .0113.)                                                   |
| CHARCOTTE NC  City or Town State                                                                                           | Zip Code                                        | TIM THOMA S PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                  |
| (704) - 775 - 7986                                                                                                         |                                                 |                                                                                                                                                                                         |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

| WELL CONTRACTOR CERTIFIC                                                                                                                                       | cation# 2012                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                                                            | 5. WELL DETAILS:                                                                                                                                                                        |
| TIM THOMAS                                                                                                                                                     | a. Total Depth: 18 ft. Diameter: 1 in.                                                                                                                                                  |
| Well Contractor (Individual) Name                                                                                                                              | b. Water Level (Below Measuring Point): ft.                                                                                                                                             |
| SAE DACCO TAIC. Well Contractor Company Name                                                                                                                   | Measuring point is ft. above land surface.                                                                                                                                              |
| STREET ADDRESS 9088 NORTHFIELD DR                                                                                                                              | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC 29707 City or Town State Zip Code                                                                                                                 | a. Casing Depth (if known): ft. in. b. Casing Removed: ft. in.                                                                                                                          |
| (843)- 548-Z(8C)                                                                                                                                               |                                                                                                                                                                                         |
| Area code - Phone number                                                                                                                                       | 7. DISINFECTION: 6 0.16 (6                                                                                                                                                              |
| 2. WELL INFORMATION: SITE WELL ID # (if applicable) 700 - 42                                                                                                   | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable) / W = 4 2                                                                                                                       | 8. SEALING MATERIAL:                                                                                                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                                                            | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                           | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                          | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable use): Monitoring Residential  Municipal/Public Industrial/Commercial Agricultural  Recovery Injection Irrigation                   | Bentonite lb. Type: Slurry Peilets X Water 7 4 gal.                                                                                                                                     |
| Other (list use)                                                                                                                                               | Water O. 74 gal.                                                                                                                                                                        |
| 3. WELL LOCATION:                                                                                                                                              | <u>Other</u>                                                                                                                                                                            |
| COUNTY CNSLOW QUADRANGLE NAME                                                                                                                                  | Type material                                                                                                                                                                           |
| NEAREST TOWN: TACKSONVICE, NC                                                                                                                                  | Amount                                                                                                                                                                                  |
| CAMP JOHNSON                                                                                                                                                   |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                  | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING:                                                                                                                                    | BURCHOLE WAS FILLED WITH CHIPS AFTER                                                                                                                                                    |
| Stope Valley Flat Ridge Other (Circle appropriate setting)                                                                                                     | WELL WAS ZEMOVED                                                                                                                                                                        |
| . (Cricie appropriate setting)                                                                                                                                 |                                                                                                                                                                                         |
| LATITUDE May be in degrees, minutes, seconds, or in a                                                                                                          |                                                                                                                                                                                         |
| LONGITUDE decimal format                                                                                                                                       | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)                 | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| a. FACILITY-The name of the business where the well is located. Complete 4a and4b. (If a residential well, ckip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                                                                   | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                  | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                      |
| STREET ADDRESS                                                                                                                                                 |                                                                                                                                                                                         |
| City or Town State Zip Code                                                                                                                                    | SIGNATURE OF CERTIFIED WELL CONTRACTOR    10/13/07                                                                                                                                      |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                                  |                                                                                                                                                                                         |
| NAME KERT HAURERE CHEMHILL                                                                                                                                     | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                                                                |
| STREET ADDRESS 4824 PARKWAY PLAZA BLUD                                                                                                                         | (The private well owner must be an individual who <u>personally</u> abandons his/her residential well in accordance with ISA NCAC 2C .0113.)                                            |
| City or Town State Zip Code                                                                                                                                    | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                   |
|                                                                                                                                                                |                                                                                                                                                                                         |
| (704) - 775 - 2980<br>Area code - Phone number                                                                                                                 |                                                                                                                                                                                         |



1. WELL CONTRACTOR:

TIM THOMAS
Well Contractor (Individual) Name

FORT MILL
City or Town S

2. WELL INFORMATION:

Recovery Injection Other (list use)

SITE WELL ID # (if applicable)\_\_\_

STATE WELL PERMIT # (if applicable)

COUNTY WELL PERMIT # (if applicable)

Municipal/Public Industrial/Commercial

Injection Irrigation

SAE DACCO, TNC.
Well Contractor Company Name

STREET ADDRESS 9088 NORTHFIELD DR

State

### WELL ABANDONMENT RECORD

North Carolina Department of Environment and Natural Resources- Division of Water Quality

WELL CONTRACTOR CERTIFICATION #

Tw- 42

Residential

Agricultural

| TIO             | N# 2012                                                                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.              | WELL DETAILS:                                                                                                                             | •                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | a. Total Depth: /6                                                                                                                        | ft. Diameter:               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | b. Water Level (Below Measuri                                                                                                             |                             | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | Measuring point is                                                                                                                        | ft. above land              | surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6.              | CASING:                                                                                                                                   | Length                      | Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | a. Casing Depth (if known):<br>b. Casing Removed:                                                                                         | ft.<br>ft.                  | in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.              | DISINFECTION: O.                                                                                                                          | 6                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | (Amount of 65%-75% calcium                                                                                                                | hypochlorite use            | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.              | SEALING MATERIAL:                                                                                                                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | Neat Cement                                                                                                                               | Sand Cen                    | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | Cementlb. Watergal.                                                                                                                       |                             | lb.<br>gal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | Bentonite                                                                                                                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | Bentonite lb. Type: Slurry Pollets & Water C ga                                                                                           | I.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | <u>Other</u>                                                                                                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | Type material                                                                                                                             |                             | Marie and the second of the se |
|                 | Amount                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.              | EXPLAIN METHOD OF EM<br>BORCHOLE WAS FR<br>WELL WAS ZEMON                                                                                 | LED WITH C                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.             | WELL DIAGRAM: Draw a de form showing total depth, depth in the well, gravel interval, intertypes of fill materials used.                  | and diameter of             | screens (if any) remaining forations, and depths and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11.             | DATE WELL ABANDONED_                                                                                                                      | 11-71                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WITH            | HEREBY CERTIFY THAT THIS WE<br>I 15A NCAC 2C, WELL CONSTRUC<br>RECORD HAS BEEN PROVIDED T                                                 | TION STANDARD               | S, AND THAT A COPY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SIGN            | ATURE OF CERTIFIED WELL CO                                                                                                                | ONTRACTOR                   | 10/13/09<br>DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (The print acco | ATURE OF PRIVATE WELL OWT or water well owner must be an individual ordance with 15A NCAC 2C .0113.)  M. THOMA STED NAME OF PERSON ABANDO | al who <u>personaliv</u> ab | andons his/her residential well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

well contractor certification # 20/2

| - WEED CO.                                                                                                                | THE COLOR CERTIFIE               |        |                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                       |                                  | 5.     | WELL DETAILS:                                                                                                                                                                           |
| TIM THOMAS                                                                                                                |                                  |        | a. Total Depth: ZO ft. Diameter: 1 in.                                                                                                                                                  |
| Well Contractor (Individual) Name                                                                                         |                                  |        | b. Water Level (Below Measuring Point): ft.                                                                                                                                             |
| SAEDACCO TNC                                                                                                              | ·                                |        | Measuring point isfl. above land surface.                                                                                                                                               |
| Wen Contractor Company Name                                                                                               | _                                |        |                                                                                                                                                                                         |
| STREET ADDRESS 9088 N                                                                                                     |                                  | 6.     | CASING: Length Diameter                                                                                                                                                                 |
| FORT MILL SC<br>City or Town State                                                                                        | 29707<br>Zip Code                |        | a. Casing Depth (if known):       ft.       in.         b. Casing Removed:       ft.       in.                                                                                          |
| (893) 548-2180                                                                                                            | •                                |        |                                                                                                                                                                                         |
| Area code - Phone number                                                                                                  |                                  | 7.     | DISINFECTION: 0.16 G                                                                                                                                                                    |
| 2. WELL INFORMATION:                                                                                                      |                                  |        | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable)                                                                                            | <u> 44 – ث</u>                   | 8.     | SEALING MATERIAL:                                                                                                                                                                       |
| STATE WELL PERMIT # (if applicable)                                                                                       |                                  |        | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                      |                                  |        | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)_                                                                                    |                                  |        | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable use): Monit Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                |        | Bentonite b. Type: Slurry Pellets W Water gal.                                                                                                                                          |
|                                                                                                                           |                                  |        | Other                                                                                                                                                                                   |
| 3. WELL LOCATION:                                                                                                         |                                  |        | Type material                                                                                                                                                                           |
| COUNTY CNSLOW QUADRANGLE                                                                                                  |                                  |        |                                                                                                                                                                                         |
| NEAREST TOWN: TACK SONVIC                                                                                                 | CE, NC                           |        | Amount                                                                                                                                                                                  |
| CAMP JOHNSON                                                                                                              |                                  |        |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivi                                                                             | sion, Lot No., Parcel, Zip Code) | 9.     | EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                              |
| TOPOGRAPHIC / LAND SETTING:<br>Slope Valley Flat Ridge Other                                                              |                                  |        | BORCHOLE WAS FILLED WITH CHIPS AFTER WELL WAS ZEMOUED                                                                                                                                   |
| Slope Valley Flat Ridge Other                                                                                             | <del> </del>                     |        | agec was removed                                                                                                                                                                        |
|                                                                                                                           | May be in degrees,               |        |                                                                                                                                                                                         |
| LATITUDE                                                                                                                  | minutes, seconds, or in a        |        |                                                                                                                                                                                         |
| LONGITUDE                                                                                                                 | decimal format                   | 10.    |                                                                                                                                                                                         |
| Latitude/longitude source: GPS (Location of well must be shown on a U attached to this form if not using GPS.             | · ·                              |        | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| a. FACILITY- The name of the business where the w<br>(If a residential well,kip 4a; complete 4b, well own                 |                                  | 11.    | DATE WELL ABANDONED 7/29/09                                                                                                                                                             |
| FACILITY ID #(if applicable)                                                                                              |                                  | iDO    | HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                               |
| NAME OF FACILITY CAMP JC                                                                                                  | H0200                            | with   | H 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF<br>RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                           |
| STREET ADDRESS  TAUL Segurition NC  City or Town State                                                                    |                                  | Inis   |                                                                                                                                                                                         |
| JACKSCHULLE NC                                                                                                            |                                  | ===    | 10/13/C°)                                                                                                                                                                               |
|                                                                                                                           | Zip Code                         | SIG    | NATURE OF CERTIFIED WELL CONTRACTOR DATE                                                                                                                                                |
| b. CONTACT PERSON/WELL OWNER:                                                                                             | (12 an il i                      |        |                                                                                                                                                                                         |
| NAME KETZI HAUREZE C                                                                                                      | 14211 HICC                       |        | NATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE private well owner must be an individual who personally abandons his/her residential well                                         |
| STREET ADDRESS 4824 PARK                                                                                                  |                                  | in acc | cordance with 15A NCAC 2C .0113.)                                                                                                                                                       |
| CHAWU77 NC City or Town State                                                                                             |                                  | 7      | THOMA STEED NAME OF PERSON ABANDONING THE WELL                                                                                                                                          |
| City or Town State                                                                                                        | Zip Code                         | PRIN   | TIED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                 |
| (704)- 975-2980                                                                                                           | _                                |        |                                                                                                                                                                                         |
| Area code - Phone number                                                                                                  | -                                |        |                                                                                                                                                                                         |



North Carolina Department of Environment and Natural Resources-Division of Water Quality

well contractor certification # 2012

| TI ELECOT                                                                                                                  | TRACTOR CERTIFIC                         | 27.110     | · · · · · · · · · · · · · · · · · · ·           | <del> </del>                                                                       |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------|-------------------------------------------------|------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                        |                                          | 5.         | WELL DETAILS:                                   |                                                                                    |
| TIM THOMAS                                                                                                                 |                                          |            | a. Total Depth: 17                              | ft. Diameter: 1 in.                                                                |
| Well Contractor (Individual) Name                                                                                          |                                          |            | b. Water Level (Below Measur                    |                                                                                    |
| SAEDACCO, INC.                                                                                                             |                                          |            | Measuring point is                              | ft. above land surface.                                                            |
| Well Contractor Company Name                                                                                               | _                                        |            |                                                 |                                                                                    |
| STREET ADDRESS 9088 NO                                                                                                     |                                          | 6.         | CASING:                                         | Length Diameter                                                                    |
| FORT MILL SC<br>City of Town State                                                                                         | 29707                                    |            | a. Casing Depth (if known):                     | ft in.                                                                             |
| (89), 548 ZIBO                                                                                                             | 216 6000                                 |            | b. Casing Removed:                              | ftin.                                                                              |
| Area code - Phone number                                                                                                   |                                          | 7.         | disinfection: O.                                | 5 16                                                                               |
| 2. WELL INFORMATION:                                                                                                       | ,                                        |            | (Amount of 65%-75% calcium                      | n hypochlorite used)                                                               |
| SITE WELL ID # (if applicable)                                                                                             | <u>0 - 45</u>                            | 8.         | SEALING MATERIAL:                               |                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                        |                                          |            | Neat Cement                                     | Sand Cement                                                                        |
| COUNTY WELL PERMIT # (if applicable)                                                                                       | 1                                        |            | Cement lb.<br>Water gal.                        | Cementlb.<br>Watergal.                                                             |
| DWQ or OTHER PERMIT # (if applicable)_                                                                                     |                                          |            | <u>Bentonite</u>                                |                                                                                    |
| WELL USE (Circle applicable use): Monite Municipal/Public Industrial/Commer Recovery Injection Irrigation Other (list use) | cial Agricultural                        |            | Bentonite lb. Type: Slurry Pellets X Water 7 ge | ai.                                                                                |
|                                                                                                                            |                                          |            | Other                                           |                                                                                    |
| 3. WELL LOCATION:                                                                                                          |                                          |            | Type material                                   | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                            |
| COUNTY ONSLOW QUADRANGLE                                                                                                   |                                          |            |                                                 | · · ·                                                                              |
| NEAREST TOWN: TACKSONVIC                                                                                                   | CE, NC                                   |            | Amount                                          | <u> </u>                                                                           |
| CAMP JOHNSON                                                                                                               | warm war                                 |            |                                                 |                                                                                    |
| (Street/Road Name, Number, Community, Subdivis                                                                             | sion, Lot No., Parcel, Zip Code)         | 9.         |                                                 | IPLACEMENT OF MATERIAL:                                                            |
| TOPOGRAPHIC / LAND SETTING:                                                                                                |                                          | ]]         |                                                 | ILLED WITH CHIPS AFTER                                                             |
| Slope Valley Flat Ridge Other                                                                                              | <del></del>                              |            | well was zema                                   | 76()                                                                               |
|                                                                                                                            | May be in degrees,                       |            |                                                 |                                                                                    |
| LATITUDE                                                                                                                   | minutes, seconds, or in a decimal format | !          |                                                 |                                                                                    |
| LONGITUDE                                                                                                                  |                                          | 10.        |                                                 | ctailed sketch of the well on the back of this                                     |
| Latitude/longitude source: GPS                                                                                             | Topographic map                          |            |                                                 | h and diameter of screens (if any) remaining                                       |
| (Location of well must be shown on a U<br>attached to this form if not using GPS.                                          |                                          |            | types of fill materials used.                   | rvals of casing perforations, and depths and                                       |
| a. FACILITY- The name of the business where the w (If a residential well, ckip 4a; complete 4b, well owner                 | ell is located. Complete 4a and4b.       | 11.        | DATE WELL ABANDONED_                            | 7/29/09                                                                            |
| FACILITY ID #(if applicable)                                                                                               | in since in the single                   | <b>!</b> [ | _                                               |                                                                                    |
| NAME OF FACILITY CAMP JE                                                                                                   | ~020H                                    |            |                                                 | ELL WAS ABANDONED IN ACCORDANCE CTION STANDARDS, AND THAT A COPY OF                |
| STREET ADDRESS  TACK SCIENCE NC  City or Town State                                                                        |                                          | THIS       | RECORD HAS BEEN PROVIDED T                      | TO THE WELL OWNER.                                                                 |
| JAYKSCHULLE NC                                                                                                             |                                          |            |                                                 | 10/13/09                                                                           |
|                                                                                                                            | Zip Code                                 | SIGN       | ATURE OF CERTIFIED WELL C                       | ONTRACTOR DATE                                                                     |
| b. CONTACT PERSON/WELL OWNER:                                                                                              |                                          |            |                                                 |                                                                                    |
| NAME KERT HALROSE, C.                                                                                                      | 421n HILL                                | SIGN       | ATURE OF PRIVATE WELL OW                        | NER ABANDONING THE WELL DATE  ual who personally abandons his/her residential well |
| STREET ADDRESS 4824 PARKL                                                                                                  | SAY PLAZA BLUD                           | in acc     | ordance with ISA NCAC 2C .0113.)                |                                                                                    |
| CHARLUTTE NC City or Town State                                                                                            |                                          | 1 7        | M THOMAS                                        | ONING THE WELL                                                                     |
| City or Town State                                                                                                         | Zip Code                                 | PRIN       | ITED NAME OF PERSON ABAND                       | ORING THE WELL                                                                     |
| (704)- 975-298C)                                                                                                           |                                          |            |                                                 |                                                                                    |
| Area code - Phone number                                                                                                   |                                          |            |                                                 | ·                                                                                  |



North Carolina Department of Environment and Natural Resources- Division of Water Quality

| **Next Connector (Individual) Name  **SAE DACC TAC  Well Connector Company Name  **SAE DACC TAC  Well Connector Company Name  **STREET ADDRESS  **SAE DACC TAC  Well Connector Company Name  **STREET ADDRESS  **SAE DATE  **SAE DACC TAC  Well Connector Company Name  **STREET ADDRESS  **SAE NOOP THE PERMIT # (if applicable)  **STATE WELL ID # (if applicable)  **STREET ADDRESS  **SAE Well CATTY DACC TO PERMIT SO COMPANION SIDE & STREET ADDRESS  **SAE THE WELL DO WERE  **STREET ADDRESS  **SAE THE WELL OWNER  **STREET ADDRESS  **SAE THE WELL OWNER ABANDON'N THE WELL OWNER  **STREET ADDRESS  **SAE THE WELL OWNER ABANDON'N THE WELL  **STREET ADDRESS  **SAE THE WELL OWNER ABANDON'N THE WELL  **STREET ADDRESS  **SAE THE WELL OWNER ABANDON'N THE WELL  **STREET ADDRESS  **SAE THE WELL OWNER ABANDON'N THE WELL  **STREET ADDRESS  **SAE THE WELL OWNER ABANDON'N THE WELL  **STREET ADDRESS  **SAE THE WELL OWNER ABANDON'N THE WELL  | WELL CONTRACTOR CERTIFIC                                                            | cation# 2012                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Measuring point is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I. WELL CONTRACTOR:                                                                 |                                                                                                |
| Measuring point is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIM THOMAS                                                                          | a. Total Depth: 17 ft. Diameter: 1 in.                                                         |
| ## CASING: Length Diameter  ## DISINFECTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     | <u> </u>                                                                                       |
| ## CASING: Length Diameter  ## DISINFECTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Well Contractor Company Name                                                        | Measuring point is ft. above land surface.                                                     |
| STATE WELL ID # (if applicable)   TCO - 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STREET ADDRESS 9088 NORTHFIELD DR                                                   | 6. CASING: Length Diameter                                                                     |
| STATE WELL ID # (if applicable)   TCO - 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FORT MILL SC 29707                                                                  |                                                                                                |
| **REALLING MATERIAL:**  **STATE WELL ID# (if applicable)**  **COUNTY WELL PERMIT # (if applicable)**  **DWG or OTHER PERMIT# (if applicable)**  **DWG or OTHER PERMIT# (if applicable)**  **DWG or OTHER PERMIT# (if applicable)**  **WELL USE (Circle applicable)**  **Water**  **SEALING MATERIAL:**  **Neat Cement**    bb.   Cement**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | City or Town State Zip Code                                                         | b. Casing Removed:ftin.                                                                        |
| AMELL INFORMATION:   STEWELL ID F (if applicable)   TWO 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     | 7. disinfection: 0.666                                                                         |
| 8. SEALING MATERIAL:  STATE WELL PERMIT # (if applicable)  COUNTY WELL PERMIT # (if applicable)  DWQ or OTHER PERMIT # (if applicable)  WELL USE (Circle applicable use):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WELL INFORMATION:                                                                   | (Amount of 65%-75% calcium hypochlorite used)                                                  |
| COUNTY WELL PERMIT # (if applicable)  DWQ or OTHER PERMIT # (if applicable)  WELL USE (Circle applicable use):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SITE WELL ID # (if applicable) 700 - 46                                             | 8. SEALING MATERIAL:                                                                           |
| Water gal.  Water  | STATE WELL PERMIT # (if applicable)                                                 | Neat Cement Sand Cement                                                                        |
| WELL USE (Circle applicable use): Monitoring Municipal/Public industrial/Commercial Agricultural Agricultural Recovery Injection Intrigation Other (list use)  3. WELL LOCATION: COUNTY CASCLOW QUADRANGLE NAME NEAREST TOWN: Jack Scowlet Name Nearest Town:  | COUNTY WELL PERMIT # (if applieable)                                                | Cement lb. Cement lb.  Water gal. Water gal.                                                   |
| Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation Other (list use)  3. WELL LOCATION: COUNTY CNSLCW QUADRANGLE NAME  NEAREST TOWN: TACK SONVICE NC  CAMD TOHAS CON  (StreeVRoad Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code) TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other (Circle appropriate setting)  LATTUDE  May be in degrees, minutes, seconds, or in a decimal format (Circle appropriate setting)  LATTUDE  Latitude/Iongitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)  (If a residential well, Xip As, complete 4s, well owner information only.)  FACILITY ID #(if applicable)  NAME OF FACILITY CAMP TOTHINGS CON  City or Town State Zip Code  CONTACT PERSON/WELL OWNER:  NAME LOZI HACK COL CAMP POTENTIAL CONTACTOR DATE  STREET ADDRESS  Water 17 gal.  Other  Type: Slurry Pellets K. Water 17 gal.  Other  Type material  Amount  10. WELL DIAGRAM: Draw a detailed skeech of the well on the back of this form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used.  11. DATE WELL ABANDONED 1/25/C9  11. DATE WELL OWNER.  SIGNATURE OF PRIVATE WELL OWNER.  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE (The private well owner must be an individual wite genoming bandons bigher residential well an accordance with 15th NCAC 2C, 01125)  TIME TOWN State Zip Code  TYPE: Slurry Pellets K. Water 17 gal.  Manunt  Amount  Amount  10. WELL DIAGRAM: Draw a detailed skeech of the well on the back of this form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used.  11. DATE WELL BANDONED 1/25/C9  11. DATE WELL ABANDONED 1/25/ | DWQ or OTHER PERMIT # (if applicable)                                               | <u>Bentonite</u>                                                                               |
| Recovery Injection Irrigation Other (list use)  3. WELL LOCATION: COUNTY CNSLCW QUADRANGLE NAME NEAREST TOWN: TACK SOND (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code) (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code) (Circle appropriate setting)  LATITUDE LONGITUDE L |                                                                                     |                                                                                                |
| Other (list use)  3. WELL LOCATION: COUNTY CNELCED QUADRANGLE NAME NEAREST TOWN: TOLL SCOVILLE, NO (StreeVRoad Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code) (StreeVRoad Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code) (Circle appropriate setting)  LATITUDE  LATITUDE  LONGITUDE  LONGITUDE  LATITUDE  LATITUDE  May be in degrees, minutes, seconds, or in a decimal forms to community of the seconds, or in a decimal forms the community of the seconds, or in a decimal forms the community of the seconds of well must be shown on a USGS topo map and attached to this form if not using GPS)  LATLITY ID #(if applicable)  NAME OF FACILITY OF #(if applicable)  NAME OF FACILITY OF MICHICAL OF THE SCO STREET ADDRESS  TALK SCINCLE NO CITY OF TOWN State Zip Code  CONTACT PERSON/WELL OWNER:  NAME LOTE HALL OWNER:  NAME LOTE HALL SCINCLE NO CITY OF TOWN State Zip Code  CONTACT PERSON/WELL OWNER:  NAME LOTE HALL SCINCLE NO CITY OF TOWN State Zip Code  CONTACT PERSON/WELL OWNER:  NAME LOTE HALL SCINCLE NO CITY OF TOWN State Zip Code  CONTACT PERSON/WELL OWNER:  NAME LOTE HALL SCINCLE NO CITY ON State Zip Code  THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER ABANDONING THE WELL  SIGNATURE OF PERSON ABANDONING THE WELL  THE PRIVATE WELL OWNER ABANDONING THE WELL  THE PRIVATE WELL OWNER ABANDONING THE WELL  SIGNATURE OF PERSON ABANDONING THE WELL  THE PRIVATE WELL OWNER ABANDONING THE WELL  FINITED NAME OF PERSON ABANDONING THE WELL  FINITED | · · · · · · · · · · · · · · · · · · ·                                               | Type: Slurry Pellets X                                                                         |
| 3. WELL LOCATION: COUNTY CNSCLCD QUADRANGLE NAME NEAREST TOWN: TOUS COV (StreeVRoad Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code) (StreeVRoad Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code) (Circle appropriate setting)  LATHTUDE  LATHTUDE  LONGITUDE  LONGITUDE  LATHTUDE  May be in degrees, minutes, seconds, or in a decimal forms (Circle appropriate setting)  LATHTUDE  LONGITUDE  LATHTUDE  May be in degrees, minutes, seconds, or in a decimal forms (Circle appropriate setting)  LATHTUDE  LONGITUDE  LATHTUDE  May be in degrees, minutes, seconds, or in a decimal forms (Circle appropriate setting)  LATHTUDE  LONGITUDE  LATHTUDE  May be in degrees, minutes, seconds, or in a decimal forms (Circle appropriate setting)  LATHTUDE  LONGITUDE  LATHTUDE  May be in degrees, minutes, seconds, or in a decimal forms (Circle appropriate setting)  10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used.  11. DATE WELL ABANDONED  729  11. DATE WELL ABANDONED  729  11. DATE WELL ABANDONED  129  SIGNATURE OF CERTIFIED WELL CONSTRUCTION STANDARDS, ANDARDS, ANDA | Other (list use)                                                                    |                                                                                                |
| NEAREST TOWN: TOUNISTELL NAME  NEAREST TOWN: TOUNISTELL NAME  (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)  TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other (Circle appropriate setting)  LATITUDE  May be in degrees, minutes, seconds, or in a decimal format (correct propriate setting)  LATITUDE  Latitude/longitude source: GPS  Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)  FACILITY: The name of the business where the well is located. Complete 4a and4b. (If a residential well, sich size complete 4b, well owner information only.)  FACILITY ID #(if applicable)  NAME OF FACILITY: CAMP TOTHISCO  STREET ADDRESS  TALE CONTACT PERSONWELL OWNER:  NAME FORD HARRING DRAW CHEMP HILL  STREET ADDRESS  CONTACT PERSONWELL OWNER:  NAME FORD HARRING DRAW CHEMP HILL  STREET ADDRESS  CONTACT PERSONWELL OWNER:  NAME FORD HARRING DRAW OF FRISON ABANDONING THE WELL  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL  TIME THANKS CO. (2013.)  TIME THANKS CO. (2013.)  FRINTED NAME OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL  STREET ADDRESS  CONTACT PERSON STREET WELL  SIGNATURE OF PERSON ABANDONING THE WELL  SIGNATURE OF PERSON ABANDONING THE WELL  STREET ADDRESS  TOPHIS RECORD ABANDONING THE WELL  SIGNATURE OF PERSON ABANDONING THE WELL  STREET ADDRESS  TOPHIS RECORD ABANDONING THE WELL  SIGNATURE OF PERSON ABANDONING THE WELL  SIGNATURE OF PERSON ABANDONING THE WELL  FRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3. WELL LOCATION:                                                                   |                                                                                                |
| NEAREST TOWN: TACKSONVICE NC  (Stree/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)  TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other (Circle appropriate setting)  LATITUDE  LATITUDE  LONGITUDE  LATITUDE  LONGITUDE  LATITUDE  LONGITUDE  LONGITUDE  LATITUDE  LONGITUDE  LONGITU | COUNTY CNSLOW QUADRANGLE NAME                                                       | Type material                                                                                  |
| (StreetRoad Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)  TOPOGRAPHIC (LAND SETTING: Slope Valley Flat Ridge Other (Circle appropriate setting)  LATITUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     | Amount                                                                                         |
| TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other (Circle appropriate setting)  May be in degrees, minutes, seconds, or in a decimal format  LONGITUDE  Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)  A. FACILITY: The name of the business where the well is located. Complete 4a and4b. (If a residential well, skip 4a; complete 4b, well owner information only.)  FACILITY ID #(if applicable)  NAME OF FACILITY CAMP JOHNSCO  STREET ADDRESS  CONTACT PERSONWELL OWNER:  NAME FOR I HARROLL OWNER ABANDONING THE WELL DATE (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NACA 2C, 01(13)  TIM THOMA ( PRINTED NAME OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                                |
| Slope Valley Flat Ridge Other (Circle appropriate setting)  LATITUDE  LONGITUDE  LONGITUDE  LATITUDE  LONGITUDE  LATITUDE  LONGITUDE  LATITUDE  LONGITUDE  LATITUDE  LONGITUDE  LONGITUDE  LATITUDE  LONGITUDE  L | (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)       | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                  |
| Circle appropriate setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |                                                                                                |
| May be in degrees, minutes, seconds, or in a decimal format  Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)  a. FACILITY: The name of the business where the well is located. Complete 4a and4b. (If a residential well, xip 4a, complete 4b, well owner information only.)  FACILITY ID #(if applicable)  NAME OF FACILITY CAMP JCHOSCO  STREET ADDRESS  JALICONTICE City or Town State Zip Code  CONTACT PERSON/WELL OWNER:  NAME FOR I HAUROUS CHEMP HILL  STREET ADDRESS 4824 PARKING PLANT BROWNER  City or Town State Zip Code  775 79 86.  PRINTED NAME OF PERSON ABANDONING THE WELL  TIME THOSE AND OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Slope Valley Flat Ridge Other                                                       | WELL WAS ZEMOVED                                                                               |
| LATITUDE  LONGITUDE  Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)  a. FACILITY. The name of the business where the well is located. Complete 4a and4b. (If a residential well, sit, 4a; complete 4b, well owner information only.)  FACILITY ID #(if applicable)  NAME OF FACILITY CAMP JOHNSCN  STREET ADDRESS  JALISCNALL STATE TOWN  State Zip Code  CONTACT PERSON/WELL OWNER:  NAME LOTAL HARROLE (HZM HICL)  STREET ADDRESS  JALISCNALL STATE WELL OWNER ABANDONING THE WELL DATE  STREET ADDRESS  JALISCNALL STATE WELL OWNER ABANDONING THE WELL DATE  STREET ADDRESS  JALISCNALL STATE OF CERTIFIED WELL CONTRACTOR  DATE  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE  (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C. 0113.)  TIM THOMAS  PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Cricic appropriate setting)                                                        |                                                                                                |
| Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)  a. FACILITY: The name of the business where the well is located. Complete 4a and4b. (If a residential well, skip 4a; complete 4b, well owner information only.)  FACILITY ID #(if applicable)  NAME OF FACILITY  City or Town  State  Zip Code  CONTACT PERSON/WELL OWNER:  NAME  STREET ADDRESS  CHARLOGY (HAM HICL)  STREET ADDRESS  CITY (HAM HICL)  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL  DATE  THO HICL)  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL  THE PRIVATE WELL OWNER ABANDONING THE WELL  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL  THE PRIVATE WELL OWNER ABANDONING THE WELL  THE PRIVATE WELL OWNER ABANDONING THE WELL  THE PRIVATE WELL OWNER ABANDONING THE WELL  FRINTED NAME OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL  THE PRIVATE WELL  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL  FRINTED NAME OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL  THE PRIVATE WELL  THE OWNER ABANDONING THE WELL  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL  FRINTED NAME OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |                                                                                                |
| in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used.  2. FACILITY: The name of the business where the well is located. Complete 4a and4b. (If a residential well, 3kip 4a; complete 4b, well owner information only.)  FACILITY ID #(if applicable)  NAME OF FACILITY  STREET ADDRESS  TALL SCIENCE  City or Town  State  Zip Code  CONTACT PERSON/WELL OWNER:  NAME  CONTACT PERSON/WELL OWNER:  NAME  STREET ADDRESS  CHARLOGY  City or Town  State  Zip Code  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL  TIME THOMA  City or Town  State  Zip Code  TIME THOMA  PRINTED NAME OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LONGITUDE decimal format                                                            | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                       |
| types of fill materials used.  11. DATE WELL ABANDONED  TO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.  12. Contact Person/Well owner:  NAME LOTE HACKER (HZM HICL)  STREET ADDRESS  NAME LOTE HACKER (HZM HICL)  STREET ADDRESS  LHAWLUTTE NO.  City or Town State Zip Code  (HZM HICL)  City or Town State Zip Code  TIM THOMA (  PRINTED NAME OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL  TIM THOMA (  PRINTED NAME OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL  TIM THOMA (  PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     | 11                                                                                             |
| a. FACILITY: The name of the business where the well is located. Complete 4a and 4b. (If a residential well, skip 4a; complete 4b, well owner information only.)  FACILITY ID #(if applicable)  NAME OF FACILITY CAMP TO HOSCO  STREET ADDRESS  TACK SCINALLY  City or Town State Zip Code  CONTACT PERSON/WELL OWNER:  NAME FACILITY ID #(if applicable)  NAME FACILITY CAMP TO HOSCO  STREET ADDRESS  SIGNATURE OF CERTIFIED WELL CONTRACTOR  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE  (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C. 0113.)  TIM THOMA S  PRINTED NAME OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |                                                                                                |
| FACILITY ID #(if applicable)  NAME OF FACILITY CAMP JOHNSON  STREET ADDRESS  JACKSON CONTACT PERSON/WELL OWNER:  NAME ACTAL HARROLE CHAMBILL  STREET ADDRESS 4824 PARKENAY PLAZA BUD  City or Town State Zip Code  TIME THAT THIS WELL WAS ABANDONED IN ACCORDANCE WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.  SIGNATURE OF CERTIFIED WELL CONTRACTOR DATE  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE  (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C .0113.)  TIME THOMA SET THAT THIS WELL WAS ABANDONED IN ACCORDANCE WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE  (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C .0113.)  TIME THOMA SET THAT THIS WELL WAS ABANDONED IN ACCORDANCE WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE  (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C .0113.)  TIME THAT THIS MELL WAS ABANDONED IN ACCORDANCE  WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a. FACILITY- The name of the business where the well is located. Complete 4a and4b. | 7/20/09                                                                                        |
| NAME OF FACILITY CAMP JOHNSON  STREET ADDRESS  JACKSCHOLLE SC  City or Town State Zip Code  NAME LOTAL HALRONG CHEMPTIC  STREET ADDRESS 4824 PARKLOAY PLAZA RUD  City or Town State Zip Code  TIME THAT IN WELL WAS ABANDONED AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.  WITH ISA NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.  SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE (The private well owner must be an individual who personally abandons his/her residential well in accordance with ISA NCAC 2C .0113.)  TIM THOMA (  PRINTED NAME OF PERSON ABANDONING THE WELL  PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TACH ITV ID 400 the black                                                           |                                                                                                |
| STREET ADDRESS  TACK SCHOOL SIZE  City or Town State Zip Code  CONTACT PERSON/WELL OWNER:  NAME Y-CT2T 1-1/ACRC26 CH2M HICL  STREET ADDRESS 4824 PARKE 34 PA | NAME OF FACILITY CAMP JOHNSON                                                       | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF                              |
| TACK SCHOOL FOR State Zip Code  O. CONTACT PERSON/WELL OWNER:  NAME Y-CT2T 1-1ACCR C26 C1121/M 1/1C  STREET ADDRESS 4824 PARKEL AY PLAZA 18CO  City or Town State Zip Code  (704) - 975 - 298C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STREET ADDRESS                                                                      | THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                               |
| City or Town State Zip Code  SIGNATURE OF CERTIFIED WELL CONTRACTOR  SIGNATURE OF CERTIFIED WELL CONTRACTOR  SIGNATURE OF CERTIFIED WELL CONTRACTOR  SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE  (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C .0113.)  CHARLOTTE INC.  City or Town State Zip Code  (704) - 975 - 29 & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JACKSCHULLE NC                                                                      | 10/13/09                                                                                       |
| NAME K-CT2T 1-1ACCRCDE CH2M HICL  STREET ADDRESS 4824 PARKWAY PLAZA BLUD  CHARLOTTC NC  City or Town State Zip Code  (704) - 975-2980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                   | SIGNATURE OF CENTIFIED WELL CONTRACTOR DATE                                                    |
| STREET ADDRESS 4824 PARKLUAY PLAZA BLCD  (The private well owner must be an individual who personally abandons his/her residential well in accordance with 15A NCAC 2C .0113.)  TIM THOMAS  PRINTED NAME OF PERSON ABANDONING THE WELL  (704) - 975 - 2980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                   |                                                                                                |
| CHAVECOTTE INC.  City or Town State Zip Code  (704) - 975 - 29 & C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NAME F-CIZE F-IACKCIZE CITCULTUCE                                                   | (The private well owner must be an individual who personally abandons his/her residential well |
| (704)- 975-798C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | <b>                                     </b>                                                   |
| (704)- 975-798C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHARLUTTC NC                                                                        | PRINTED NAME OF PERSON ABANDONING THE WELL                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Area code - Phone number                                                            |                                                                                                |



2012

North Carolina Department of Environment and Natural Resources-Division of Water Quality

| 1. WELL CONTRACTOR:                                                                                                                | 5. WELL DETAILS:                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIM THOMAS                                                                                                                         | a. Total Depth: 16 ft. Diameter: 1 in.                                                                                                                                |
| Well Contractor (Individual) Name                                                                                                  | b. Water Level (Below Measuring Point): ft.                                                                                                                           |
| Well Contractor Company Name                                                                                                       | Measuring point is ft. above land surface.                                                                                                                            |
| STREET ADDRESS <u>GC &amp; &amp; NOR7HA</u>                                                                                        | . 11                                                                                                                                                                  |
| FORT MILL SC 29" City of Town State Zip Co                                                                                         | a. Casing Depth (if known): ft in.                                                                                                                                    |
| City or Town State Zip Co                                                                                                          | de b. Casing Removed: ft. in.                                                                                                                                         |
| Rea code - Phone number                                                                                                            | 7. DISINFECTION: 0.1616                                                                                                                                               |
| 2. WELL INFORMATION:                                                                                                               | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                         |
| SITE WELL ID # (if applicable)                                                                                                     | 8. SEALING MATERIAL:                                                                                                                                                  |
| STATE WELL PERMIT # (if applicable)                                                                                                | <b>! !</b>                                                                                                                                                            |
| COUNTY WELL PERMIT # (if applicable)                                                                                               | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                          |
| DWQ or OTHER PERMIT # (if applicable)                                                                                              | <u>Bentonite</u>                                                                                                                                                      |
| WELL USE (Circle applicable use): Monitoring Municipal/Public Industrial/Commercial Recovery Injection Irrigation Other (list use) | Type: Slurry_Pellets\(\frac{\zeta}{2}\)                                                                                                                               |
|                                                                                                                                    | Other                                                                                                                                                                 |
| 3. WELL LOCATION:                                                                                                                  | Type material                                                                                                                                                         |
| COUNTY CNSLOW QUADRANGLE NAME                                                                                                      | - <del></del>                                                                                                                                                         |
| NEAREST TOWN: TACKSONVICE, N                                                                                                       | Amount                                                                                                                                                                |
|                                                                                                                                    | Paral Zin Colo                                                                                                                                                        |
| (Street/Road Name, Number, Community, Subdivision, Lot No                                                                          | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:  RURCHOLE WAS FILED WAY CHIPS AFTER                                                                                     |
| TOPOGRAPHIC / LAND SETTING: Slope Valley Flat Ridge Other                                                                          |                                                                                                                                                                       |
| (Circle appropriate setting)                                                                                                       |                                                                                                                                                                       |
| LATTIUDE minutes.                                                                                                                  | n degrees,<br>seconds, or in a                                                                                                                                        |
| LONGITUDEdecimal                                                                                                                   | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                              |
|                                                                                                                                    | graphic map form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and |
| (Location of well must be shown on a USGS topo<br>attached to this form if not using GPS.)                                         | types of fill materials used.                                                                                                                                         |
| 4a. FACILITY- The name of the business where the well is locate (If a residential well, Jkip 4a; complete 4b, well owner informati |                                                                                                                                                                       |
| FACILITY ID #(if applicable)                                                                                                       | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                        |
| NAME OF FACILITY CAMP JOHNSO                                                                                                       | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF                                                                                                     |
| STREET ADDRESS                                                                                                                     | THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                                                                      |
| STREET ADDRESS  OF ACIA SCIENCE CONTROL STATE  City or Town State Zip                                                              | 10/13/C°)                                                                                                                                                             |
|                                                                                                                                    | Code SIGNATURE OF CERTIFIED WELL CONTRACTOR DATE                                                                                                                      |
| 4b. CONTACT PERSON/WELL OWNER:                                                                                                     |                                                                                                                                                                       |
| NAME KERT HAURURE CHEM                                                                                                             |                                                                                                                                                                       |
| STREET ADDRESS 4824 PARKLUAY PL                                                                                                    | in accordance with 15A NCAC 2C .0113.)                                                                                                                                |
| City or Town State Zip Code                                                                                                        | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                 |
| (704) - 975 - 2980) Area code - Phone number                                                                                       |                                                                                                                                                                       |



### ABANDONMENT RECORD

North Carolina Department of Environment and Natural Resources- Division of Water Quality

| WELL CONTRACTOR CERTIFIC                                                                                                                                           | ation # <u>201</u> 2                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                                                                | 5. WELL DETAILS:                                                                                                                                                                        |
| TIM THOMAS Well Contractor (Individual) Name                                                                                                                       | a. Total Depth: 16 ft. Diameter: 1 in. b. Water Level (Below Measuring Point): 1t.                                                                                                      |
| SAE DACCO, TNC. Well Contractor Company Name                                                                                                                       | Measuring point is ft. above land surface.                                                                                                                                              |
| STREET ADDRESS 9088 NORTHFIELD DR.                                                                                                                                 | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC 29707  City or Town State Zip Code                                                                                                                    | a. Casing Depth (if known): ft in.                                                                                                                                                      |
| City or Town State Zip Code                                                                                                                                        | b. Casing Removed: ft. in.                                                                                                                                                              |
| (803) - 548 - 2180 Area code - Phone number                                                                                                                        | 7. DISINFECTION: 0.1616                                                                                                                                                                 |
| 2. WELL INFORMATION:                                                                                                                                               | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable) Tw - 48                                                                                                                             | 8. SEALING MATERIAL:                                                                                                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                                                                | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                               | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                              | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable use): Monitoring Residential Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation                         | Bentonitelb. Type: Slurry Pellets X                                                                                                                                                     |
| Other (list use)                                                                                                                                                   | Water O. G. gal.                                                                                                                                                                        |
| 3. WELL LOCATION:                                                                                                                                                  | Other .                                                                                                                                                                                 |
| COUNTY CNSCOW) QUADRANGLE NAME                                                                                                                                     | Type material                                                                                                                                                                           |
| NEAREST TOWN: JACKSONVICE NC                                                                                                                                       | Amount                                                                                                                                                                                  |
| CAMP JOHNSON                                                                                                                                                       |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)                                                                                      | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:                                                                                                                                           |
| TOPOGRAPHIC / LAND SETTING:  Slope Valley Flat Ridge Other (Circle appropriate setting)                                                                            | BORCHOLE WAS FILLED WITH CHIPS AFTER WELL WAS ZEMWED                                                                                                                                    |
| LATITUDE May be in degrees,                                                                                                                                        |                                                                                                                                                                                         |
| LATITUDE minutes, seconds, or in a decimal format                                                                                                                  | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)                     | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| 4a. FACILITY- The name of the business where the well is located. Complete 4a and 4b.  (If a residential well, skip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| NAME OF FACILITY CAMP TO the SC.                                                                                                                                   | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
|                                                                                                                                                                    | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                      |
| STREET ADDRESS                                                                                                                                                     | SCONATURE OF CERTIFIED WELL CONTRACTOR                                                                                                                                                  |
| City or Town State Zip Code                                                                                                                                        | SIGNATURE OF CERTIFIED WELL CONTRACTOR DATE                                                                                                                                             |
| 4b. CONTACT PERSON/WELL OWNER:                                                                                                                                     |                                                                                                                                                                                         |
| NAME KERT HAUREDE, CHEMHILL                                                                                                                                        | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE (The private well owner must be an individual who personally abandons his/her residential well                                 |
| STREET ADDRESS 4524 PARKWAY PLAZA BLUD                                                                                                                             | in accordance with 15A NCAC 2C .0113.)                                                                                                                                                  |
| City or Town State Zip Code                                                                                                                                        | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                   |
|                                                                                                                                                                    |                                                                                                                                                                                         |
| (7e4) - 775 - 29 8 C<br>Area code - Phone number                                                                                                                   |                                                                                                                                                                                         |



| WELL CONTRACTOR CERTIFIC                                                                                                                                       | CATION # 20/2                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. WELL CONTRACTOR:                                                                                                                                            | 5. WELL DETAILS:                                                                                                                                                                        |
| TIM THOMAS Well Contractor (Individual) Name                                                                                                                   | a. Total Depth: 16 ft. Diameter: 1 in. b. Water Level (Below Measuring Point): ft.                                                                                                      |
| SAE DACCO, TNC. Well Contractor Company Name                                                                                                                   | Measuring point isft. above land surface.                                                                                                                                               |
| STREET ADDRESS 9088 NORTHFIELD DR                                                                                                                              | 6. CASING: Length Diameter                                                                                                                                                              |
| FORT MILL SC 29707  City of Town State Zip Code  (803) - 548 2180                                                                                              | a. Casing Depth (if known):  b. Casing Removed:  ft.  in.  in.                                                                                                                          |
| Area code - Phone number                                                                                                                                       | 7. DISINFECTION: 0.16(5                                                                                                                                                                 |
| 2. WELL INFORMATION:                                                                                                                                           | (Amount of 65%-75% calcium hypochlorite used)                                                                                                                                           |
| SITE WELL ID # (if applicable) 700 - 49                                                                                                                        | 8. SEALING MATERIAL:                                                                                                                                                                    |
| STATE WELL PERMIT # (if applicable)                                                                                                                            | Neat Cement Sand Cement                                                                                                                                                                 |
| COUNTY WELL PERMIT # (if applicable)                                                                                                                           | Cement lb. Cement lb.  Water gal. Water gal.                                                                                                                                            |
| DWQ or OTHER PERMIT # (if applicable)                                                                                                                          | Bentonite                                                                                                                                                                               |
| WELL USE (Circle applicable use): (Monitoring) Residential Municipal/Public Industrial/Commercial Agricultural Recovery Injection Irrigation                   | Bentonite lb, Type: Slurry Pellets A Water C gal,                                                                                                                                       |
| Other (list use)                                                                                                                                               | Other                                                                                                                                                                                   |
| 3. WELL LOCATION:                                                                                                                                              | Type material                                                                                                                                                                           |
| COUNTY CNSLOW QUADRANGLE NAME                                                                                                                                  |                                                                                                                                                                                         |
| NEAREST TOWN: TALKSONVILLE, NC                                                                                                                                 | Amount                                                                                                                                                                                  |
| CAMD JOHNSON                                                                                                                                                   |                                                                                                                                                                                         |
| (Street/Road Name, Number, Community, Subdivision, Lot No., Parcel, Zip Code)  TOPOGRAPHIC / LAND SETTING:                                                     | 9. EXPLAIN METHOD OF EMPLACEMENT OF MATERIAL:  BORCHOLE WAS FILED WITH CHIPS AFTER                                                                                                      |
| Slope Valley Flat Ridge Other (Circle appropriate setting)                                                                                                     | WELL WAS ZEMOVED                                                                                                                                                                        |
| LATITUDE May be in degrees, minutes, seconds, or in a                                                                                                          |                                                                                                                                                                                         |
| LONGITUDE decimal format                                                                                                                                       | 10. WELL DIAGRAM: Draw a detailed sketch of the well on the back of this                                                                                                                |
| Latitude/longitude source: GPS Topographic map (Location of well must be shown on a USGS topo map and attached to this form if not using GPS.)                 | form showing total depth, depth and diameter of screens (if any) remaining in the well, gravel interval, intervals of casing perforations, and depths and types of fill materials used. |
| a. FACILITY-The name of the business where the well is located. Complete 4a and4b. (If a residential well, skip 4a; complete 4b, well owner information only.) | 11. DATE WELL ABANDONED 7/29/09                                                                                                                                                         |
| FACILITY ID #(if applicable)                                                                                                                                   | I DO HEREBY CERTIFY THAT THIS WELL WAS ABANDONED IN ACCORDANCE                                                                                                                          |
| NAME OF FACILITY CAMP JOHNSON                                                                                                                                  | WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.                                                                      |
| STREET ADDRESS                                                                                                                                                 | 11/2/09                                                                                                                                                                                 |
| STREET ADDRESS  TALK SCHOOL CO Side  City or Town State Zip Code                                                                                               | SIGNATURE OF CERTIFIED WELL CONTRACTOR  DATE                                                                                                                                            |
| b. CONTACT PERSON/WELL OWNER:                                                                                                                                  |                                                                                                                                                                                         |
| NAME KERZI HALLBERGE CHZM HILL                                                                                                                                 | SIGNATURE OF PRIVATE WELL OWNER ABANDONING THE WELL DATE                                                                                                                                |
| STREET ADDRESS 4824 PARKWAY PLAZA BLUD                                                                                                                         | (The private well owner must be an individual who <u>personally</u> abandons his/her residential well in accordance with 15A NCAC 2C .0113.)                                            |
| CHARLU77E NC  City or Town State Zip Code                                                                                                                      | TIM THOMAS PRINTED NAME OF PERSON ABANDONING THE WELL                                                                                                                                   |
| i i                                                                                                                                                            | I MINIED HAME OF FERSON ABANDONING THE WELL                                                                                                                                             |
| (704)- 775-7980<br>Area code - Phone number                                                                                                                    |                                                                                                                                                                                         |



PROJECT NUMBER

377812 WELL NUMBER

CJCA-TW01 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER

377812 WELL NUMBER

CJCA-TW02 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER

377812 WELL NUMBER

CJCA-TW03 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW04 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/26/09 1025





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW05 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/26/09 0820





PROJECT NUMBER

377812 WELL NUMBER

CJCA-TW06 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW08 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW09 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/25/09 1030 LOGGER : S. Beville WATER LEVELS: 11.01' botc





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW10 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/25/2009 1310





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW11 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/25/2009 1600 LOGGER : S. Beville





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW12 SHEET 1

# **WELL COMPLETION DIAGRAM**

OF 1

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/25/2009 0830 LOGGER : S. Beville





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW13 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/24/2009 0925





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW14 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/23/2009 1655





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW15 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/23/2009 1415





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW16 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/23/2009 1205 LOGGER : S. Beville





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW17 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/22/2009 1315 LOGGER : S. Beville





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW18 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER

377812 WELL NUMBER

CJCA-TW19 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW20 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW21 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW22 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/22/2009 1555





PROJECT NUMBER

377812 WELL NUMBER

CJCA-TW23 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW24 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER

377812 WELL NUMBER

CJCA-TW25 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW26 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER

377812 WELL NUMBER

CJCA-TW27 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW28 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/21/2009





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW29 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW30 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW31 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER

377812 WELL NUMBER

CJCA-TW32 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW33 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW34 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW35 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER

377812 WELL NUMBER

CJCA-TW36 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW37 SHEET 1 OF 1

# **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/23/2009 1010





PROJECT NUMBER WELL NUMBER 377812 CJCA-TW38 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: CJCA Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 IR15-TW01 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR15 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 IR15-TW02 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR15 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 7/26/2009 1530 LOGGER : Daniel Brown WATER LEVELS: 14.47' btoc





PROJECT NUMBER WELL NUMBER 377812 IR15-TW03 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR15 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 IR15-TW04 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR15 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 IR15-TW05 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR15 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 IR17-TW01 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR17 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 IR17-TW02 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR17 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 IR85-TW04 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR85 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 **IR85-TW05** SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR85 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER

377812 WELL NUMBER

IR85-TW06 SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR85 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 **IR85-TW07** SHEET 1 OF 1

## **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR85 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT





PROJECT NUMBER WELL NUMBER 377812 **IR85-TW08** SHEET 1 OF 1

#### **WELL COMPLETION DIAGRAM**

PROJECT: CT0-011 LOCATION: IR85 Camp Lejeune, NC

DRILLING CONTRACTOR: SAEDACCO

DRILLING METHOD AND EQUIPMENT USED: DPT



Well Completion Diagram.xls xxxxxx.xx.xx



|             | inia               | froit of system<br>exercised for uses on white (TV putch) typheroiner;                                                         |                              |                               |                          |                 |                |           |                                  |                       |
|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|--------------------------|-----------------|----------------|-----------|----------------------------------|-----------------------|
|             |                    | NON-HAZARDOUS<br>WASTE MANIFEST                                                                                                |                              | 2.2.2.5BO                     | Manifest<br>locument No. | 2. Page 1 of 1  | 1 8            |           | 725                              |                       |
| A           | THE REAL PROPERTY. | Generator's Name and Mailing Address MC<br>SC. BOX. 20004, ATTN: IE<br>AMP LIGHTE, NC. 20547<br>Generator's Phone (910) 451-91 |                              |                               |                          |                 |                |           | ver Roa                          |                       |
| Ì           | -                  | Generator's Phone (910) 451-91<br>Transporter 1 Company Name                                                                   | 107, BOID LOV                | US EPA ID Numb                | er                       | A. Transp       |                |           | NC 265                           | 42                    |
|             | E                  | vo Corporation                                                                                                                 | N.C                          | D982.1.1.                     | 4803                     | 336             |                |           | 344                              |                       |
| П           | 7.                 | Transporter 2 Company Name                                                                                                     | 8.<br> }.[C                  | D9.8.2 1.1                    | 4.803                    | B. Transpo      |                |           | 844                              |                       |
| I           | 9.                 | Designated Facility Name and Site Address                                                                                      | 10.                          | US EPA ID Numb                | er                       | C. Facility     | s Phone        |           |                                  |                       |
|             | Cac                | COFLD, INC.<br>150 Ritherson Street<br>reensbord, N.C. 27407                                                                   | IN.C                         | D9.8.0.84                     | -2.132                   | 336             | 855            | -79       | 25                               |                       |
| I           | 11                 | Waste Shipping Name and Description                                                                                            |                              |                               |                          | 1:              | 2. Cont<br>No. | Type      | 13.<br>Total<br>Quantity         | 14.<br>Unit<br>Wt/Voi |
|             | a.                 | Von-Hazardous, Non-Re                                                                                                          | gwated Con                   | taminated S                   | Soil                     | 0               | 05             | DM        | est.<br>3,700                    | P.                    |
| GENE        | b.                 | Jon-Hazardous, Non-Re                                                                                                          | gulated Conti                | aminated W                    | ater                     | 0               | 08             | 머         | est<br>3,600                     | P                     |
| GENERATOR   | c.                 |                                                                                                                                |                              |                               |                          |                 |                |           | 5,00                             |                       |
| Ï           | d.                 | _ ,,                                                                                                                           |                              |                               |                          |                 |                |           |                                  |                       |
|             |                    |                                                                                                                                |                              |                               |                          |                 |                |           |                                  | -                     |
|             | D.                 | Additional Descriptions for Materials Listed Ab                                                                                | oove                         |                               |                          | E. Handlin      | g Code         | s for Wo  | astes Listed Above               |                       |
|             |                    | -                                                                                                                              | 2                            |                               |                          | ×               |                |           |                                  |                       |
|             | 15.                | Special Handling Instructions and Additional  3. SOIL CUSTINGS From S                                                          | amding & Wel                 | Installation                  | on 50                    | DAD             | Γ              |           |                                  | -                     |
|             | 1)                 | a. Soil cuttings from S<br>o. purge/decon water                                                                                | from ground                  | water Sami                    | oling                    |                 |                |           |                                  |                       |
|             |                    |                                                                                                                                |                              |                               |                          |                 |                |           |                                  | - [                   |
| 1           |                    |                                                                                                                                |                              |                               |                          | EV              | 0#             | 08        | 0907                             |                       |
| 1           | 16.                | GENERATOR'S CERTIFICATION: I certify the<br>Printed/Typed Name                                                                 | materials described above on | this manifest are not subject | t to federal regu        | ulations for re | porting (      | proper di | sposal of Hazardous<br>Month Day | Waste.<br>Year        |
| 1           | L                  | Jon A. Mzyes 124                                                                                                               |                              | Jon 1 20                      | menge                    | 11              |                |           | 11.20.4                          | 0.9                   |
| TRANSPORTER | 17.                | Transporter 1 Acknowledgement of Receipt of Printed/Typed Name                                                                 | RATG                         | Signature / In                | ry Cri                   | aig             |                |           | Month Day 1.2 0.4                | Year<br>0.9           |
| OR          | 18.                | Transporter 2 Acknowledgement of Receipt of<br>Printed/Typed Name                                                              | Materials                    | Cinastura                     | /                        | 0               |                | 1000 191  |                                  | Year                  |
| Ė           |                    | rimed, types rume                                                                                                              |                              | Signature                     |                          |                 |                |           | Month Day                        | Year                  |
|             | 19.                | Discrepancy Indication Space                                                                                                   |                              |                               |                          |                 |                |           |                                  | Į.                    |
| FAC         |                    |                                                                                                                                |                              |                               |                          |                 |                |           |                                  | Į.                    |
| FACILITY    | 20.                | Facility Owner or Operator: Certification of re                                                                                | ceipt of waste materials co  | vered by this manifest e      | xcept as noted           | in Item 19.     |                |           |                                  |                       |
|             | 1                  | Printed Typed Name OF Ella Belg                                                                                                | m                            | Signature SW                  | ey                       | B               |                |           | Month Day                        | Č.                    |
| 1           | tod b              | J. J. KELLER R. ASSOCIATES, INC.<br>N. 64967-0369                                                                              | ORIGINAL - RE                | TURN TO GENERA                | TOR                      | ALC:            |                |           | 12.80                            | O-M5                  |

Appendix D Laboratory Analytical Results and Chain of Custody Forms

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference |    |     |
|------------------------------|----|-----|
|                              |    |     |
|                              | of | Pgs |

| Project: CTO-    | 11 (0           | L ams           | ohn son                 |                       | Tumaround Time fundar fundar fundar fundar |                                   |       |           |         |         |    |       |            |           |       |           |
|------------------|-----------------|-----------------|-------------------------|-----------------------|--------------------------------------------|-----------------------------------|-------|-----------|---------|---------|----|-------|------------|-----------|-------|-----------|
| Client: CHZ      | M H             | 11              |                         |                       | # of Conta                                 | ainers                            | /     | 1/1       | /1      | /1      | /  | /     |            | /         | /     | / /       |
| Send Results To: | There           | Sec. 11         | Wass                    | ,                     | Container                                  |                                   | 124-6 |           | 12 poly | LAmiler | /  | /     | /          | /         |       | / _ /     |
| Address: 5400    | cles            | reland          | 31                      |                       | Preserval<br>Used                          | tive /H                           | NO3/  | /H        | NO3/    | /       |    | /     | /          | _/        | _/ 3  | 70        |
|                  |                 | Brack           |                         |                       | Type of                                    | Type of Analysis  CLIENT COMMENTS |       |           |         |         |    |       |            |           |       |           |
| Phone: 75        | 4-671           | -6281           | i .                     |                       | Allalysis                                  | 1000                              | 500   | 1         | 1/6/    | / 0/    | 0/ | /     | /          | /         | 8/    |           |
| Sample ID#       | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix        | Sampler's<br>Initials | 101.6                                      | 5/33                              | 100   | 30/       | 150     |         |    |       |            |           |       | CLIENT    |
| CAC TIVELY       | 7/22            | 9:30            | AQ                      | 5.0                   | X                                          | X                                 |       |           |         |         |    |       |            |           |       |           |
| 09C              | 7/22            | H-00            | Aa                      | DS                    |                                            | -                                 | X     | X         | X       | X       |    |       |            |           | Paven | Sample    |
| 1685-MANOY-      | 7/22            | 11-00           | AQ                      | DS                    |                                            |                                   | X     | X         | X       | X       |    |       |            |           | MS    |           |
| 1885-MW01-       | 7/22            | 11:00           | AQ                      | 24                    |                                            |                                   | X     | X         | X       | X       |    |       |            |           | MSD   |           |
| IRS 5-TBOI       | 7/22            | 14:40           | AQ                      | 125                   |                                            |                                   |       |           | X       |         |    |       |            |           |       |           |
|                  |                 |                 |                         |                       |                                            |                                   |       |           |         |         |    |       |            |           |       |           |
|                  |                 |                 |                         |                       |                                            |                                   |       |           |         |         |    |       |            |           |       |           |
|                  |                 |                 |                         |                       |                                            |                                   |       |           |         |         |    |       |            |           |       |           |
|                  |                 | 1               |                         |                       |                                            |                                   |       |           |         |         |    |       |            |           |       |           |
|                  |                 |                 |                         |                       |                                            |                                   |       |           | LA      |         |    |       | -4         |           |       |           |
|                  |                 |                 |                         |                       |                                            |                                   |       |           |         |         |    |       |            |           | 1     |           |
|                  |                 |                 |                         |                       |                                            |                                   |       |           |         |         |    |       |            |           |       |           |
| Relinquished By: |                 |                 | e/Time<br>5:30          | Received E            | By:                                        |                                   |       | Relinquis | hed By: |         |    | Rece  | ived for L | aboratory | By:   | Date/Time |
| Relinquished By  |                 | Dat             | e/Time                  | Received E            | Ву:                                        | Date/Time Shipper: Airbill No.:   |       |           |         |         |    |       |            |           |       |           |
| Relinquished By  | Dat             | Received E      | By: Lab Comments: Temp: |                       |                                            |                                   |       |           |         |         |    | Temp: |            |           |       |           |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference of Pgs.

| Project: 070-/   | I Car           | 200 101         | mscm             | - Francisco           | Turnaround Time   |          |      |            |         |      |     |        |            |           |     |                     |
|------------------|-----------------|-----------------|------------------|-----------------------|-------------------|----------|------|------------|---------|------|-----|--------|------------|-----------|-----|---------------------|
| Client: CHZA     | 1 411           | 1               |                  |                       | # of Cont         | ainers   |      |            |         |      |     |        |            |           | /   |                     |
| Send Results To: | Jener           | IEVP 8          | MOORE            |                       | Containe          |          | 1000 | 100 Cx     |         |      | /_/ | /      | /          |           |     | 0:/                 |
| Address: 570     | 20 04           | evelar          | 1 1.             | ste 101               | Preservat<br>Used | tive /   | -/   | -/         | /       |      |     | /      | _/         |           | 3   | 7                   |
| VIPG             | inia B          | rach            | VA 2             | 3462                  | Type of           | 100      |      |            |         |      | /   | /      |            | /         | (8) |                     |
| Phone:           |                 |                 |                  |                       | Analysis          | 135      | /    | / /        | /       | / /  | / / | /      | / /        | /         | 2/  |                     |
| Sample ID#       | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | 1000              | 1        |      |            |         |      |     |        |            |           | /   | CLIENT<br>COMMENTS  |
| CXA-55070-099    | 7/5/09          | 1545            | 50               | DH                    | ><                |          |      |            | . It    |      |     |        |            |           |     |                     |
| CICA SSUNOD-O    | K 7/6/09        | 1550            | 50               | DA                    | $\times$          |          |      |            |         |      |     |        |            |           |     |                     |
| CUCA SEPTHOR     | 7809            | 1610            | 30               | DH                    | X                 |          |      |            |         |      |     |        |            |           |     | Vincins of the same |
| CXA SSU12-09     | 7/8/09          | 1620            | 50               | DH                    | $\times$          |          |      |            |         |      |     |        |            |           |     |                     |
| DCA-50172-00     | c 1             | 1620            | SO               | [B/mic                | ><                | $\times$ |      |            |         | de.  |     |        |            |           |     |                     |
| CJCA-55171-05    | (               | 1605            | 50"              | Blmu                  | ><                |          |      |            |         |      |     |        |            |           |     |                     |
| CJCA-59082-0     | 90              | 1530            | SO               | Bhny                  | ><                |          |      |            |         |      |     | T.     |            |           |     |                     |
| WASS174-0        | 70              | 1635            | 50               | CB/mic                | $\geq$            |          |      | •          | 1       |      |     |        |            |           |     |                     |
| CJCA-55074-0     | 90              | 1510            | 50               | (B) pmu               | X,                |          |      |            |         |      |     | 7_     |            |           |     |                     |
| C)(A-55050-0     | 100             | 1635            | 50               | JFfm                  | $\times$          |          |      |            |         |      |     |        |            |           |     |                     |
| CJCA-55048-0     | V               | 1645            | 50.              | JF gny                | $\geq <$          | $\geq$   |      |            |         |      |     |        |            |           |     |                     |
| 1)(A-55061-0     |                 | 1700            | 50               | Jr am                 | <u> </u>          |          | 1    |            |         |      | 1   |        |            |           |     |                     |
| Relinquished By: | THE             | Date            | e/Time<br>  4//3 | Received B            | By:               |          |      | Relinquist | ned By: |      |     | Rece   | ived for L | aboratory | ву: | Date/Time           |
| Relinquished By: |                 | Date            | e/Time           | Received B            | y:                |          |      | Date/Time  | Ship    | per: |     | Airbil | l No.:     |           |     |                     |
| /                |                 |                 |                  |                       |                   |          |      |            |         |      |     |        |            |           |     |                     |
| Relinquished By: |                 | Dat             | e/Time           | Received E            | By:               |          |      | Lab Comr   | nents:  |      |     |        |            |           |     | Temp:               |
|                  |                 |                 |                  |                       |                   |          |      |            |         |      | . ' |        | 1          |           |     |                     |

G.P. W.O.

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| ontract #/Billing Reference | 11     |     |
|-----------------------------|--------|-----|
|                             | 2 of U | Pgs |

| Project: 77      | 11 0            | amode           | olinso           | n                     | Turnaround          | d Time | -/   |           | /       | /        | /   | /       | /         | /         |          |           | 7   |
|------------------|-----------------|-----------------|------------------|-----------------------|---------------------|--------|------|-----------|---------|----------|-----|---------|-----------|-----------|----------|-----------|-----|
| Client: AL/      | 2M /            | 411             |                  |                       | # of Contai         | ners   | _/-  |           |         |          |     |         | /         | /         | /        | / /       |     |
| Send Results To: | Sener           | IEVE I          | HUCK             | 1                     | Container           |        | 1817 | 1000      | /       | <u> </u> | /_/ |         |           | Ĺ.,       |          | a. /      |     |
| Address: 5 700   |                 | eland           | st s             | te 101                | Preservativ<br>Used | /e /   | -/   | -/        |         | _/       |     | _/      |           |           | 3        | * /       |     |
| Virgini          | IA B            | each            | VA               | 03462                 | Type of             | 18     |      | /         |         |          | /   |         | /-        |           | 100      |           |     |
| Phone: -457      | 671-            | -6284           | 1                |                       | Analysis            | E /    | /    | / /       | /       | /        | / / | /       | /         | /         | 8/       |           |     |
| Sample ID#       | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials |                     |        | */   |           |         |          |     | 1       |           | h         | /        | CLIENT    |     |
| CXA-55114090     | c 7/E/g         | 1700            | 30               | 0//                   | X                   |        |      |           |         |          |     |         |           |           |          |           |     |
| CJEA-55/11-09    |                 | 1720            | So               | DH                    | $\rightarrow$       |        |      |           |         |          |     |         | 1         | 3         |          |           |     |
| CUCA SSH4-09C    | SD              | 1700            | 50               | DH                    | $\times$            |        |      |           |         |          |     |         |           |           | ms       | D         |     |
| UCA-SS114-09C-   | ms              | 1700            | 50               | DH                    | $\times$            |        |      |           |         |          |     |         | 17        |           | 1915     |           |     |
| JEA 53110-69     | cl.             | 1650            | 50               | DH                    | $\times$            |        |      |           |         | 14       |     |         |           |           |          |           |     |
| JCA SS113-090    |                 | 1710            | 50               | DH                    | $\times$            |        |      |           |         |          |     |         |           |           |          |           |     |
| WASSITSD-O       | 36              | 1715            | So               | KENT BON              | $\geq <$            |        |      |           |         |          |     |         | AFT.      |           | DUE      | 11097     | 6   |
| JCA-55178-096    |                 | 1725            | SU               | TO HUB                | $\times$            |        |      |           |         |          |     |         | -         |           |          |           |     |
| XA-SS/77-09      | 10              | D135            | 50               | SEB/mu                | >                   |        |      |           |         |          |     |         |           |           |          |           |     |
| UCA 55175-00     | 10-             | 1710            | 50               | (B/mm                 | $\geq$              |        |      |           |         |          |     |         |           |           |          |           |     |
| XX - 55045-09C   | 1/1/09          | 0730            | SOV              | UF TMS                | $\times$            |        |      |           |         |          |     |         |           |           | Bodle St |           | Sho |
| April 14 10 10   | SD L            | 0730            | SO               | OF TIME               | >>                  |        |      |           |         |          |     |         |           |           | MSD      | > should  |     |
| Relinquished By: | Chore           | Date            | /Time<br>/445    | Received B            | y:                  |        |      | Relinquis | hed By: |          |     | Recei   | ved for L | aboratory | Ву:      | Date/Time |     |
| Relinquished By: |                 | Date            | e/Time           | Received B            | y:                  |        |      | Date/Tim  | e Ship  | per:     |     | Airbill | No.:      | ÷         |          |           |     |
| Relinquished By: |                 | Date            | e/Time           | Received E            | y:                  |        |      | Lab Com   | ments:  |          | S # |         | 4         |           |          | Temp:     |     |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference | 1.7    |    |
|------------------------------|--------|----|
| 377812, FI-FS                | 3 of 4 | Pg |

| Project:         | 1 700           | mir) des        | JUSTA            |                       | Turnarou         | nd Time  |      | //         | 7      | /    | 7   | 7      |            | 7         |       | //            |
|------------------|-----------------|-----------------|------------------|-----------------------|------------------|----------|------|------------|--------|------|-----|--------|------------|-----------|-------|---------------|
|                  | AFIIL           |                 | 11-1-1-1         |                       | # of Cont        | ainers   |      |            |        |      |     |        |            |           |       | $\mathcal{I}$ |
| Send Results To: |                 |                 | Merc             |                       | Containe         |          | (C2) | 1-1134/    |        |      | /   |        |            |           |       | / / /         |
| A                | Cleve           |                 | SY SK            | 161                   | Preserva<br>Used | tive /   | -/   |            |        | /    |     |        |            |           |       | 70            |
| Vannia           | Beach           | , VA            | 2346             | 2                     | Type of          | 100      |      | /          |        | /    | /   |        | /          |           | 100   |               |
| Phone: 757       | 671-            | 6284            |                  |                       | Analysis         | 2        |      | / /        | /      | / /  | / / | / /    | /          | /         | 8/    |               |
| Sample ID#       | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials |                  |          |      |            |        |      |     |        |            |           | /     | CLIENT        |
| 1CA-55045-096    | MS 7/9/0        | 9 0730          | 50               | JF/ms                 | X                |          |      |            |        |      |     |        |            |           | M5-1  | hould besse   |
| CA-55112-096     | 719109          | 0735            | 50               | DH                    | ><               |          |      |            |        |      |     |        |            |           |       |               |
| KA-55106-096     | 2/9/09          | 0755            | 90               | CH                    | ><               | ><       |      |            |        |      |     |        |            |           | 7     | rected on the |
| CA 55/09-090     | 7/9/07          | 0745            | 30               | DH                    | X                |          | 4.7  |            |        |      |     |        |            |           | 1000  | correct       |
| CA 55 067-096    |                 | 0750            | 50               | Hims                  | ><               |          |      |            |        |      |     |        |            |           |       |               |
| CA-55064-096     |                 | 0800            | SO               | OF \$ms               | >                |          |      |            |        |      |     |        |            |           |       |               |
| CA-55121- 090    |                 | X20             | 30               | DH                    | ><               |          |      |            |        |      |     |        |            |           |       |               |
| VI SSHEED CAC    |                 | 825             | 50               | DH                    | $\times$         |          |      |            |        |      |     |        |            |           |       |               |
| KN 5847 096      |                 | UE 30           | 50               | DH                    | ><               |          |      |            |        |      |     |        |            |           |       | 150           |
| XA-55108 090     |                 | 0040            | 56               | DH                    | $\geq$           |          |      |            |        |      |     |        |            | -         |       |               |
| 1994-55166-090   |                 | 0830            | 50.              | JFfms                 | $\sim$           | $\times$ |      |            |        |      |     |        |            |           |       |               |
| KA-55066-CPC     | 7               | 0840            | 50               | Jf & ms               | ><               | $\sim$   |      |            |        |      |     |        |            | *         | 14    | - 1           |
| Relinquished By: | trac            |                 | e/Time<br>  4/5  | Received B            | by:              |          |      | Relinquish | ed By: |      |     | Rece   | ived for L | aboratory | / Ву: | Date/Time     |
| Relinquished By: |                 | Date            | e/Time           | Received B            | y:               |          |      | Date/Time  | Ship   | per: |     | Airbil | l No.:     | -1        |       |               |
| Relinquished By  |                 | Dat             | e/Time           | Received E            | By:              |          |      | Lab Comm   | ents:  |      |     | d d    |            |           |       | Temp:         |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference | 1/ 1/  |    |
|------------------------------|--------|----|
|                              | 4 of \ | Pg |

| Project: 070     | 11 Car          | no Jul          | usan             |                       | Turnarou         | nd Time  | /   | //        | 7       | 7    | 7   | 7      | /          | 7        | 7          | //                       |
|------------------|-----------------|-----------------|------------------|-----------------------|------------------|----------|-----|-----------|---------|------|-----|--------|------------|----------|------------|--------------------------|
| Client: 04/2A    | 1 41            | 11              |                  |                       | # of Cont        | ainers   |     |           |         |      |     |        |            |          |            | $\overline{\mathcal{I}}$ |
| Send Results To: | Silver          | Leve B          | 10110            |                       | Containe         |          | 135 | 1 Sar     | /       | /    | /   |        | /          |          | <u>/</u> , | / /                      |
| Address:         |                 | ec la no        |                  | 10101                 | Preserva<br>Used | tive /   | -/  |           |         |      |     |        |            |          | _/         | No.                      |
| Virginia         | Beach           | VA:             |                  |                       | Type of          | alucia / |     |           |         |      |     |        |            |          |            |                          |
| Phone: 757-      | 671-0           | 6284            |                  |                       | Analysis         | 1.9.     | /   | / /       | /       | / /  | / / | /      | / /        | /        | 8/         |                          |
| Sample ID#       | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | La constant      | 11/ 3    |     |           |         |      |     |        |            |          | /          | CLIENT<br>COMMENTS       |
| A 35069-CAC      | 719/07          | 0820            | So               | JEANS                 | ><               |          |     |           | 3(1)    |      |     |        |            |          |            |                          |
| A 55             |                 |                 | -50              |                       |                  |          |     |           |         |      |     |        |            |          |            |                          |
| CA-\$5           |                 |                 | -50              |                       | 1                |          |     |           |         |      |     |        |            |          |            |                          |
| Y 22 V           |                 |                 | 50               |                       |                  |          |     |           |         |      |     |        |            |          |            |                          |
|                  |                 |                 |                  |                       |                  |          |     |           |         | 10   |     |        |            |          |            |                          |
|                  |                 |                 | 1                |                       |                  |          |     |           |         |      |     |        |            |          |            |                          |
|                  |                 |                 |                  |                       |                  |          |     |           |         |      |     |        |            |          |            |                          |
|                  |                 |                 |                  |                       |                  |          |     |           |         |      |     |        |            |          |            |                          |
|                  |                 |                 |                  |                       |                  |          |     |           |         |      |     |        |            |          |            |                          |
| - verdening      |                 |                 |                  |                       |                  |          |     |           |         |      |     |        |            |          |            |                          |
|                  |                 |                 | 10.00            |                       |                  |          | -   |           |         |      |     |        |            |          |            |                          |
|                  |                 |                 |                  | D ' 15                | No.              |          |     |           |         |      |     |        | 1          |          |            | 15.7                     |
| Relinquished By: |                 | 7/9/09          | e/Time<br>+44/S  | Received B            | sy:              |          |     | Relinquis | ned By: |      |     | Rece   | ived for L | aborator | у Ву:      | Date/Time                |
| Relinquished By  |                 | Dat             | e/Time           | Received B            | y:               |          |     | Date/Time | Ship    | per: |     | Airbil | l No.:     | -        |            |                          |
| Relinquished By  |                 | Dat             | e/Time           | Received E            | Ву:              |          |     | Lab Com   | nents:  |      | -   |        |            |          | 7          | Temp:                    |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference | 1  |     |
|------------------------------|----|-----|
| 377812. FIFS                 | of | Pgs |

| Project: 070     | II Car          | npleh           | uson             |                       | Turnaround Time   |          |     |           |        |       |     |        |            |          |       |             |
|------------------|-----------------|-----------------|------------------|-----------------------|-------------------|----------|-----|-----------|--------|-------|-----|--------|------------|----------|-------|-------------|
| Client: 7/12     | nH              |                 | V                |                       | # of Conta        | ainers   |     | w/        |        |       |     |        |            |          |       | 7 /         |
| Send Results To: |                 | ieve m          | neve             |                       | Container         |          | 100 | 14.6 50X  | /      |       | /   |        | /          |          |       | / _ / _ /   |
|                  |                 | reland          |                  | te 101                | Preservat<br>Used | tive /   | -/  | -/        | /      |       |     |        |            |          | _/ &  | 70/         |
| Virginia         |                 |                 | 234              |                       | Type of           | (in)     | /   |           |        |       | /   | /      |            | /        |       |             |
| Phone: 757       | 671             | 6384            |                  | W.                    | Analysis          | Ela.     | pH, | / /       | ,      | / /   | / / | /      | / /        | /        | 8/    |             |
| Sample ID#       | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | 10 M              | 1        |     |           |        |       |     |        |            | -/       | /     | CLIENT      |
| XA SSOEY-OR      | 7/1/2           | 0835            | so               | (B/mu                 | ><                |          |     |           | 14     |       |     |        |            |          |       |             |
| KA DE LON        |                 | 0020            | SO               | tt/mw                 | $\times$          |          |     |           |        |       |     |        |            |          |       |             |
| CASCED-09C       |                 | 0755            | 50               | EBANIC                | ><                |          |     |           |        |       |     |        |            |          |       |             |
| ica-ssiech-cyc   |                 | 0800            | SO               | EB/mu                 | ><                |          |     |           |        |       |     |        |            |          | du    | ficate      |
| XA-55115-090     | ,               | 0700            | 50               | FB/MY                 | $\geq \leq$       |          |     |           |        | 144   |     |        |            |          |       |             |
| 10A-55118-09C    |                 | 0915            | 50               | B/mu                  | $\geq$            |          |     |           |        |       |     |        |            |          |       |             |
| CA-55083-09C     |                 | 0920            | 50               | EB/mu                 | $\geq$            | $\geq <$ |     |           |        |       |     |        | 1          |          |       |             |
| KA-55081-09C     |                 | 0810            | SO               | 1B/mu                 | $\geq$            |          |     |           |        |       |     |        |            |          |       |             |
| CA-55081-090     | SD              | 0810            | 50               | 18/mw                 | $\geq$            |          |     |           |        |       |     |        |            |          | msi   | )           |
| DEA-59081-096    | -ms             | 0810            | 50               | 18/mu                 | $\geq$            |          |     |           |        |       |     |        | -          |          | ms    |             |
| JEA 55063-00C    |                 | 09/15           | 50               | UF IMS                | $\geq$            | $\geq$   | -   |           |        |       |     |        |            |          | 1     |             |
| VA-55065 9       |                 | 0405            | S0               | UFFINS                | <u> </u>          |          |     |           |        |       | L   |        |            |          |       | T D. t. /Ti |
| Relinquished By: |                 | Date            | e/Time           | Received B            | y:                |          |     | Relinquis | ned By | r:    |     | Hece   | ived for L | aborator | у ву: | Date/Time   |
| Relinquished By: |                 | Date            | e/Time           | Received B            | y:                |          |     | Date/Time | Shi    | pper: |     | Airbil | l No.:     |          |       |             |
| The Contract     | and the         | Thighis         | 加气               |                       |                   |          |     |           |        |       |     |        |            |          |       |             |
| Relinquished By: |                 | Dat             | e/Time           | Received B            | y:                |          |     | Lab Com   | nents: |       |     |        |            |          |       | Temp:       |

G.P. W.O.

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference | 2    | - |     |
|------------------------------|------|---|-----|
| 277817 FLES                  | ∠ of |   | Pas |

| Truncation d Tie                        |                 |                 |                        |                       |                     |          |          | (301) 020-0 | 21     | 21    | 1017     | -1 1-1 | > -        |           | 01                                     | Fgs.               |
|-----------------------------------------|-----------------|-----------------|------------------------|-----------------------|---------------------|----------|----------|-------------|--------|-------|----------|--------|------------|-----------|----------------------------------------|--------------------|
| Project:                                | 11 0            | XA              |                        |                       | Turnarou            | nd Time  | /        |             | /      |       |          |        |            |           |                                        | _/ /               |
| Client:                                 | n) H            | 11              |                        |                       | # of Cont           | ainers   | $\angle$ |             | /      | /     |          |        | /          | _/_       |                                        | / /                |
| Send Results To:                        | crievo          | w A             | LEAVE                  |                       | Containe            |          | 1850     | //          | /      |       | <i>/</i> |        | /          | <u> </u>  |                                        | 0.                 |
| Address:                                | 00 01           | relait          | 15+                    | SHEWI                 | Preservat<br>Used   | tive /   | -/       | -/          |        |       |          | _/     | /          |           | _/                                     | 7                  |
| Vascontial                              | a Br            | ach w           | /A 30                  | 1460                  | Type of             | 1        | /        |             |        | /     | /        | /      | /          | /         | / 0                                    | /                  |
| Phone: 757                              | 11-6            | 2141            | 1 22                   | and the same          | Analysis            | 1        |          | / /         | /      | / /   | / /      | / /    | / /        | /         | ************************************** |                    |
| Sample ID#                              | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix       | Sampler's<br>Initials |                     |          |          | /           | /      | /     | /        |        |            | /         | /                                      | CLIENT<br>COMMENTS |
| JCA-8062-010                            | 7/7/07          | 7:45            | So                     | seems.                | ><                  |          |          |             | 19     |       |          |        |            |           |                                        |                    |
| (A 5 C 74 09C                           |                 | 0740            | 50                     | DH                    | ><                  | X        |          | *           |        |       |          |        |            |           |                                        |                    |
| (A SSCHE UTC                            |                 | 0710            | 1                      | 104                   | ><                  |          |          |             |        |       |          |        |            |           |                                        |                    |
| CASSCASIONE                             |                 | 6930            |                        | DII -                 | ><                  |          |          |             |        |       |          |        |            |           |                                        |                    |
| MA SOTTENC                              |                 | 0720            |                        | DH                    | X                   | 16       |          | Print,      |        | nte.  |          |        |            |           |                                        |                    |
| VA-95105-07C                            |                 | 0755            |                        | 179 AIS               | ><                  |          |          | 1           |        |       |          |        |            | -         |                                        |                    |
| VA-55165D-096                           |                 | 0755            |                        | 4 ms                  | $\times$            |          |          | 331         |        |       |          |        |            |           | DUP                                    | late               |
| (A SSKO-076                             |                 | 1015            |                        | H IMS                 | >                   | $\geq$   |          |             | 12     |       |          |        |            |           |                                        |                    |
| CA 55103-090                            |                 | 1005            |                        | Jr ims                | ><                  | $\geq <$ |          |             | 1      | *     |          |        |            |           |                                        |                    |
| CA 5553-090                             |                 | 1015            |                        | ( time                | $\geq <$            |          |          |             |        |       |          |        |            |           |                                        |                    |
| A 3147 076                              |                 | 1025            |                        | Cojmu                 | >                   | 100      |          |             |        |       |          |        |            |           |                                        |                    |
| IA SSISTE CIC                           | 7               | 6988            | V                      | LEE MILL              | $\times$            | 4        |          |             |        |       |          |        |            |           | 2                                      | 2                  |
| Relinquished By:                        |                 | Date            | e/Time                 | Received By           | y:                  |          |          | Relinquish  | ed By: |       | ,        | Rece   | ved for La | aboratory | By:                                    | Date/Time          |
| Relinquished By:                        |                 | Date            | Date/Time Received By: |                       |                     |          |          | Date/Time   | Ship   |       |          | Airbil | No.:       |           |                                        |                    |
| Carpa &                                 | -               | Ther            | 1845                   |                       |                     |          |          |             | 7      |       |          |        |            |           |                                        |                    |
| Relinquished By: Date/Time Received By: |                 |                 |                        |                       | Lab Comments: Temp: |          |          |             |        | Temp: |          |        |            |           |                                        |                    |



EMPIRICAL LABORATORIES, LLC - CHAIN OF CUSTODY RECORD
SHIP TO: 227 French Landing Drive, Suite 550 + Nashville, TN 37228 + 615-345-1115 + (fax) 615-846-5426

| Send Results to:            |                      | Send Invoid                                                            | e to:            |                  |          | Analysi | s Requiremen | its: | Lab Use Only:                                                                                                |                      |                                           |  |
|-----------------------------|----------------------|------------------------------------------------------------------------|------------------|------------------|----------|---------|--------------|------|--------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------|--|
| Name                        | 1 St Stell           | City State, Zip Phone Fax E-mail Sampler's (Signature):  Sample Sample |                  |                  |          |         |              |      | VOA Headspace Field Filtered Correct Container Discrepancies Cust. Seals Intact Containers Intact Airbill #: | rs \                 | Y N NA |  |
| Lab Use Only<br>Lab #       | Date/Time<br>Sampled | Sample                                                                 | Description      | Sample<br>Matrix |          |         |              |      | Comments                                                                                                     | No.<br>of<br>Bottles | Lab Use Only<br>Containers/Pres.          |  |
|                             | 7/9/4                | CULA SISK                                                              | 0-09C-ms         | 50               | $\times$ |         |              |      | ms                                                                                                           |                      |                                           |  |
|                             | 1/101/155            |                                                                        | 6-091-517        |                  | X        |         |              |      | MSD                                                                                                          |                      | Maria May e                               |  |
|                             | 7/9/07               | CUCA-SSH                                                               |                  |                  | X        |         |              | REBE |                                                                                                              | 4                    |                                           |  |
|                             | 7/7/01/050           | CUCA- 55101                                                            | 1-096            |                  | X        |         |              |      |                                                                                                              |                      | 17 - 1                                    |  |
|                             | 7/109 1100           | CICA-551                                                               | 02-001           |                  | X        |         |              |      |                                                                                                              |                      |                                           |  |
|                             | 719/09/1105          | 0 CJCA-55102-09C                                                       |                  |                  | X        |         |              |      | 7                                                                                                            |                      | )                                         |  |
|                             | 7/9/09 1040          | C)(A- 5514                                                             | 15-091           |                  | X        |         |              |      |                                                                                                              |                      |                                           |  |
|                             | 7/9/09 1050          | OCA 55143                                                              | 2-091            |                  | V        |         |              |      |                                                                                                              | 1                    |                                           |  |
|                             |                      | C)(A-55/39                                                             |                  |                  | V.       | Jan 10  |              | 14   |                                                                                                              | 1                    |                                           |  |
|                             |                      | CJCA-SS14                                                              |                  |                  | X        |         |              |      |                                                                                                              |                      |                                           |  |
|                             |                      | CJCA-55/4                                                              |                  |                  | V        |         |              |      |                                                                                                              | -                    |                                           |  |
|                             |                      | CUCA-SSIA                                                              |                  | 1                | X        |         |              |      | duolicate                                                                                                    |                      |                                           |  |
| Sample Kit Prep'd by: (Sig  | nature)              | Date/Time                                                              | Received By: (Si | gnature)         |          | REMAR   | KS:          |      | Thyman                                                                                                       |                      | Details:                                  |  |
| - 1                         |                      |                                                                        |                  |                  |          |         |              |      |                                                                                                              | Page                 | of                                        |  |
| Relinquished by: (Signatur  | Date/Time            | Received By: (Si                                                       | gnature)         | - 147            | 4.78     |         |              |      |                                                                                                              |                      |                                           |  |
| でする                         | 71960年1865           |                                                                        | 70               |                  | 1        |         |              |      | Cooler                                                                                                       | No. — of — —         |                                           |  |
| Relinquished by: (Signatur  | Date/Time            | Received By: (Si                                                       |                  |                  |          |         |              |      | Date St                                                                                                      | nipped               |                                           |  |
| Pageined for Laborator : hu | (Cianatura)          | Doto/Time                                                              | Tomporatura      | -00              |          |         |              |      |                                                                                                              | Shipped              | d By                                      |  |
| Received for Laboratory by: | (Signature)          | Date/Time                                                              | e Temperature    |                  |          |         |              |      |                                                                                                              | Turnard              | ound                                      |  |



#### EMPIRICAL LABORATORIES, LLC - CHAIN OF CUSTODY RECORD

SHIP TO: 227 French Landing Drive, Suite 550 + Nashville, TN 37228 + 615-345-1115 + (fax) 615-846-5426

23687

| Send Results to:                                                 | Send Invoice to:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   | Analysis Requirements: | Lab Use Only:     |                      |                    |                    |  |
|------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|------------------------|-------------------|----------------------|--------------------|--------------------|--|
| Name                                                             | Name                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11  |   |                        | VOA Headspace     |                      | Y N                | NA                 |  |
| Company                                                          | Company                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7   |   |                        | Field Filtered    |                      | Y N                | NA                 |  |
| Address                                                          | Address                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2   |   |                        | Correct Containe  | rs '                 | Y N                | NA                 |  |
| AddressCity                                                      | Address                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14  |   |                        | Discrepancies     |                      | Y N                | NA                 |  |
| State, Zip                                                       | State, Zip                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 183 |   |                        | Cust. Seals Intac | it `                 | Y N                | NA                 |  |
| Phone                                                            | State, ZipPhone            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119 |   |                        | Containers Intact |                      | Y N                | NA                 |  |
| Fax                                                              | Fax                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20  |   |                        |                   |                      |                    |                    |  |
| E-mail                                                           | E-mail                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne  | 7 |                        | Airbill #:        |                      |                    |                    |  |
| Project No./Name:                                                | Sampler's (Signature):     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dus | - |                        | CAR #:            |                      |                    |                    |  |
| Lab Use Only Date/Time Sampled                                   | Sample Description         | Sample<br>Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |                        | Comments          | No.<br>of<br>Bottles | Lab Us<br>Containe | e Only<br>rs/Pres. |  |
| 71110                                                            | 1900 190 190               | SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X   |   |                        |                   |                      |                    |                    |  |
| ✓ (利理學者)                                                         | CALSOMI OCHMS              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X   |   |                        | ms                |                      |                    |                    |  |
| 72.00                                                            | 101CA-49147-09C-015        | Marie Colonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X   |   |                        | MSD               |                      |                    |                    |  |
| 71912                                                            | CUCA SCHOOL                | The state of the s | X   |   |                        | resample          |                      |                    |                    |  |
| Vizic Appear                                                     | CVA-SS159-GAL              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X   |   |                        |                   |                      |                    |                    |  |
| *10 1 35                                                         | CJ(A 55158-098             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X   | X |                        |                   |                      |                    |                    |  |
| 2019 1215                                                        | CULA 53/27-816             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X   |   |                        | Resample          |                      |                    |                    |  |
| 719607 1105                                                      | CYCA \$ 91,55-09 C         | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X   |   |                        |                   |                      |                    |                    |  |
| 1 1205                                                           | CVA-PSBLEOGC               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X   | X |                        | in the            |                      |                    |                    |  |
| · 71/10/12/5                                                     | OJON-55137-076             | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X   |   |                        |                   |                      |                    |                    |  |
| 7/9/9/1225                                                       |                            | +2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X   |   |                        |                   |                      |                    |                    |  |
| 119/67 1329                                                      | CJCA-55164-CM              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |   |                        |                   | 1 8 7-2              |                    |                    |  |
| Sample Kit Prep'd by: (Signature)                                | Date/Time Received By: (Si | gnature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |   | REMARKS:               |                   |                      | Details:           |                    |  |
| District to the second                                           | D / T'   D : 1D /0         | Processor Annual Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |   |                        |                   | Page _               | of _               |                    |  |
| Relinquished by: (Signature)  Date/Time Received By: (Signature) |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |                        |                   | Cooler               | No c               | of                 |  |
| Relinquished by: (Signature) Date/Time Received By: (Signature)  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |                        |                   | Date SI              | nipped             |                    |  |
|                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |                        |                   |                      | d By               |                    |  |
| Received for Laboratory by: (Signature) Date/Time Temperature    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |                        |                   |                      | ound               |                    |  |



#### EMPIRICAL LABORATORIES, LLC - CHAIN OF CUSTODY RECORD

SHIP TO: 227 French Landing Drive, Suite 550 + Nashville, TN 37228 + 615-345-1115 + (fax) 615-846-5426

| Send Results to:                                                |                                                                              | Send Invoice to:  |                                  |                             |   |                         | Analysis Requirements: |      |     |   |                                                                                                       |       | Lab Use Only: |                                               |                     |               |  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|----------------------------------|-----------------------------|---|-------------------------|------------------------|------|-----|---|-------------------------------------------------------------------------------------------------------|-------|---------------|-----------------------------------------------|---------------------|---------------|--|
| NameCompanyAddressCityState, ZipPhoneFaxE-mailProject No./Name: | Name Company Address City State, Zip Phone Fax E-mail Sampler's (Signature): |                   |                                  | an himony as sail con port. |   | SVet + TAL metals lates |                        |      |     |   | VOA Headspac Field Filtered Correct Contain Discrepancies Cust. Seals Inta Containers Inta Airbill #: |       |               | Y N NA ers Y N NA Y N NA oct Y N NA ct Y N NA |                     |               |  |
| Lab Use Only<br>Lab #                                           | Date/Time<br>Sampled                                                         | Sample            | Description                      | Sample<br>Matrix            |   |                         |                        |      |     |   |                                                                                                       | Cor   | mments        | No.<br>of<br>Bottles                          | Lab Use<br>Containe | only rs/Pres. |  |
|                                                                 | 1/1/1/1/35                                                                   | Challes F         | 1010-09C                         | 50                          | X |                         |                        |      |     |   |                                                                                                       | dup   | icale         |                                               |                     |               |  |
|                                                                 | 1 A 84/5                                                                     | CILASS            | 104-096                          | 150                         | X |                         |                        |      |     |   |                                                                                                       | 1     |               |                                               |                     |               |  |
|                                                                 | 100                                                                          | 0015              | 167-0900                         | 50m                         | X |                         |                        |      |     |   |                                                                                                       |       |               |                                               |                     |               |  |
|                                                                 |                                                                              | CVA- 35           | 1670-096                         | 50                          | X |                         |                        |      |     |   |                                                                                                       | dup   | licate        |                                               |                     |               |  |
|                                                                 | 14/1/19                                                                      | TRES. E.B.        | the pay was                      | · A A SHA                   |   | A-0-08                  | X                      | X    |     |   |                                                                                                       |       | lank          |                                               |                     |               |  |
|                                                                 | 1年10                                                                         | CUCAFE            | 3670709                          | 77.8700                     | X |                         |                        |      |     |   |                                                                                                       | Soule | Blank         |                                               |                     |               |  |
|                                                                 | 1455                                                                         | CJCA-SSI          | SHORE                            | 150                         | X |                         |                        |      |     |   |                                                                                                       |       |               | 1 h / pt/                                     |                     |               |  |
|                                                                 | 145                                                                          | CUCA- SE          | 173-090-                         | 1                           | X |                         |                        |      |     |   |                                                                                                       | 3.    |               |                                               |                     |               |  |
| TER HEROMET                                                     | 1450                                                                         | CUCA SS           | 147-076                          | 187                         | X |                         |                        |      |     |   |                                                                                                       |       |               |                                               |                     |               |  |
|                                                                 | 1425                                                                         | C)(1-55           | 110-090                          |                             | X |                         |                        |      |     |   |                                                                                                       |       |               |                                               |                     |               |  |
|                                                                 | 1435 (中元)                                                                    | C)(A-55           | 148.090                          | 3                           | X |                         |                        |      |     |   |                                                                                                       |       |               |                                               |                     |               |  |
|                                                                 | 1910/14/1                                                                    |                   | 148D-09C                         | 1                           | X |                         |                        |      |     |   |                                                                                                       |       |               | 2                                             |                     |               |  |
| Sample Kit Prep'd by: (Si                                       | gnature)                                                                     | Date/Time         | Received By: (Si                 | gnature)                    |   |                         | F                      | REMA | RKS | : |                                                                                                       |       |               | 14,41                                         | Details:            | 1             |  |
| Relinquished by: (Signatu                                       | Date/Time Received By: (Signature)                                           |                   |                                  |                             |   |                         |                        |      |     |   |                                                                                                       |       |               | of _                                          |                     |               |  |
| Relinquished by: (Signature) Date/Time                          |                                                                              |                   | te/Time Received By: (Signature) |                             |   |                         |                        |      |     |   |                                                                                                       |       |               |                                               | nipped              |               |  |
| Received for Laboratory by                                      | Date/Time                                                                    | /Time Temperature |                                  |                             |   | 100                     |                        |      |     | 4 |                                                                                                       |       | 7             | und                                           |                     |               |  |

#### **EMPIRICAL LABORATORIES, LLC - CHAIN OF CUSTODY RECORD**

SHIP TO: 227 French Landing Drive, Suite 550 + Nashville, TN 37228 + 615-345-1115 + (fax) 615-846-5426

| Send Results to:                                                 |                                                                              | Send Invoice to:                        |                                    |                  |     |     | A | nalysi | s Requ     | uireme | nts:                                                                                                         | Lab Use Only: |                                       |                            |                    |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|------------------|-----|-----|---|--------|------------|--------|--------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|----------------------------|--------------------|--|
| Name                                                             | Name Company Address City State, Zip Phone Fax E-mail Sampler's (Signature): |                                         |                                    |                  | H   |     |   |        |            |        | VOA Headspace Field Filtered Correct Container Discrepancies Cust. Seals Intact Containers Intact Airbill #: | s \           | N N N N N N N N N N N N N N N N N N N | NA<br>NA<br>NA<br>NA<br>NA |                    |  |
| Project No./Name:                                                |                                                                              | Sampler's (S                            | ignature):                         |                  | 100 | đ   |   |        |            |        |                                                                                                              | CAR #:        |                                       |                            |                    |  |
| Lab Use Only<br>Lab #                                            | Date/Time<br>Sampled                                                         | Sample                                  | Description                        | Sample<br>Matrix |     |     |   |        |            |        |                                                                                                              | Comments      | No.<br>of<br>Bottles                  | Lab Use<br>Containe        | e Only<br>rs/Pres. |  |
|                                                                  | 100 1400                                                                     | CUCASIT                                 | 6-096                              | 50               |     |     |   |        |            |        |                                                                                                              |               |                                       |                            |                    |  |
|                                                                  | 19/19/19/05                                                                  | OJCARST                                 | 162-090                            |                  |     |     |   |        |            |        |                                                                                                              | Duglicate     |                                       |                            |                    |  |
|                                                                  |                                                                              |                                         | 1 1200                             | Works The same   |     |     |   |        |            |        |                                                                                                              |               |                                       |                            |                    |  |
|                                                                  |                                                                              |                                         | 4 100                              |                  |     |     |   |        |            |        |                                                                                                              |               |                                       |                            |                    |  |
|                                                                  |                                                                              |                                         |                                    |                  |     |     |   |        |            |        |                                                                                                              |               |                                       |                            |                    |  |
|                                                                  | Section 1                                                                    |                                         | 1 P                                |                  |     | 1,1 |   |        |            |        |                                                                                                              |               |                                       |                            |                    |  |
|                                                                  |                                                                              | \$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                    | -                |     |     |   |        |            |        |                                                                                                              |               |                                       |                            |                    |  |
|                                                                  |                                                                              | . 5.                                    | 1.00                               |                  |     |     |   |        |            |        |                                                                                                              |               |                                       |                            |                    |  |
|                                                                  |                                                                              | Alexander and a second                  |                                    |                  |     |     |   |        |            |        |                                                                                                              |               |                                       |                            |                    |  |
|                                                                  |                                                                              |                                         |                                    |                  |     |     |   |        |            |        |                                                                                                              |               |                                       |                            |                    |  |
|                                                                  |                                                                              |                                         | * 15 40                            | T.               |     |     |   |        |            |        |                                                                                                              |               |                                       |                            |                    |  |
|                                                                  |                                                                              | D 1 F                                   | I D (0)                            |                  |     |     |   | I I    | 1/0        |        |                                                                                                              |               | #                                     |                            |                    |  |
| Sample Kit Prep d by: (Sig                                       | Sample Kit Prep'd by: (Signature)  Date/Time Received By: (Signature)        |                                         |                                    |                  |     |     | h | REMAR  | K5:        |        |                                                                                                              |               |                                       | Details:                   |                    |  |
| Relinquished by: (Signature)  Date/Time Received By: (Signature) |                                                                              |                                         |                                    | gnature)         |     |     |   |        |            |        |                                                                                                              |               | Page _                                | of _                       |                    |  |
| En 19/09/11/15                                                   |                                                                              |                                         |                                    |                  |     |     |   |        |            |        |                                                                                                              |               | Cooler I                              | No o                       | f                  |  |
| AND THE                                                          |                                                                              |                                         | Date/Time Received By: (Signature) |                  |     |     |   |        |            |        | Date Shipped                                                                                                 |               |                                       |                            |                    |  |
| Received for Laboratory by:                                      | Date/Time                                                                    | Temperature                             |                                    |                  |     |     |   |        | Shipped By |        |                                                                                                              |               |                                       |                            |                    |  |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference |    |     |
|------------------------------|----|-----|
| 37792 115                    | of | Pgs |

| Project:         | LILE TO COURT DESCRIPTION OF THE PERSON OF T |                 |                  |                       |                  |         |          | //        | 7      | 7    | 7       | 7      |            | 7          | /     | //                 |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|-----------------------|------------------|---------|----------|-----------|--------|------|---------|--------|------------|------------|-------|--------------------|
|                  | HILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                  |                       | # of Con         | tainers |          |           |        |      |         |        |            |            |       | 7/                 |
| 0 15 11 5        | School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UNE A III       | 10               |                       | Containe         |         | (ca)     | 1/11714   | /      |      | /       |        |            | <u>/</u> , |       | / /                |
| Address:         | Charle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and of          | 71               | 111                   | Preserva<br>Used | tive /  | MA       | nemy      |        | /    | 1       |        |            |            | 3     | 70/                |
| V 18.41 PHO      | Pene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12. VI          | 231/1            | 2                     | Type of          | 15/16   | /        | /         | /      | /    | /       | /      | /          | /          | 60    |                    |
| Phone:           | UHL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 254             |                  |                       | Analysis         | 100     | /        | / /       | /      | / /  | /-/     | /      | / /        | / /        | 2/    |                    |
| Sample ID#       | Date<br>Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials |                  |         | */       | -         |        |      | /       |        |            |            | /     | CLIENT<br>COMMENTS |
| CJCA-55213-09C   | 7/1/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 08:00           | 50               | 011                   | ×                |         |          |           |        |      | à.      |        |            |            |       |                    |
| CYA-55214-01     | 7/7/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ation.          | SO               | BUH                   | X                |         |          |           |        |      |         |        |            |            |       |                    |
| CYCA-51 800-09C  | 7/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 08:60           | 50               | JE AMIS               | ×                |         |          | l X       |        |      | -       |        |            |            |       |                    |
| C)C0-8029 01C    | 7/1/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CE:15           | 50               | WEMS                  | X                |         |          |           |        |      |         |        |            |            |       |                    |
| CHCA-EB070709    | 7/7/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14:45           | W                | TM                    | X                |         |          |           |        | 10.1 | 0       |        |            |            | EGUI  | PINENTEIA          |
| CYCA ST210-696   | 7/7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08:35           | 50               | DH                    | X                | 1       |          |           |        |      |         |        |            |            |       |                    |
| CICA-SSAH-U9C    | 7/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 08.50           | 50               | NH                    | X                |         |          |           |        | - 10 | A TOTAL |        |            |            |       |                    |
| CVA-5020 198     | 7/7/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09.10           | 2/1              | 11/11                 | X                |         |          |           |        |      |         |        |            |            |       |                    |
| Cx6-557/-19      | 7/1/61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09.45           | SI               | JF 175                | X,               | X       | 219      |           |        |      |         |        |            |            |       |                    |
| C)CA 55096-09    | 7/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03:20           | 20               | EB & Mu               | X                |         |          |           |        |      |         |        |            |            |       |                    |
| CXA-SUM-GC       | 11707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18:55           | 50 .             | 16 my                 | 1                |         |          |           |        |      |         |        | -          |            |       |                    |
| CJCA-SSC97-ON    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0825            | 50               | EB FAV                | X                | 700     | <u> </u> |           |        | 1    |         |        | 1          |            |       | T. D. C.           |
| Relinquished By: | ltal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/1/07          | e/Time           | Received B            | y:<br>·          | -       | - Aler   | Relinquis | hed By |      |         | Hece   | ived for L | aboratory  | и Ву: | Date/Time          |
| Relinquished By: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dat             | e/Time           | Received B            | y:               |         |          | Date/Tim  | e Ship | per: |         | Airbil | ll No.:    | Ě          |       |                    |
| Relinquished By: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dat             | e/Time           | Received B            | y:               |         |          | Lab Com   | ments: | -1   |         |        |            |            |       | Temp:              |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference |      |       |
|------------------------------|------|-------|
| 377816.FJ.FS                 | 2 of | 3 Pgs |

| Project: / 7/)   | Project: Turnaround Tim  Client: # of Containers |                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |        |     | / /        | /      |      | 7   | 7      |            | 7         | 7                                       | //           |
|------------------|--------------------------------------------------|-----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|-----|------------|--------|------|-----|--------|------------|-----------|-----------------------------------------|--------------|
| Client: 0 112 // | 11/1/11                                          | - Yanda - A     | ZELLIVE          | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # of Con         | ainers | /   |            | /      |      | 1   |        |            |           | -                                       | 7 /          |
| Send Results To: | SCHOW                                            | IEVE A          | Ju Ro            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Containe         |        | 111 | 1/12M/     |        |      |     |        |            |           |                                         | / /          |
| Address:         | 3 1/1                                            | VELIVA          | D SI             | CTT 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Preserva<br>Used | tive / | CNE | NONE/      |        |      | /   |        |            |           | _/ :                                    | 70/          |
| WAGINIA B        | each.                                            | VA O            | 34/2             | The state of the s | Type of          | 1      | /   |            |        |      | /   | /      |            | /         | 100                                     |              |
| Phone: 757       | 1671-                                            | 6284            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis         | STY    | /   | / /        | ,      | / /  | /   | /      | / /        | / /       | 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |              |
| Sample ID#       | Date<br>Sampled                                  | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | /=     |     |            |        |      |     |        |            |           | /                                       | CLIENT       |
| CKA-SSZOY VIL    | 7/7/01                                           | 01:35           | 50               | DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                |        |     |            | 1      |      |     |        |            |           |                                         |              |
| Crof 3527-10E    | 7/7/19                                           | 09.35           | 50 -             | JH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                |        |     |            |        |      | +5- |        |            |           |                                         |              |
| MASON OIC        | 7/7//9                                           | 12:30           | 50               | JE 1116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X                | X      |     |            |        |      |     |        |            |           |                                         |              |
| C14-5500 09C     | 7/7/17                                           | 09:45           | 50               | JE MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X                | X      |     |            |        |      | -   |        |            |           |                                         |              |
| CYCA SSZULLOW    | 7/7/19                                           | 10:10           | 50               | DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                |        |     |            |        |      |     |        |            |           |                                         |              |
| CHASSIOSON       | 7/7/19                                           | wice            | 50               | DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                |        |     |            | 7      |      |     |        |            |           |                                         |              |
| UCA-55905-09     | G115 11                                          | 10:00           | 50               | DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                |        |     |            |        |      |     |        |            |           |                                         |              |
| VCA-S5205-09     | (-5/) //                                         | 10:10           | SO               | DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                |        |     |            |        |      |     |        |            |           |                                         |              |
| VCA-5621-096     | 717/0                                            | 10:15           | SO               | MIST JE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X                |        |     |            |        |      |     |        |            |           |                                         | #1000 max    |
| XA-SOZID-090     | 7/7/19                                           | 10:15           | 50               | MSilF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X                |        |     |            |        |      | N-  |        |            |           | POPE SE                                 | YSICKA STATE |
| XA-8023-096      | 7/1109                                           |                 | 50.              | MS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                |        |     |            |        |      |     |        |            |           |                                         |              |
| CYT SW6-19C      | 7/11/19                                          |                 | 50               | 105711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X                |        | L   |            |        | 1    |     | 10     |            |           | 44                                      | 016          |
| Relinquished By: | 16                                               | 7/1/19          | e/Time           | Received E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sy:              |        |     | Relinquish | ied By |      |     | Hece   | ived for L | aboratory | и ву:                                   | Date/Time    |
| Relinquished By  |                                                  | Dat             | e/Time           | Received B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | By:              |        |     | Date/Time  | Ship   | per: |     | Airbil | l No.:     |           |                                         |              |
|                  |                                                  |                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |        |     |            |        |      |     |        |            | )¥)       |                                         |              |
| Relinquished By  |                                                  | Dat             | te/Time          | Received E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ву:              |        |     | Lab Comr   | nents: |      |     |        |            |           |                                         | Temp:        |
| ,                |                                                  |                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |        |     |            | 1      |      |     |        |            |           |                                         |              |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference |   |      |   |
|------------------------------|---|------|---|
| 9377012 FIFE                 | 3 | of 3 | F |

|                                     | THE THE TAKEN OF THE TOTAL OF T |                 |                  |                       |                  |         | 1 ax | (301) 020-01       | 31     | 102111     | 12-11-1                     |   |              |     | OI.                                     | 1 ga.              |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|-----------------------|------------------|---------|------|--------------------|--------|------------|-----------------------------|---|--------------|-----|-----------------------------------------|--------------------|
| Project: 070-1                      | 1 CN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11P JUT         | INSON            |                       | Turnarou         | nd Time | /    |                    | /      | / /        |                             |   | /            |     |                                         |                    |
| Client: CH2N                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                       | # of Cont        | ainers  |      |                    | /      | /          |                             | / |              | /   | /                                       | / /                |
| Send Results To:                    | GENEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | leve A          | turir            |                       | Containe         |         | 1802 | 11/10/10/          |        | /          | /                           |   | /            |     | /                                       | / /                |
| Address: 5700                       | - Million Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ELANI           |                  | TE 101                | Preserva<br>Used | tive    | CAE  | NONE               | /      | /          |                             |   |              |     | 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 70/                |
| VIRCINIA                            | DEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HVA             | 2-116            | 2.                    | Type of          | 18:     |      |                    |        | /          | /                           |   | /            | /   | 100                                     |                    |
| Phone:                              | 71 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 284             |                  | *                     | Analysis         | 133     | /    | / /                |        | /a- /      | / /                         | / | / /          | / / | 2/                                      |                    |
| Sample ID#                          | Date<br>Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials |                  | 1       |      |                    |        |            |                             |   |              |     | 7                                       | CLIENT<br>COMMENTS |
| YCA-9213-19L                        | 7/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11:05           | SO               | JE MS                 | X                |         |      | 32                 | 11     |            |                             |   |              |     |                                         |                    |
| CICA-FECTOR                         | 17/7/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11:10           | 50               | netons                | X                |         |      |                    |        | 4          |                             |   |              |     |                                         |                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                       | V.               | 1       |      |                    |        |            |                             |   |              |     |                                         |                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                       |                  |         |      |                    |        |            |                             |   |              |     |                                         |                    |
|                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                  |                       |                  |         |      |                    |        | 1          |                             |   |              |     |                                         |                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                       |                  |         |      |                    |        |            |                             |   |              |     |                                         |                    |
|                                     | \$ E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                  |                       |                  | 67.     |      |                    |        |            |                             |   |              |     |                                         |                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | 1 =1                  |                  |         |      |                    |        |            |                             |   |              |     |                                         |                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                       |                  |         |      |                    |        |            |                             |   |              |     |                                         |                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                       |                  |         |      |                    |        | 1          |                             |   |              |     |                                         |                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 11111111         |                       |                  |         |      |                    |        |            |                             |   |              |     |                                         |                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                       |                  |         |      |                    |        |            |                             |   |              | 1   | *                                       |                    |
| Relinquished By:                    | Relinquished By: Date/Time Receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                  |                       |                  |         |      | Relinquist         | ned By | <i>r</i> : | Received for Laboratory By: |   |              |     | Date/Time                               |                    |
| Relinquished By: Date/Time Received |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | Received B            | y:               |         |      | Date/Time Shipper: |        |            |                             |   | Airbill No.: |     |                                         |                    |
| Relinquished By:                    | Relinquished By: Date/Time Received B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                  |                       | Ву:              |         |      | Lab Comments:      |        |            |                             |   |              |     | Temp:                                   |                    |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference |    |   | 6   |
|------------------------------|----|---|-----|
| \$377 12 Pl.FS               | of | 3 | Pgs |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 301) 020-0731      | ol rys.                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|---------------------------------------|
| Project: CTU-11 CAMP JUMPIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Turnaround Time       |                    |                                       |
| Client: / HMHIIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # of Containers       |                    |                                       |
| Send Results To:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Container Type / 67 / | 1/02/11/           |                                       |
| Address: Add | Preservative Used     | 018/ //            | ////3/                                |
| VIRCIAIA REACTI VA 23410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Type of               |                    |                                       |
| Phone: 757-771-7244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analysis              |                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Sample ID# Date Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sample Sampl | sampler's<br>Initials |                    | CLIENT                                |
| CVCA 35201 696 717/19/11:05 50 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )# ×                  |                    |                                       |
| VKA 522-09K 7/7/67 10-50 50 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                    | 1D=550.W2                             |
| CXA SSO14-09K 717109 TO 10 SO 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bimw X                |                    | 6                                     |
| 10A-5096-967/1/09 11:20 SO F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bimu                  |                    |                                       |
| 010A-33495 090 717109 10:55 30 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BEDM                  |                    |                                       |
| 10A 5008-096 7/7/09 11:35 SO 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rems >< >             |                    |                                       |
| MEA-5009-090 7/7/19 11:20 50 )F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F/ms>                 |                    |                                       |
| ( )CA: 55201-01 7/7/C] 4:50 50 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OH X                  |                    |                                       |
| VA SS219-811 7/7/19 11:35 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                    |                                       |
| CXA-35004-08 7/7/09 1200 SO SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F I MS                |                    |                                       |
| XA-55007-090 7/7/09 1230 30 JF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FAMS >                |                    |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DH >                  |                    | 2 4                                   |
| The state of the s | eceived By:           | Relinquished By:   | Received for Laboratory By: Date/Time |
| Water 1/200 1/200 4-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                     |                    |                                       |
| Relinquished By: Date/Time Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eceived By:           | Date/Time Shipper: | Airbill No.:                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                    |                                       |
| Relinquished By: Date/Time Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eceived By:           | Lab Comments:      | Temp:                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                    |                                       |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference

of Pgs.

| Project:                              | I Pari          | p Jelin         | 100               |                       | Turnarou         | nd Time | /         | //        | /      | 7     | 7     | /       | 7           | 7         | 1      |                    |
|---------------------------------------|-----------------|-----------------|-------------------|-----------------------|------------------|---------|-----------|-----------|--------|-------|-------|---------|-------------|-----------|--------|--------------------|
| Client: )                             |                 |                 |                   |                       | # of Cont        | ainers  |           |           |        |       |       |         |             |           | /      |                    |
| Send Results To:                      | GENEVI          | eve A           | ure               |                       | Containe         |         | (107)     | 0//02/9   |        |       |       |         | <i></i>     | <u></u> , |        | / _ /              |
| Address:                              | Mese            | kind s          | 1 5/6             | HI.                   | Preserva<br>Used | tive    | VENE/     | NONE      |        |       |       |         | - /         |           | 130    | No.                |
| Vilgino                               | Beac            | h VA:           | 134 b             | 2                     | Type of          | 13      |           |           |        |       |       |         |             |           | (8)    |                    |
| Phone: 757                            | 071             | 6784            |                   |                       | Analysis         | 18.61   | /         | / /       | /      | / /   | / /   | /       | / /         | / /       | 8/     |                    |
| Sample ID#                            | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix  | Sampler's<br>Initials | 100              | 1       |           |           |        |       |       |         | /           |           | /      | CLIENT<br>COMMENTS |
| CJCA-55203-090                        | 7/7/09          | 12:25           | 50                | DH                    | X                |         |           |           |        |       |       |         |             |           |        |                    |
| JCA 552030 02                         | 7/7/09          | 12:30           | 50                | JH                    | ><               |         |           |           |        |       |       |         |             |           |        |                    |
| VCA - 50000 cgr                       | 212109          | 13:50           | SO                | LEMNY                 | $\times$         |         |           |           |        |       |       | Mai     |             |           |        |                    |
| JCA-SSOUL-OIC                         | 7/7/09          | 13:00           | 50                | EB Imu                | $\times$         |         |           |           |        |       |       | Tr.     |             |           |        |                    |
| JCA-SSLOK-LIK                         | 7/7/19          | 13:15           | SO                | JF/ms                 | $\times$         |         |           |           |        |       |       |         |             |           | Jay 50 | ys 13 go Time I    |
| CUCA SCOT 090                         | 7/7/09          | 13:00           | 50                | JF Ins                | ><               | ><      |           |           |        |       |       |         |             |           |        |                    |
| CICA-85013 190                        | 7/7/19          | 13:45           | SD                | 11/115                | ><               |         |           |           |        |       |       | s.p.    |             |           |        |                    |
| JKA TON5-090                          | 7/7/19          | 14:15           | 50                | + MIS                 | ><               |         |           |           |        |       |       | 27.3    |             |           |        |                    |
| UCA 5540 090                          | 7/7/69          | 14:45           | 50                | TIMS                  | $\times$         |         |           |           |        |       |       |         |             |           |        |                    |
| DCA-58002-19                          | 7/1109          | 14:30           | 50                | STAT                  | $\geq$           |         |           |           |        |       |       |         |             |           |        |                    |
| CJCA-1809-09                          | 7/7/49          | 15:05           | 20                | ucque                 | $\geq$           | -       |           |           |        |       |       |         |             |           |        |                    |
| 1 XX 2027 (4                          | 77107           | 15:35           | 50                | DH                    | $\times$         | -       |           |           |        | 1     | 1     |         |             | 1         | 1      |                    |
| Relinquished By:                      | in              |                 | e/Time            | Received B            | y:               |         |           | Relinquis | ned By | :     |       | Hece    | eived for L | aboratory | y By:  | Date/Time          |
|                                       |                 |                 | Received B        | Зу:                   |                  |         | Date/Time | Ship      | oper:  |       | Airbi | ll No.: |             |           |        |                    |
| Relinquished By: Date/Time Received B |                 |                 | By: Lab Comments: |                       |                  |         |           |           |        | Temp: |       |         |             |           |        |                    |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference of Pgs

| Project:         | , rich                                   | ni teran        | z in             |                       | Turnarou          | nd Time |         | ///       | /      | /     | 7   | 1      | /          | 7        | 7     | //                 |
|------------------|------------------------------------------|-----------------|------------------|-----------------------|-------------------|---------|---------|-----------|--------|-------|-----|--------|------------|----------|-------|--------------------|
| Client: //////   | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | OSSETHE         |                  |                       | # of Cont         | ainers  | -/      | /         | /      |       | /   | 1      | 1          | 1        | 1     | 7 /                |
| Send Results To: | THE L                                    | the Att         | C (75.0) W       |                       | Containe          |         | /907 X4 | 1/17801   | /      | /     | /   | /      | /          | /        | /     | 7 /                |
| Address: 514     | S CHOICE                                 | V INT           | el cri           | 1/1                   | Preservat<br>Used |         | UNE /   | NONE      | - /    |       |     | /      |            |          | 7     | 40.                |
| Vijanja          |                                          |                 |                  | 1.01                  | Type of           | pe of   |         |           |        |       |     |        |            |          | 5/    |                    |
|                  | 11 628                                   |                 | - 11 E           |                       | Analysis          | S. S.   | /       | //        | /      | / ,   | / / | /      | / /        | / /      |       |                    |
| Sample ID#       | Date<br>Sampled                          | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials |                   | H       |         |           |        |       |     |        |            |          | /     | CLIENT<br>COMMENTS |
| UCA 53012-016    | 717/09                                   | 15:15           | 50               | JE/MS                 | ><                |         |         |           |        |       |     |        |            |          |       |                    |
| KA-5514-096      | 7/7/19                                   | 15:30           | 50               | JE/NS                 | $\times$          |         |         |           |        |       |     |        |            |          |       |                    |
|                  |                                          |                 |                  |                       | 1                 |         |         |           |        |       |     |        |            |          |       |                    |
|                  |                                          |                 |                  |                       |                   |         |         |           |        |       |     |        |            |          |       |                    |
|                  |                                          |                 |                  |                       |                   |         |         |           |        | 10    | 4   | -      |            |          |       |                    |
|                  |                                          | .01             |                  |                       |                   |         |         |           |        |       |     |        |            |          |       |                    |
|                  |                                          |                 |                  |                       |                   |         |         |           |        |       |     |        |            |          |       |                    |
|                  |                                          |                 |                  |                       |                   |         |         |           |        |       |     |        |            |          |       |                    |
|                  |                                          |                 |                  |                       |                   |         |         |           |        |       |     | - Seat |            |          |       | t                  |
|                  |                                          |                 |                  |                       |                   |         | -       |           |        |       |     |        | -          |          |       |                    |
|                  |                                          |                 |                  |                       |                   |         |         |           |        | -     | -   |        |            |          |       | -                  |
| D. # 11 1D       | 1                                        |                 | /T               | D : 15                |                   |         |         |           |        | 1     |     |        |            |          | -     | I D. I. Ff         |
| Relinquished By  |                                          |                 | e/Time           | Received E            | sy:               |         |         | Relinquis | ned By |       |     | Hece   | ived for t | aborator | y By: | Date/Time          |
| Relinquished By  |                                          | Dat             | e/Time           | Received B            | sy:               |         |         | Date/Time | Ship   | oper: |     | Airbil | l No.:     | e.       |       |                    |
| Relinquished By  | :                                        | Dat             | te/Time          | Received E            | By:               |         |         | Lab Com   | nents: |       |     |        |            |          |       | Temp:              |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference | 1   |    |
|------------------------------|-----|----|
|                              | 120 | 1  |
|                              |     | of |

|     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                       |                  |                      | Fax (    | 301) 620- | 0731     |    |       |         |             |           | of    | 3 Pgs              |
|-----|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|-----------------------|------------------|----------------------|----------|-----------|----------|----|-------|---------|-------------|-----------|-------|--------------------|
|     | Project: (TO -                        | 11 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | imp 2           | ohns                | 261                   | Turnarou         | ınd Time             | /        | /         | /        | /  | /     | /       | /           | //        |       |                    |
|     | Client: CAZN                          | A HILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                     |                       | # of Cont        | tainers              | /1       | /1        |          |    |       |         |             |           |       | / /                |
| Ī   | Send Results To:                      | BENEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MENE !          | MOORE               |                       | Containe         |                      | 1802 30  | 1802 X    | /        |    | /     | / -     |             | 1         | /     | / /                |
| Ī   | Address: 5700                         | The same of the sa | VELANT          |                     | STE 101               | Preserva<br>Used | eservative NONE NONE |          |           |          |    |       |         |             |           | _/.   | 70/                |
|     | VIEGINI                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CH VA           |                     |                       | Type of          |                      |          |           |          |    |       |         |             |           |       |                    |
| Ī   | Phone: 757-671-6384                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                       | Analysis         | 2 3 4                | /        | / /       | / /      | /  | / /   | / /     | /           | / /       | 12/   | /                  |
|     | Sample ID#                            | Date<br>Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time<br>Sampled | Sample<br>Matrix    | Sampler's<br>Initials | 10 m             |                      |          |           |          |    |       |         |             |           | /     | CLIENT<br>COMMENTS |
| 13  | A-SSOSE-OIC                           | 7/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1600            | 50                  | DH / JH               | ><               |                      |          |           | 11       |    |       |         |             |           |       |                    |
| C   | A- 35.058-070                         | nolete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1610            | So                  | DH LUH                | $\times$         | $\sim$               |          |           |          |    |       |         |             |           |       |                    |
| 3   | 14 - SS0560-09C                       | 7/7/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1555            | 30                  | DH/JH                 | $\times$         |                      |          |           |          |    |       |         |             |           |       |                    |
| 7   | A-SSOLS-02                            | 71-109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1600            | Su                  | JF+MS                 | ><               | ><                   |          |           |          |    |       |         |             |           |       |                    |
| 1   | A-SSOTT-DAC                           | 7/109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1615            | So                  | SF +MS                | ><               | 1                    |          |           |          | 41 |       |         | -           |           |       |                    |
| 34  | A-SS090-09C                           | 7/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1420            | SO                  | MINTER                | ><               |                      |          |           |          |    |       |         |             |           | MS    | /m150              |
| X   | 1-SS090-097-M                         | politic o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1470            | 50                  | MINITE                | ><               |                      |          |           |          |    |       |         |             |           | purs  | /msb               |
| 20. | 4-55070-07-50                         | חורורי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1420            | 50                  | MWYEB                 | $\geq \leq$      |                      |          |           | 1        |    |       |         |             |           | part  | /MSD               |
| Y   | 4-35092-096                           | 7/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1430            | 30                  | MLUIFB                | $\sim$           | ><                   |          |           |          |    |       |         |             |           |       |                    |
| 20  | A-550 920-09C                         | 7/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1435            | So                  | MINIER                | ><               | ><                   |          |           |          |    |       |         | 11          |           |       |                    |
| SC  | 4-59085-09K                           | 7/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | Sa                  | MW-EB                 | ><               |                      |          |           |          |    |       |         | 4 10        |           |       |                    |
| X   | 4-35087-09C                           | 7/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 30                  | MINIEB                | ><               |                      | -        |           |          |    |       | 1       | 1.11        | 1         |       | -                  |
|     | Relinquished By:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date            | e/Time              | Received B            | y:               |                      |          | Relinqui  | shed By: |    |       | Rece    | eived for l | _aborator | у Ву: | Date/Time          |
|     | Relinquished By: Date/Time Received   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Received B          | y:                    |                  |                      | Date/Tin | ne Ship   | per:     |    | Airbi | II No.: | ,           |           |       |                    |
|     | Relinquished By: Date/Time Received B |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | I By: Lab Comments: |                       |                  |                      |          |           |          |    | Temp: |         |             |           |       |                    |

· C20

·CXA . ( ) (A CHA · 630 ·MICA . (Un)

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| ntract #/Billing Reference | 1 |
|----------------------------|---|
|                            |   |

|        | Project: (TO-                         | 11 Co           | ok gmi          | hnach            |                       | Turnarou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd Time | -/       |          | 1        | /     | 7     | /      | /          | 7        | /     |                    |
|--------|---------------------------------------|-----------------|-----------------|------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|----------|-------|-------|--------|------------|----------|-------|--------------------|
|        | Client: CAZI                          | n the           | -               |                  |                       | # of Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tainers | /1       | /1       |          |       |       | /      |            |          |       | 7 /                |
|        | Send Results To:                      | Gener           | lieve           | Moore            |                       | Containe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | Buz you  | Paz yar  | /        |       | / 200 |        | /          | 100      | / +   | / /                |
|        | Address: 5700                         | Clevi           | e land          |                  | e 101                 | Preserva<br>Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tive /  | ione /r  | ion#     |          |       |       |        | /          |          | _/    | 7                  |
|        | Virginia                              |                 |                 | 3462             |                       | Type of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 133     |          |          |          | /     | /     | /      |            | /        | 3     |                    |
|        | Phone: 757-                           | 671-            | 6284            |                  |                       | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 0 m   | × /      | /        | /        | /     | / /   | /      | /          | /        | 8/    |                    |
|        | Sample ID#                            | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | A STATE OF THE STA |         | 2/       |          |          |       |       |        |            |          | /     | CLIENT<br>COMMENTS |
| CACA   | - 550UR - 09C                         | 7/1/09          | 1520            | 50               | MWEB                  | ><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |          |          |       |       |        |            |          |       |                    |
| CXA-   | 550ED-09C                             | 2/1/09          | 1700            | 50               | 14                    | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |          |          |          |       |       |        |            |          |       |                    |
| (1)(A- | 95199-09C                             | 7/7/09          | 11.45           | 50               | JH                    | ><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |          |          |       |       |        |            |          |       |                    |
| WA-    | SC22-096                              | 7/7/19          | 11.30           | 90               | IFTAIS                | ><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |          |          |       |       |        |            |          |       |                    |
| COCK   | SSC-1-09C                             | 7/7/09          | 17 60           | 50               | NAME                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |          | 4-    |       |        |            |          |       |                    |
| CON-   | 9206-09C                              | 7/7/09          | 17:40           | 90               | FB                    | ><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ><      |          |          |          |       |       | 100    |            |          |       |                    |
| CUCA   | 308-9C                                | 7/7/19          | 17:25           | 50               | JE + MIS              | ><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |          |          |       |       |        |            |          |       |                    |
| CICA   | 1625-176                              | 7/7/09          | 17.35           | 50               | JF4M                  | ><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |          |          |       |       |        |            |          |       |                    |
| COOM   | - 55088-09C                           | 7/7/09          | 15:55           | 50               | MW/1B                 | $\geq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |          |          |       |       |        |            |          |       | +=                 |
| CICA   | 55026-09K                             | 118/09          | 07:45           | 50               | FAMS                  | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |          |          |          |       |       | 3 1    |            |          |       |                    |
| CJCA   | SS024-09C                             | 718/09          | 07:30           | 50.              | 扩加S                   | $\geq \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >       |          | -        |          |       |       | • .    | -          |          | 1     |                    |
| ·CXI   | -55181-07L                            | 718/09          |                 | 50               | DH                    | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |          | 1        |          |       |       |        | 1          | *        | *     |                    |
|        | Relinquished By:                      |                 | Date            | e/Time           | Received B            | y:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          | Relinqui | shed By: |       |       | Rece   | ived for L | aborator | у Ву: | Date/Time          |
|        | Relinquished By: Date/Time Received B |                 |                 |                  | y:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Date/Tim | ne Ship  | per:     |       | Airbi | l No.: | 4          | ,        |       |                    |
|        | Relinquished By: Date/Time Received   |                 |                 |                  | Received B            | By: Lab Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |          |          | Temp: |       |        |            |          |       |                    |

G.P. W.O. \_

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference | 1     |    |
|------------------------------|-------|----|
|                              | 1 2   | -2 |
| B77812.51.15                 | of of | 7  |

Pgs.

| Sample ID# Sampled Sampled Matrix Initials  CA-SSECTEGE TILLIA UT.35 SC DH  CA-SSCOTEGE TILLIA UT.35 SC DH  CA-SSCOTEGE TILLIA UT.35 SC DH  CA-SSCOTEGE TILLIA UT.35 SC DH  CA-SSIST-CAC UT.35 SC DH  C | CLIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address:  Phone: Sample ID# Date Sampled Sampler Sampler's Initials  PASSESSA OF TRACE OF SO DELLAR STATE OF SO DELLAR STATE OF SO SO SO DELLAR STATE OF SO SO SO DELLAR STATE OF SO SO SO SO DELLAR STATE OF SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | / CLIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample ID# Sampled Sampled Matrix Initials  PLASSIFO GG TIME G TT. 35 SC DH  PLASSIGN GG TIME G TT. 35 SC DH  PLASSIGN GG TIME G CB: 10 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG TIME G CB: 15 SC DF FMS  PLASSIGN GG  | / CLIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample ID# Sampled Sampled Matrix Initials  PCA-SCIP OF TIETO CE: 10 SO FEMS  PCA-SCO2T OF TIETO CE: 25 SO FEMS  PCA-SCO34 - OF TIETO CE: 25 SO FEMS  PCA-SCIB- OF TIETO CE: 25 SO FEMS  PCA-SC | / CLIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample ID# Sampled Sampled Matrix Initials  PCA-SCIP OF TIETO CE: 10 SO FEMS  PCA-SCO2T OF TIETO CE: 25 SO FEMS  PCA-SCO34 - OF TIETO CE: 25 SO FEMS  PCA-SCIB- OF TIETO CE: 25 SO FEMS  PCA-SC | / CLIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample ID# Sampled Sampled Matrix Initials  PCA-SSED GG 7/M/19 07.35 CC DH  PCA-SSO34-090 7/M/19 08:10 SO DF MS  PCA-SSO34-090 7/M/19 08:15 SO DF MS  PCA-SSO34-090 7/M/19 08:15 SO DF MS  PCA-SSES-090 7/M/19 08: | / CLIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sea - Sea - Cor   Tielog   Cor   15   So   JF & MS   So   JF & M   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CA-SS034-096 7  Blog 08:15   SO   JF   ITS   SO   JF   ITS   SO   DH   SO   SO   DH   SO   SO   DH   SO   SO   DH   SO   SO   SO   SO   SO   SO   SO   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11CA 95,184 - 09C 7/18/109 CE:25 SO DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10A-55183-090 7/8/09 08:15 SO DH  10A-55035-090 7/8/09 08:15 SO JF fMS  10A-55036-090 7/8/09 08:35 SO JF fMS  10A-55036-090 7/8/09 08:35 SO JF fMS  10A-55179-090 7/8/09 08:55 SO DH  10A-55182-090 7/8/09 09:05 SO DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CA-SS 035-096 7/8/09 0845 SO NAMS  CA-SS 036-096 7/8/09 0835 SO NAMS  CA-SS 179-096 7/8/09 0835 SO NAMS  CA-SS 182-096 7/8/09 0905 SO DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M-55036-UPC 718/19 0835 SO JF/MS<br>M-55179-09C 71/1-109 1950 SO DH<br>CA SS182-09C 7/18/109 0905 SO DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CA SS182-091 7/8/09 0905 SO DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CA-SSIE2-091 7/8/0905 SO DI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 No. 11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The same of the same that the same the  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.12.15.10.11.11.12.12.14.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A STATE OF THE STA |
| GCA SSJED-OK 718/01/650 SO. 18/MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ——————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| XA-SSBI-004HBI(191810 SO PENNIN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished By: Date/Time   Received By: Relinquished By: Received for Laboratory B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | By: Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Relinquished By: Date/Time Received By: Date/Time Shipper: Airbill No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished By: Date/Time Received By: Lab Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temp:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Frederick, MD 21703 Contract #/Billing Reference (301) 694-5310 Fax (301) 620-0731 Pgs. **Turnaround Time** CTO-11 Camp Johnson # of Containers Client: 0h2m HILL Container Type 0000 NA 0000 N Send Results To: TENTALEVE PALETE Preservative Used Address: 100 Chewhold St Ste 101 Type of Analysis Phone: Date Sampler's Time Sample CLIENT Sample ID# Sampled Sampled Matrix Initials COMMENTS 50 A SSUBZ-UK KA-95141-190 Received for Laboratory By: Relinquished By: Date/Time Received By: Relinquished By: Date/Time Relinquished By: Received By: Date/Time Shipper: Date/Time Airbill No .: Relinquished By: Received By: Lab Comments: Temp: Date/Time

G.P. W.O

7210A Corporate Court

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference |      |     |
|------------------------------|------|-----|
| 377812 FIFS                  | 2 of | Pgs |

|     | Project:                              | u co            | no k                 | 01.1156          | n                     | Turnarou          | nd Time | /       | 1         | 7       | 7    | 7 | 1      | 7          | 7         | 1     | ///                |
|-----|---------------------------------------|-----------------|----------------------|------------------|-----------------------|-------------------|---------|---------|-----------|---------|------|---|--------|------------|-----------|-------|--------------------|
|     | Client:                               | O HILL          | indulated and in the | e la ilababa     | 4.3                   | # of Cont         | ainers  | /       |           | /       | /    | 1 | /      |            | /         | 1     | 7 /                |
|     | Send Results To:                      |                 | ove N                | (ME)             |                       | Containe          |         | 1802 Ja | 1802h     | /       |      |   |        | <u> </u>   |           |       | 7 /                |
|     | Address:                              |                 | rland                | 77 5             | te 101                | Preserva<br>Used  | tive    | IONE/1  | ione/     | - /     |      |   |        |            |           | / :   | 70/                |
|     | Virginia                              | Bench           | IVA :                | 234/2            | _                     | Type of           | and a   |         |           |         |      |   |        |            |           | 1,3   | )                  |
|     | Phone: 757                            | 1671            | 16284                | 1                |                       | Analysis          | 158x    | /       | / /       | /       | / /  | / | / /    | / /        | /         |       |                    |
|     | Sample ID#                            | Date<br>Sampled | Time<br>Sampled      | Sample<br>Matrix | Sampler's<br>Initials | 111/2             | 10/21   |         |           |         |      |   |        |            |           | /     | CLIENT<br>COMMENTS |
| C   | ICA-55/86-09C                         | 7/8/109         | 1110                 | SO               | DH                    | ><                |         |         |           | T       |      |   |        |            |           |       |                    |
| a   | CA-SS186D-0                           | 9C 7/8/07       | 1115                 | 50               | DH                    | $\times$          |         |         |           |         |      |   |        |            |           |       |                    |
| CJ  | CA-SS187-09C                          | 7/8/09          | 1120                 | SO               | DH                    | ><                |         |         |           |         |      |   |        | 1,800      |           |       |                    |
| CJ  | CASS187-096-S                         | D               | 1120                 | SO               | DH                    | $\times$          |         |         |           |         |      |   |        |            |           | MS    | D                  |
| CJ  | CA-SS187-09C-1                        | ms              | 1120                 | SO               | DH                    | ><                |         |         |           |         | As - |   |        |            |           | MS    |                    |
| CU  | CA SS121-09C                          |                 | 1050                 | SO               | EBIMW                 | $\times$          |         |         |           |         |      |   |        |            |           |       |                    |
| Cur | CA-SS124-09C                          |                 | 1105                 | 50               | EB/MW                 | $\geq$            |         |         |           |         |      |   |        |            |           |       |                    |
| Cui | CA-55130-09C                          |                 | 0950                 | SO               | EB/MY                 | $\geq \leq$       |         |         |           |         |      |   |        |            |           |       |                    |
| CU  |                                       |                 | 0955                 | SO               | EB/MW                 | $\geq \leq$       |         |         |           |         |      |   |        |            |           | DUPL  | ICATE              |
|     | (A-55/34-09C                          |                 | 1020                 | 50               | EBIMW                 | $\geq \leq$       |         |         |           |         |      |   |        |            |           |       |                    |
|     |                                       | -\$0            | 1020                 | SO.              | -B/MW                 | $\geq$            | . :     | -       |           |         |      |   |        |            |           | MS    | 0                  |
| CU  | CA-55/34-096                          |                 | 1020                 | SD               | EB/MW                 | ><                |         |         |           |         |      |   | 1      |            |           | H     |                    |
|     | Relinquished By:                      |                 |                      | e/Time           | Received B            |                   |         |         | Relinquis |         |      |   |        | ived for L | aboratory | / By: | Date/Time          |
|     | Relinquished By: Date/Time Received   |                 |                      |                  | Received B            | y:                |         |         | Date/Time | e Shipp | oer: |   | Airbil | l No.:     | st.       |       |                    |
|     | Relinquished By: Date/Time Received I |                 |                      |                  | Received E            | By: Lab Comments: |         |         |           |         |      |   |        | Temp:      |           |       |                    |

G.P. W.O.

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference |   |    |   |     |
|------------------------------|---|----|---|-----|
| 377812 FI-FS                 | 3 | of | 3 | Pg: |

| Project:         | и сам           | P JOHn            | con              |                       | Turnarour                                          | nd Time  | /     |            | 7        | /     | 7   | 7      | /          | 7         | 1     | //        |
|------------------|-----------------|-------------------|------------------|-----------------------|----------------------------------------------------|----------|-------|------------|----------|-------|-----|--------|------------|-----------|-------|-----------|
| Client: CLION    | 1 4111          | -                 | miles I. I.      |                       | # of Conta                                         | ainers   | /     |            |          |       | /   |        |            |           |       | 7 /       |
| Send Results To: | Genev           | IPVP N            | LOORE            | 5                     | Container                                          |          | (802) | 1/8/23/14  |          |       | /   |        | /          | _         |       | / /       |
| Address: 57/     | none            | vehna             | 1 St S           | te 101                | Container Type Preservative Used  Type of Analysis |          |       |            |          |       |     |        |            |           |       |           |
| Vikamio          | Beach           | VA 1200           | 52346            | 2                     | Type of                                            | Type of  |       |            |          |       |     |        |            |           |       |           |
| Phone: 757-      | 671-6           | 284               |                  |                       | Analysis                                           | Willia / | /     | / /        | /        | / /   | / / | / /    | / /        | / /       | 18/   |           |
| Sample ID#       | Date<br>Sampled | Time<br>Sampled   | Sample<br>Matrix | Sampler's<br>Initials | OF ST                                              | in H     |       | /          |          |       |     |        |            |           | /     | CLIENT    |
| CJCA-SS/25-090   | 7/8/09          | 1130              | SD               | EB/MW                 | ><                                                 |          |       |            |          |       |     |        |            |           |       |           |
| CUCA-SS126-096   |                 | 1140              | SO               | CB/mW                 | $\times$                                           |          |       |            |          |       |     |        |            |           |       |           |
| CUCA-SS/32-09    | C               | 1025              | SU               | EB/my                 | ><                                                 |          |       |            |          |       |     |        |            |           |       |           |
| CJCA-SS041-096   |                 | 1/45              | SO               | JF#MS                 | ><                                                 |          |       |            |          |       |     |        |            |           |       |           |
| CUCA-SSOUD-O     | 90 .            | 1145              | SO               | JF FMS                | $\geq$                                             |          |       |            |          | 44    |     |        |            |           | Du    | LICATE    |
| OUCA-55042-0     | 9C              | 1155              | So               | UFEMS                 | ><                                                 |          | :1    |            |          |       |     |        |            |           | MS    | D7        |
| CUCA-SS042-09    | 0-SD            | 1155              | SO               | JEGMS.                | $\searrow$                                         |          |       |            |          |       |     |        |            |           |       | N-        |
| CJCA-55042-0     | 9C-MS           | 1155              | SO               | UF FMS                | 25                                                 | w        |       |            |          |       |     |        | -          |           | MS    | }         |
| CUCA-55163-0     | 196             | 1210              | SO               | DH                    | $\geq \leq$                                        |          |       |            |          |       |     |        |            |           |       |           |
| CUCA-SSI63D      |                 | 12/5              | SO               | DH                    | $\geq \leq$                                        |          |       |            |          |       |     | -      |            |           |       |           |
| CUCA-SS162-0     | 90              | //55              | SO.              | DH                    | $\times$                                           |          |       | -          |          | -     |     |        |            | -         |       |           |
| Relinquished By: |                 | Dot               | e/Time           | Received B            | \                                                  |          | - 1   | Delinewich | and Down |       |     | Page   | ived for I | aborator  |       | Date/Time |
| neiinquisned by. |                 | Dat               | e/ Time          | neceived b            | у.                                                 |          |       | Relinquish | iea By:  |       |     | nece   | ived for L | aboratory | у Бу. | Date/Time |
| Relinquished By  |                 |                   |                  |                       |                                                    |          |       | Date/Time  | Ship     | pper: |     | Airbil | l No.:     | ·         |       |           |
| Relinquished By  | Received B      | By: Lab Comments: |                  |                       |                                                    |          |       |            |          | Temp: |     |        |            |           |       |           |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310

| Contract #/Billing Reference |  |
|------------------------------|--|
|                              |  |

Fax (301) 620-0731 Pgs. of **Turnaround Time** CTO II Camp Whisen Client: 0/12/11/11/11 # of Containers Container Type Send Results To: Genevieve Mocre 686 Color Mo Preservative Used Address: Type of Analysis Phone: Sample Sampler's Date Time CLIENT Initials Sample ID# Sampled Sampled Matrix COMMENTS VE SIMS A-52040000C ) FAMS 1320 A-SS144-09C JE THIS 1310 SO JF4MS -A-SS043-09C EM CA - EROTOURA Blank Equipment Blank exca-50119-090 A-55/23 070 CA-55049-096 CASS049-09C-MS 718/09 1400 Relinquished By: Received for Laboratory By: Date/Time Received By: Relinquished By: Date/Time Relinquished By: Received By: Date/Time Shipper: Airbill No.: Date/Time Lab Comments: Temp: Relinquished By: Received By: Date/Time

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| ntract #/Billing Referencé |      |
|----------------------------|------|
|                            | 2    |
|                            | - of |

|                                                                       |                  |            |        |        |            |                     |                                            | Fax   | (301) 620-0   | 731    | House one |            |      | anguras.   |           | _ of  | Pgs.      |
|-----------------------------------------------------------------------|------------------|------------|--------|--------|------------|---------------------|--------------------------------------------|-------|---------------|--------|-----------|------------|------|------------|-----------|-------|-----------|
|                                                                       | Project: (70-)   | 1 Car      | no Joh | nson   | ie .       | Turnarou            | nd Time                                    | -/    |               | /      |           | / /        | /    | -/         |           |       |           |
| Ī                                                                     | Client:          | M H        | LL     |        |            | # of Cont           | ainers                                     |       |               |        |           |            |      |            |           | /     | //        |
| Ī                                                                     | Send Results To: | FEDEL      | INVE   | MARK   | -          | Containe            |                                            | Ear   | 1602 M        |        |           | <i>/</i> , |      |            | _         |       | a. /      |
| Ī                                                                     | Address: 570     | Offer      | eland  | 10+18  | to 101     | Preserva<br>Used    | Preservative none none                     |       |               |        |           |            |      |            |           |       |           |
| Ī                                                                     | Virginia         | Beach      | h VA   | 2211   | 2          | Type of<br>Analysis | /pe of / / / / / / / / / / / / / / / / / / |       |               |        |           |            |      |            |           |       |           |
| Phone: 757-671-6294                                                   |                  |            |        |        |            |                     | 1                                          | /     | / /           | ,      | / ,       | / /        | / /  | /          | / ,       | /20/  |           |
| Date Time Sample Sampler's Sample ID# Sampled Sampled Matrix Initials |                  |            |        |        |            |                     |                                            |       |               |        |           |            |      |            |           | /     | CLIENT    |
|                                                                       | A SS049-09C-S    | n Theor    | 1400   | 50     | JF/mc      | 100                 |                                            |       | 1             |        |           | f          |      |            | 1         | Mei   | )         |
| 1/                                                                    | A-55652-09G      | 7/8/09     | 1345   | 50     | JF/ms      | 5                   | X                                          |       |               |        |           |            |      |            |           | 7.132 |           |
| €                                                                     | A-98193D-09      | 7/8/09     | 1440   | So     | DH         |                     |                                            |       |               |        |           |            |      | 1          |           | Dup   | LICATE    |
| 0                                                                     | A-55193-09C      | 7/8/09     | 1425   | 56     | DH         | 52                  |                                            |       |               |        |           |            |      |            |           |       |           |
|                                                                       | 1-55/92-09C      | 7/8/09     | 1425   | SOL    | ZH         | ><                  |                                            |       |               |        | Les I     | THE STREET |      |            |           |       |           |
| 4                                                                     | 50052 696        | 111/107    | 1345   | 37     | - THIS     | X                   |                                            |       |               |        |           |            |      |            |           |       |           |
| CA                                                                    | 1-55/16-09C      | 718/09     | 1320   | Sa     | EB/mm      | $\times$            |                                            |       |               |        |           |            |      |            |           |       |           |
| CA                                                                    | SS117-096        |            | 1330   | 50     | (B/mw      | $\times$            |                                            |       |               |        |           |            |      |            |           |       |           |
| 61                                                                    | 1 SS122-09C      |            | 1420   | SO     | tB/my      | ><                  |                                            |       |               |        |           |            |      |            |           |       |           |
| €.                                                                    | A-55046-096      |            | 1445   | 50     | JF/ms      | ><                  |                                            |       |               |        |           |            |      | -          |           |       |           |
| -                                                                     | A SS046D-09      | 61         | 1445   | 50.    | UFFMS      | ><                  | 1                                          |       |               |        |           |            |      | 4          |           |       |           |
| 0                                                                     | CA-550470        | yc V       | 1510   | 50     | UFTMS      | ><                  |                                            |       |               |        |           |            |      |            |           | 1.00  |           |
|                                                                       | Relinquished By: | 1 0        | 1-1    | e/Time | Received B | y:                  |                                            |       | Relinquis     | ned By | :         |            | Rece | ived for I | Laborator | у Ву: | Date/Time |
|                                                                       | -CA              | L          | 7/8/0  | 1630   |            | *                   |                                            |       |               |        |           |            |      |            |           |       |           |
|                                                                       | Relinquished By: | Received B | y:     |        |            | Date/Time           | Ship                                       | oper: |               | Airbil | l No.:    |            |      |            |           |       |           |
| Relinquished By: Date/Time Receive                                    |                  |            |        |        |            | by:                 | 10173                                      |       | Lab Comments: |        |           |            |      |            |           |       | Temp:     |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference | The state of the s | -  |   | -   |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-----|
|                              | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 1 |     |
|                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of | 4 | Pas |

|                                     | -               |                 |                  |                       |                  |            | 1 101 | (301) 020-0   | L      |      |          |       |             |           | OI .  | 1 go.     |
|-------------------------------------|-----------------|-----------------|------------------|-----------------------|------------------|------------|-------|---------------|--------|------|----------|-------|-------------|-----------|-------|-----------|
| Project: CTo                        | 11 0            | amp Jo          | hnsor            | )                     | Turnarou         | nd Time    | /     | / /           | /      | /    |          |       | /           |           |       | _/ /      |
| Client: (112)                       | m Hil           | 1               |                  |                       | # of Cont        | ainers     |       |               |        |      |          |       |             |           |       | / /       |
| Send Results To:                    | Finev           | ieve I          | Vive             |                       | Containe         |            | Boy   | 1/801         | /      |      | <i>/</i> |       | /           | <u> </u>  |       | a. /      |
| Address: 570                        | 0010            | velano          | 1 st             | telol                 | Preserva<br>Used | tive //    | one 1 | we/           | /      | /    |          |       |             |           | _/ ;  | 70/       |
| Vilain                              | io Bei          | 214 1           | 14 2             | 34/2                  | Type of          | 1          |       |               | /      |      | /        | /     | /           | /         | 13    |           |
| Phone: 757-                         | 1071-           | 10294           | -                |                       | Analysis         | ( Contract |       | / /           | ,      | / ,  | / /      | / /   | / /         | / /       | 7 8 A | /         |
| Sample ID#                          | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials |                  |            |       |               |        |      |          |       |             |           | /     | CLIENT    |
| CXA-SS073-090                       | 7/8/09          | 1520            | 20               | DH                    | ><               |            |       |               |        |      |          |       |             |           |       |           |
| 03CA-SS076-07C                      |                 | 1505            | So               | DH ]                  | ><               |            |       |               |        |      |          |       |             |           |       |           |
| UCA-55053-090                       |                 | 1600            | 50               | JF & MS               | $\geq$           | -          |       |               |        |      |          |       |             |           |       |           |
| OJCA SSOSAD-O                       | 96              | 1600            | 50               | JF gras               | ><               |            |       |               |        |      |          |       |             |           | DUP   | LICATE    |
| CUCA-5954D-0                        | R.              | 1545            | 50               | JF FINS               | ><               |            |       |               |        |      |          |       |             |           | DUP   | LIGITE    |
| CUCA SSUSULO                        | 76              | 1545            | 500              | 1 This                | ><               |            |       |               |        |      |          |       |             |           | DU    | 0         |
| Cica ssost-on                       | a V             | 1615            | 50               | JEGMS                 | ><               |            |       |               |        |      |          |       |             |           |       |           |
|                                     |                 |                 |                  |                       |                  |            |       |               |        |      |          |       |             |           |       |           |
|                                     | 120000          |                 |                  |                       |                  |            |       |               |        |      |          |       |             |           |       |           |
|                                     |                 |                 |                  |                       |                  |            |       |               |        |      |          |       |             |           |       |           |
|                                     |                 |                 |                  |                       |                  |            |       |               |        |      |          |       |             |           |       |           |
|                                     |                 |                 |                  |                       |                  |            |       |               |        |      |          |       |             |           | 4     |           |
| Relinquished By:                    | ne              | 7/3/cm          | e/Time           | Received B            | By:              |            |       | Relinquis     | hed By |      |          | Rece  | eived for L | aboratory | / By: | Date/Time |
| Relinquished By: Date/Time Received |                 |                 |                  |                       | y:               |            |       | Date/Time     | Ship   | per: |          | Airbi | ll No.:     | ¥         |       |           |
| Relinquished By: Date/Time Received |                 |                 |                  |                       | By:              |            |       | Lab Comments: |        |      |          |       |             |           |       |           |



7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference

of Pgs.

| Project: CTO-           | 11 00           | un ju           | hason            |                       | Tumarour          | nd Time                                      | /     | Jarlas     | /       | /    | /   | /      | /          | /         | /   |                                              |
|-------------------------|-----------------|-----------------|------------------|-----------------------|-------------------|----------------------------------------------|-------|------------|---------|------|-----|--------|------------|-----------|-----|----------------------------------------------|
| Client: CHZ H           | 4 151           | í               |                  |                       | # of Conta        | ainers                                       |       | 1/         | /       |      |     |        |            |           |     | ///                                          |
| Send Results To:        | Cienes          | neve k          | Loore            |                       | Container         |                                              | Lipol | 1//        |         | /    |     |        |            | /         |     | / /                                          |
|                         |                 | veloud          |                  |                       | Preservat<br>Used | ive /                                        | HNOY  |            | /       | _/   |     | /      | _/         | /         | _/  | N. N. S. |
|                         |                 | Brack           |                  |                       | Type of           | ontainer Type reservative sed ype of nalysis |       |            |         |      |     |        |            |           |     |                                              |
| Phone: 75               | 1-671           | - 628           | 14               |                       | /                 | ( " US                                       | ,     | / /        | /       | / /  | /   | /      | /          | /         | 8/  |                                              |
| Sample ID#              | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | 12.0              |                                              |       | /          |         | /    |     |        |            | /         | /   | CLIENT<br>COMMENTS                           |
| CICA - TW29-            | 7/25            | 110:45          | AQ               | K5                    | X                 |                                              |       |            |         |      |     |        |            |           |     |                                              |
| (14) -71V30-            | 7/25            | 18:10           | AQ               | KR                    | X                 |                                              |       |            |         |      |     |        |            |           |     | 73                                           |
| CJCA - TIV33-           | 7/25            | 17.20           | AQ               | 53                    | X                 |                                              |       |            |         |      |     |        |            |           |     |                                              |
| CJCA - TWILL-           | 7125            | 17:05           | AQ               | 05                    | X                 |                                              |       |            |         |      |     |        |            |           |     | -ye                                          |
| CJEH - TIV 372 -        | 7125            | 13:30           | AQ               | DS                    | X                 |                                              |       |            |         |      |     |        |            |           |     |                                              |
| 012509-15<br>CKH -TWIS- | 7/25            | 7:50            | AQ               | BP                    | X                 |                                              |       | 1 1 14     |         |      |     |        |            |           |     |                                              |
| CKH -TWIS-              | 7/26            | 11:05           | AQ               | DS                    | X                 |                                              |       |            |         |      |     |        |            |           |     |                                              |
| CH = 71-20              | 7/26            | 10:15           | AQ               | 05                    | X                 |                                              |       |            |         |      |     |        |            |           |     |                                              |
| GKA - TW21-             | 7126            | 9:20            | AQ               | KS                    | X                 |                                              |       |            |         |      |     |        |            |           |     | and the same                                 |
| CULA-TUVIA-             | 7/26            | TEGO            | AQ               | KS                    | X                 |                                              | 1     |            |         |      |     |        |            |           | 1   | 7 7                                          |
| CJCA - TWIZ -           | 7/20            |                 | AQ               | K5                    | X                 |                                              |       |            |         |      |     |        |            |           |     |                                              |
| CJEA - TIVIY            |                 |                 | AQ               | 103                   | X                 |                                              |       |            |         |      |     |        |            |           |     |                                              |
| Relinquished By:        |                 |                 | e/Time           | Received B            | By:               |                                              |       | Relinquish | ned By: |      |     | Rece   | ived for L | aboratory | By: | Date/Time                                    |
| KINSV                   | realy           | 17/27           | 5:15             |                       | +                 |                                              |       |            |         |      |     |        |            | -         |     |                                              |
| Relinquished By:        |                 | Date            | e/Time           | Received B            | By:               |                                              |       | Date/Time  | Ship    | per: | 100 | Airbil | No.:       |           |     |                                              |
|                         |                 |                 |                  |                       |                   |                                              |       |            |         |      |     |        |            |           |     |                                              |
| Relinquished By:        |                 | Dat             | e/Time           | Received E            | Ву:               |                                              |       | Lab Comr   | nents:  |      | -   |        |            |           | 7,1 | Temp:                                        |
|                         |                 |                 |                  |                       |                   |                                              |       |            |         |      |     |        |            |           |     |                                              |

G.P. W.O.

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference

Pgs. Project: CTO-11 Camp John sun **Tumaround Time** anda 45 CH2M Hill # of Containers Client: Send Results To: General Moore Container Type 686 CO/02 ANO Preservative Address: Two cleveland St Used Type of Virginia Bruck, IVA Analysis Phone: 757-671-6284 Date Time Sample Sampler's CLIENT Sample ID# Sampled Initials Sampled Matrix COMMENTS 11:55 7/25 DB 7/26 50 DB 8:40 parent sample 7126 8:10 DR 50 7/26 8:40 NB MIN CUCA : 5803-7 7 26 10:30 50 7126 14-10 15:05 J(A-コウロキー 10:45 SB 7/26 13:10 X 50 7126 8:50 Relinquished By: Date/Time Received By: Received for Laboratory By: Relinquished By: Date/Time 7/245:15 Relinquished By: Received By: Date/Time Date/Time Shipper: Airbill No .: Relinquished By: Received By: Lab Comments: Temp: Date/Time

G.P. W.O.

Project: CTU-11 camp Johnson

Send Results To: Genevieve Moore

Date

Sampled

7/26

7/26

7/26

15706 Cleveland St.

Virginia Brach, VA

757 - 671-6224

Time

Sampled

110:15

16:20

17:00

9:45

9:45

Sample

Matrix

AQ

50

50

Date/Time

Date/Time

Date/Time

CHIM HILL

Client:

Address:

Phone:

Sample ID#

2- 705C

WIR - SDII -JEA - SBUT -

215-5605-Z

Relinquished By:

Relinquished By:

Relinquished By:

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

waterle,

**Tumaround Time** # of Containers

Container Type

Preservative Used

Type of

Sampler's

Initials

DIB

DB

Received By:

Received By:

Received By:

Analysis ,

Contract #/Billing Reference Pgs. 2000 NA. CLIENT COMMENTS Daven SOURPC Received for Laboratory By: Date/Time Relinquished By: Shipper: Airbill No .: Lab Comments: Temp:

G.P. W.O.

Date/Time

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference

of Pgs.

| Project: C70-                       | I (n            | Ho Egm          | nin Sain         |                       | Tumarour          | nd Time                                                    | /         | rando 45 |        | -/         | > /      | 7      | 7          | 7   | /    |           |
|-------------------------------------|-----------------|-----------------|------------------|-----------------------|-------------------|------------------------------------------------------------|-----------|----------|--------|------------|----------|--------|------------|-----|------|-----------|
|                                     | MH              |                 | -                |                       | # of Conta        | ainers                                                     | /1        | /3       |        | 1/1        |          |        |            |     |      | 7 /       |
| Send Results To:                    |                 |                 | diane.           |                       | Container         |                                                            | الماما عا | Word VW  | Sajai  | 1->        | /        |        | /          | Ĺ,  |      | / · /     |
| Address: 5700                       | 2 (10)          | Veland          | 51.              |                       | Preservat<br>Used | tive /                                                     | MOE       | HEI/     | /      |            |          |        |            |     | _/ å | X9/       |
|                                     |                 | Bruch           |                  |                       | Type of           | ontainer Type esservative sed  /pe of nalysis  CLIEN COMME |           |          |        |            |          |        |            |     |      |           |
| Phone: 157-671-6284                 |                 |                 |                  |                       |                   | Type of Analysis                                           |           |          |        |            |          |        |            |     |      |           |
| Sample ID#                          | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | No.               | 2/10/                                                      | 1/3       | 3/3      | 3/     | /          |          |        |            |     | /    | CLIENT    |
| COPA-TWEE-                          | 7/27            | 12:05           | Aa               | DS                    | X                 |                                                            |           |          |        |            |          |        |            |     |      |           |
| 09C                                 | 7/27            | 10:25           | AQ               | bs:                   | X                 |                                                            |           |          |        |            |          |        |            | Egg |      |           |
| C3FA = TN24-                        | 7/27            | 9:25            | AQ               | DS                    | X                 |                                                            |           |          |        |            |          |        |            |     |      |           |
| CJ CA - TIVZYD-                     | 7/71            | 9:30            | AQ               | 172                   | X                 |                                                            |           |          |        |            |          |        |            |     |      |           |
| 1815 - TISUI -                      | 7/27            | 16:35           | AQ               | K5                    |                   | X                                                          |           |          |        |            |          |        |            |     |      |           |
| 1815-5BOY-                          | 7/27            | 9:00            | SO               | DB                    |                   | X                                                          | X         | X        |        |            |          |        |            |     |      | 1111111   |
| 相写写887-2                            | 7/27            | 12:10           | SO               | DB                    |                   | X                                                          | X         | X        |        |            |          |        |            |     |      |           |
| PLIS TSIBORT                        | 7/27            | 11:10           | So               | DB                    |                   | X                                                          | X         | X        |        |            |          |        |            |     |      |           |
|                                     |                 |                 |                  |                       |                   |                                                            |           |          |        |            |          |        |            | ŀ   |      |           |
|                                     |                 |                 |                  |                       |                   |                                                            |           |          |        |            |          |        |            |     |      |           |
|                                     |                 |                 |                  |                       |                   |                                                            |           |          |        |            |          |        |            |     |      |           |
| Della solale d D                    |                 | I Det           | e/Time           | Description           |                   |                                                            |           | 5 "      |        |            |          | I Dean | brand faul |     | . D  | Data/Fime |
| Relinquished By:                    | Received E      | sy:             |                  |                       | Relinquist        | ned By                                                     |           |          | Hece   | ived for L | aborator | у ву:  | Date/Time  |     |      |           |
| Relinquished By                     | Received B      | By:             |                  |                       | Date/Time         | Ship                                                       | pper:     |          | Airbil | ll No.:    |          |        |            |     |      |           |
| Relinquished By: Date/Time Received |                 |                 |                  |                       |                   | Lab Comments:                                              |           |          |        |            |          |        |            |     |      | Temp:     |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference

of Pgs.

| Project: CTO-    | ( (n            | to E g mi       | nin Soin         |                       | Tumarou           | nd Time | /          | rando of   | -/      | -/   | > / | /        | /              | /         | /     |                    |
|------------------|-----------------|-----------------|------------------|-----------------------|-------------------|---------|------------|------------|---------|------|-----|----------|----------------|-----------|-------|--------------------|
| Client: CHZ      | MH              | SH              | *                |                       | # of Conta        |         | /1         | /3         |         | //   | /   | /        | /              |           | /     | ///                |
| Send Results To: |                 |                 | doore            |                       | Containe          | r Type  | 1 E 1 2021 |            | Salai   | 1-   | /   |          | /              |           | L     | 0./                |
| Address: 5700    | 1 1/10          | Veland          | 51.              |                       | Preserval<br>Used | tive /  | 1100       | HCI/       | /       |      |     |          |                |           | 100   | ~                  |
| Vivo             | wa I            | Bruch           | VA               |                       | Type of           | 1 3     | /          | appleon    | 10/51   | /    | /   |          | /              | /         | 100   |                    |
| Phone: 15        | 1-67            | 1-628           | 4                |                       | Analysis          | 1 30 g  | ,          | My July    | 12/     | / /  | / / | /        | / /            | /         | 8/    |                    |
| Sample ID#       | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | No.               | 2/10/   | 1/3        | HE LINES   | 3/      |      |     |          |                |           | /     | CLIENT<br>COMMENTS |
| CICA -TWEW-      | 7/27            | 12:05           | Aa               | DS                    | X                 |         |            |            |         |      |     |          |                |           |       |                    |
| 131A - TW25-     | 7/27            | 10:25           | Aa               | bs:                   | X                 |         |            |            |         |      |     |          |                | E         |       |                    |
| C37A - TN24-     | 7/27            | 9:25            | AQ               | DS                    | X                 |         |            |            |         |      |     |          |                |           |       |                    |
| CJ CA - TWZYD-   | 7/71            | 9:30            | AQ               | 172                   | X                 |         |            |            |         |      |     |          |                |           |       |                    |
| IRIS-TRW-        | 7/27            | 16:35           | AQ               | K5                    |                   | X       |            |            |         |      |     |          |                |           |       |                    |
| 1215-5804-       | 7/27            | 9:00            | SO               | DB                    | X                 | X       | X          |            |         |      |     |          |                |           |       |                    |
| 程15年5807-2       | 7/27            | 12:10           | SO               | DB                    |                   | X       | X          | X          |         |      |     |          |                |           |       |                    |
| 1815 7 5130KZ    | 7/27            | 11:10           | So               | DB                    |                   | X       | X          | X          |         |      |     |          |                |           |       |                    |
|                  |                 |                 |                  |                       |                   |         |            |            |         |      |     |          |                |           |       |                    |
|                  |                 |                 |                  |                       |                   |         |            |            |         |      |     |          |                |           |       |                    |
|                  |                 |                 |                  |                       | -                 |         |            |            |         |      |     |          |                |           |       |                    |
| B. F             |                 | 1 54            | - T              | D : 15                |                   |         |            |            |         |      |     | I Daniel | to and for all |           | Pow   | Data/Fina          |
| Relinquished By: | laus            |                 | Time             | Received E            | sy:               |         |            | Relinquist | ned By: |      |     | Hece     | ived for L     | aboratory | у ву: | Date/Time          |
| Relinquished By: |                 | Date            | e/Time           | Received E            | By:               |         |            | Date/Time  | Ship    | per: |     | Airbil   | l No.:         |           |       |                    |
| Relinquished By: |                 | Dat             | e/Time           | Received E            | Ву:               |         |            | Lab Com    | ments:  |      |     |          |                |           |       | Temp:              |

G.P. W.O. \_\_\_\_

Frederick, MD 21703 Contract #/Billing Reference (301) 694-5310 Fax (301) 620-0731 Pgs. **Tumaround Time** CTO-11 Your Dudanson # of Containers Client: 100 Container Type Send Results To: Greeneve Moore Preservative Used Address: 5 to developed st Type of Virguia Beach, VA Analysis Phone: · U71-6284 Sampler's Date Time Sample CLIENT Sampled Initials Sample ID# Sampled Matrix COMMENTS 7/25 17:40 DB 7/25 56 17:03 SB CJGA-SB200 50 7/25 17:08 SB 16:55 7/25 50 10:35 16:00 50 14:00 7/24 8:40 DUVINH SUMPLE 50 DB 50 8:40 DB 10:10 Relinquished By: Received By: Received for Laboratory By: Date/Time Date/Time Relinquished By: Relinquished By: Received By: Date/Time Shipper: Date/Time Airbill No .: Relinquished By: Received By: Lab Comments: Temp: Date/Time

7210A Corporate Court

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference

Pgs. Project: CTO-11 Camp Johnson Hardo **Turnaround Time** # of Containers CH2M Hill 10069 Send Results To: Genevieve Moore Container Type (46 Coller 110 Preservative HNUS Address: 5700 Cleveland St Used Type of Vinglara Brack, VA Analysis Phone: 757-631-6284 Sample Sampler's Date Time CLIENT Sample ID# Sampled Sampled Matrix Initials COMMENTS CICA - 5826 -7/23 17:00 50 **B**B 7/23 17:15 SB 50 4-7-040 CJGA TS PAC 5B 14:35 CUCA -SB35-7/24 8:50 50 NB 744 OCA - TWZ4 11:50 CUCA - TIVIT 7/24 8:35 Relinquished By: Date/Time Received By: Received for Laboratory By: Relinquished By: Date/Time Relinquished By: Received By: Date/Time Shipper: Airbill No .: Date/Time Relinquished By: Received By: Date/Time Lab Comments: Temp:

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference of

Pgs.

| Project: CTU-                                      | 11 (a)          | mp Jo             | WIN SOM          |                       | Turnarour           | nd Time | 1     | nordad/    | /      | /      | / | /     | /           | /         | /     |                    |
|----------------------------------------------------|-----------------|-------------------|------------------|-----------------------|---------------------|---------|-------|------------|--------|--------|---|-------|-------------|-----------|-------|--------------------|
|                                                    | HAH             |                   |                  |                       | # of Conta          | ainers  |       | 1/         |        |        |   |       |             |           |       |                    |
| Send Results To:                                   | Graph           | INUE M            | 3010             |                       | Container           | -       | (Su.) | 1/         |        |        |   | /     |             | /         |       | / /                |
| Address: 54                                        | 00 C            | levela            | nd SI            |                       | Preservat<br>Used   | _/      | /     |            | /      | _/     |   | /     | /           | /         | 1000  | 70/                |
| V.                                                 |                 | Beac              |                  |                       | Type of<br>Analysis | 150     | /     | /          |        |        |   |       | /           |           | 100   |                    |
| Phone: 35                                          | 7-6             | 71-62             | 84               |                       | /                   |         | /     | / /        | /      | /      |   | /     |             | /         | 3/    |                    |
| Sample ID#                                         | Date<br>Sampled | Time<br>Sampled   | Sample<br>Matrix | Sampler's<br>Initials | 801                 | 1       |       | /          |        |        |   |       |             |           | /     | CLIENT<br>COMMENTS |
| 0-4-09G                                            | 7/23            | 12:30             | 50               | DB                    | X                   |         |       |            |        |        |   |       |             |           |       |                    |
| CJCA - 3059-<br>2-4-09C<br>CJCA SB 546-<br>2-4-09C | 7/23            | 13:50             | 50               | DB                    | X                   |         |       |            |        |        |   |       |             |           |       |                    |
| 2-4-09C                                            | 7/23            | 13155             | 50               | DB                    | X                   |         |       |            |        |        |   |       |             |           |       | 25                 |
| CJ(A-5041-                                         | 7123            | 15:25             | 50               | DB                    | ×                   |         |       |            |        |        |   |       |             |           |       |                    |
| CACA - 5 5 300-                                    | 7/23            |                   | 50               | DB                    | X                   |         |       |            |        |        |   |       |             |           |       |                    |
|                                                    |                 | =                 |                  |                       |                     |         |       |            |        |        |   |       |             |           |       |                    |
|                                                    |                 |                   |                  |                       |                     |         |       |            |        |        |   |       |             |           |       |                    |
|                                                    |                 |                   |                  |                       |                     |         |       |            |        |        |   |       |             |           |       |                    |
|                                                    |                 |                   |                  |                       |                     |         |       |            |        |        |   |       |             |           |       |                    |
|                                                    |                 |                   |                  |                       |                     |         |       |            |        |        |   |       |             |           |       |                    |
|                                                    |                 |                   |                  |                       |                     |         |       |            |        |        |   |       |             |           |       |                    |
|                                                    |                 |                   |                  |                       |                     |         |       |            |        |        |   |       |             |           |       |                    |
| Relinquished By:                                   | na              | The second second | 7.30             | Received B            |                     |         |       | Relinquish |        |        |   | Recei | ived for La | aboratory | у Ву: | Date/Time          |
| Relinquished By:                                   | Received B      | y:                |                  |                       | Date/Time           | Ship    | per:  |            | Airbil | l No.: |   |       |             |           |       |                    |
| Relinquished By:                                   |                 | Date              | e/Time           | Received E            | By:                 |         |       | Lab Comn   | nents: |        |   |       |             |           |       | Temp:              |

G.P. W.O. \_\_\_\_

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference of Pgs.

| Project: CTo-         | 11 Car          | mp Joh          | mson             |                       | Turnarou         | nd Time | /      | tourdayd Sta | actard | 7    | 1   | /      | 1          | /         | /      |                    |
|-----------------------|-----------------|-----------------|------------------|-----------------------|------------------|---------|--------|--------------|--------|------|-----|--------|------------|-----------|--------|--------------------|
| Client: CH 2 A        | 4 11 (          |                 |                  |                       | # of Cont        | ainers  |        | 1/1          |        |      |     |        |            |           |        | 7 / 1              |
| Send Results To:      | Gener           | reve 1          | Yours            |                       | Containe         |         | koz jo | V/802. Jay   |        |      |     |        |            |           |        |                    |
| Address: # 700        |                 |                 |                  |                       | Preserva<br>Used | tive /  | /      |              | /      | /    |     |        |            |           | 100 98 | No.                |
|                       |                 | Bruch           | The same         |                       | Type of          | 150     | /      | /            |        |      |     | /      |            |           | 100    |                    |
| Phone: 75             | 1-671           | - 6281          | 4                |                       | Allalysis        | 15 m    |        | / /          | /      | / /  | /   | /      | /          | /         | 8/     |                    |
| Sample ID#            | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | Analysis         | 1       |        | /            |        |      |     |        |            |           | ~/-    | CLIENT<br>COMMENTS |
| CJCA-5805-2           | 7/22            | 17:15           | So               | DB                    | X                |         |        |              |        |      |     |        |            |           |        |                    |
| CJCA - 5847-6         | 7/22            | 15:45           | So               | DB                    | X                | X       |        |              |        |      |     |        |            |           |        |                    |
| CJCA -SBUT-           | 7/22            | 16:30           | So               | DB                    | X                |         |        |              |        |      |     |        |            |           |        |                    |
| CJCA - 58437          | 7/22            | 17:50           | 50               | 58                    | X                |         |        | 100          | 174    |      |     |        |            |           |        |                    |
| CJCA = 3845-          | 7/22            | 17:10           | 50               | SB                    | X                |         |        |              |        |      |     |        |            |           |        |                    |
| CATA -SBUSD - 2-5-09C | 7/22            | 17:15           | 50               | 3.B                   | X                |         |        |              |        |      |     |        |            |           |        |                    |
| CUCA-SP 32-09C        | 7/22            | 16:30           | 50               | SB                    | X                |         |        |              |        |      |     |        |            |           |        |                    |
| CJ(A-51203-           | 7/23            | 10:10           | 50               | DB                    | X                |         |        |              |        |      |     |        |            |           |        |                    |
| 7-09C                 | 7123            | n: 00           | 50               | SB                    | X                |         |        |              |        |      |     |        |            |           |        |                    |
| CJCA . 5833-          | 7/23            | 940             | 50               | 5B                    | X                |         |        |              |        |      |     |        |            |           |        |                    |
| 130A-5831-            | 7/23            | 10:45           | 00.              | SB                    | X                |         |        |              |        |      |     |        |            |           |        |                    |
| CACA - SIBSID -       | 7/25            | 10:50           | 50               | SB                    | ×                |         |        |              |        |      |     |        |            |           |        |                    |
| Relinquished By:      |                 | 3-300           | e/Time           | Received E            | By:              |         |        | Relinquish   | ed By: |      |     | Rece   | ived for L | aboratory | By:    | Date/Time          |
| RANSI                 | au              | 7/23            | 5:30             |                       | E                |         | *      |              |        |      |     |        |            |           |        |                    |
| Relinquished By       |                 | Date            | e/Time           | Received B            | By:              |         |        | Date/Time    | Ship   | per: |     | Airbil | No.:       |           |        | 137.15             |
|                       |                 |                 | - )              | y.                    |                  |         |        |              | 1      |      |     |        |            |           |        | -                  |
| Relinquished By       |                 | Dat             | e/Time           | Received E            | Ву:              | 161-    |        | Lab Comr     | nents: |      |     |        |            |           |        | Temp:              |
|                       |                 |                 |                  |                       |                  |         |        | 3            |        |      | 5 . |        |            |           |        |                    |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

The state of the s

Contract #/Billing Reference of

Pgs.

| Project:         | . 7             | -               |                  |                       | Turnarour           | nd Time |      | slarlan    | - ol/  | 7         | 7       | 7      | 7          | 7         | 7        | ///       |
|------------------|-----------------|-----------------|------------------|-----------------------|---------------------|---------|------|------------|--------|-----------|---------|--------|------------|-----------|----------|-----------|
| Project: CTO-    |                 |                 | Moon             |                       | # of Conta          |         | -/-  | 3          | 1      |           | -       | -      | 21/        |           | /        | -/ $/$    |
| Client: CHZF     | 4 Hot           |                 |                  |                       |                     |         |      |            | Amin   | 1/12 Anos | 7/22.4  | 11 124 | /          | /         | /        | / /       |
| Send Results To: | Grene           | inque           | Muore            |                       | Container           |         |      |            | LIM    |           |         | 115 1  | /          | /         | -        | 20.       |
| Address: 5 %     | o cle           | vilanc          | 1 5+             |                       | Preservat<br>Used   | ive /H  | d/   | 1003/      | /      |           | NO3/    | _/     | _/_        | _/        | 3        | 7         |
|                  |                 | Beach           |                  |                       | Type of<br>Analysis | / -     | 15   | J.5 0      | /      | 5         | 3/00, 5 | 7      | /          |           | 100      |           |
| Phone: 75        | 7-67            | 1-628           | Ч                |                       | Allalysis           |         | De J | 130 13     | 2      | 1 9       | 8 N. J  | /      | /          | /         | 8/       |           |
| Sample ID#       | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | 120                 |         | 15   | 100        | 100    | 5/3/3     |         |        |            |           | /        | CLIENT    |
| 1285-MWOI-       | 7/23            | 8:42            | AQ               | DS                    | X                   | X       | ×    | X          |        |           |         |        |            |           |          |           |
| 1885-789-        |                 | 9:25            | 1                | PZ                    | X                   |         |      |            |        |           |         |        |            |           |          |           |
| ESTA -TWIT-      |                 | 9:40            |                  | 122                   | X                   | X       | X    | X          |        |           |         |        |            |           |          |           |
| OAL              | 4               | 14:20           | N.               | KS                    |                     |         |      |            | X      | X         |         |        |            |           | high tus | b.        |
|                  |                 |                 |                  |                       |                     |         |      |            |        |           |         |        |            |           |          |           |
|                  |                 |                 |                  |                       |                     |         |      |            |        |           |         |        |            |           |          |           |
|                  |                 |                 |                  |                       |                     |         |      |            |        |           |         |        |            |           |          |           |
|                  |                 |                 |                  |                       |                     |         |      |            |        |           |         |        |            |           |          |           |
|                  |                 |                 |                  |                       |                     |         |      |            |        |           |         |        |            |           |          |           |
|                  |                 |                 |                  |                       |                     |         |      |            |        |           |         |        |            |           |          |           |
|                  |                 |                 |                  |                       |                     |         |      |            |        |           |         |        |            |           |          |           |
|                  |                 |                 |                  |                       |                     |         |      |            |        |           |         |        |            |           |          |           |
| Relinquished By: |                 | 7/23            | S30              | Received B            | ita                 |         |      | Relinquish |        |           |         | Rece   | ived for L | aboratory | / Ву:    | Date/Time |
| Relinquished By: |                 | Date            | e/Time           | Received B            | ly:                 |         |      | Date/Time  | Ship   | per:      |         | Airbil | l No.:     |           |          |           |
| Relinquished By  |                 | Dat             | e/Time           | Received E            | By:                 |         |      | Lab Comn   | nents: |           |         |        |            |           |          | Temp:     |
|                  |                 | -               |                  |                       |                     |         |      |            |        |           |         |        |            |           |          |           |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference |    |
|------------------------------|----|
|                              | of |

| Project: CTO-       | 11 6                              | Lamp            | ohu son          |                       | Tumarour          | nd Time | /         | Sight    | lardy | / /    | 7   | 7          | 7         | 1   | 1         | //       |
|---------------------|-----------------------------------|-----------------|------------------|-----------------------|-------------------|---------|-----------|----------|-------|--------|-----|------------|-----------|-----|-----------|----------|
| Client: CHZA        | a Hin                             |                 |                  |                       | # of Conta        | ainers  | /         | 1/       | /     |        |     |            |           |     |           | 7 / 1    |
| Send Results To:    |                                   |                 | doore.           |                       | Container         |         | /L pil    | 1/1LPM   | /     |        |     | /          | /         | /   |           |          |
| Address: 5400       | clev                              | eland           | SI               |                       | Preservat<br>Used | ive /   | 160/      |          | 1     |        |     |            |           |     | _/ .      | 40/      |
|                     |                                   | Brack           |                  |                       | Type of           | 1500    | /1        | 50       |       |        | /   | /          | /         | /   | 300       |          |
|                     |                                   | 71-0            |                  |                       | Analysis          |         | 20 (3)    | 1        |       | / /    | / / | /          | / /       | /   | 8/        |          |
| Sample ID#          | Date<br>Sampled                   | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | 200               |         | Y         |          | /     |        |     |            |           |     | /         | CLIENT   |
| CICA - THISE -      | 7/23                              | 13:15           | AQ               | DS                    |                   |         |           |          |       |        |     |            |           |     | Dave      | + Sample |
| CHE-TWSS-<br>CHE-MS | 1                                 | 13:15           | 1                | DS                    |                   |         |           |          |       |        |     |            |           |     | MS        |          |
| -04C-SD             | 1                                 | 13:15           |                  | DS                    |                   |         |           |          |       |        |     |            |           |     | MSI       |          |
| -04C.               |                                   | 14:30           |                  | KR                    |                   |         |           |          |       |        |     |            |           |     |           |          |
| -01C                |                                   | 16:50           |                  | 05                    |                   |         |           |          |       |        |     |            |           |     |           |          |
| - 69C               | 1                                 | 15:20           | 4                | DS                    |                   |         |           |          |       |        |     |            |           |     |           |          |
|                     |                                   |                 |                  |                       |                   |         |           |          |       |        |     |            |           |     |           |          |
|                     |                                   |                 |                  |                       |                   |         |           |          |       |        |     |            |           |     |           |          |
|                     |                                   |                 |                  |                       |                   |         |           |          |       |        |     |            |           |     |           |          |
|                     |                                   |                 |                  |                       |                   |         |           |          |       |        |     |            |           |     |           |          |
|                     |                                   |                 | -                |                       |                   |         |           |          |       |        |     |            |           |     |           |          |
|                     |                                   |                 |                  |                       |                   |         |           |          |       |        |     |            |           |     |           |          |
| Relinquished By:    | cur                               | Date 7/20/9     | Received B       |                       |                   |         | Relinquis |          |       |        |     | ived for L | aboratory | Ву: | Date/Time |          |
| Relinquished By     | Relinquished By: Date/Time Receiv |                 |                  |                       |                   |         |           | Date/Tim | e Sh  | ipper: |     | Airbil     | I No.:    |     |           |          |
| Relinquished By     |                                   | Dat             | e/Time           | Received B            | ly:               |         |           | Lab Con  | ments |        |     |            |           |     |           | Temp:    |

7210A Corporate Court
Frederick, MD 21703
(301) 694-5310
Fax (301) 620-0731

Contract #/Billing

| Contract #/Billing Reference  |    |     |
|-------------------------------|----|-----|
| Software William & Figure 100 |    | -   |
|                               | of | Pgs |
|                               | of | P   |

| Project: CTU-1   | 1 Ca                              | up Joh          | N SOM            |                       | Tumarour          | nd Time                                 | /      | stardardst | undar  | 7     | 1 | 1      | 7          | 1         | 1                                       | //        |
|------------------|-----------------------------------|-----------------|------------------|-----------------------|-------------------|-----------------------------------------|--------|------------|--------|-------|---|--------|------------|-----------|-----------------------------------------|-----------|
| Client: CH 2 M   | H:0                               |                 |                  |                       | # of Conta        | ainers                                  |        | 1/1        |        |       |   |        |            |           |                                         | 7 / 1     |
| Send Results To: | Gieves                            | neve 1          | Woode            |                       | Container         |                                         | 12 POH | 1/12 poly  |        |       |   |        |            |           |                                         | / / .     |
| Address: 510     | o cle                             | vetave          | St.              |                       | Preservat<br>Used | ive /H                                  | NOS/   |            | /      |       |   |        |            |           | _/ :                                    | 40/       |
| V./              | mile                              | Brach           | , VA             |                       | Type of           | 150                                     | 100    | 13/        |        | /     |   | /      | /          | /         | 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |           |
| Phone:           | 57-0                              | 71- 62          | 84               |                       | Analysis          | 3 3/2                                   | 8 26   | 1 /        | /      |       |   | /      | /          | /         | 8/                                      |           |
| Sample ID#       | Date<br>Sampled                   | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | Analysis          | 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |        | /          |        |       |   |        |            | /         |                                         | CLIENT    |
| CICA-TW35-       | 7/22                              | 10:00           | AQ               | 05                    | X                 | X                                       |        |            |        |       |   |        |            |           |                                         |           |
| CICA - TWEED-    | 7/22                              | 16:05           | AQ               | 05                    | X                 | X                                       |        |            |        |       |   |        |            |           |                                         |           |
| CJEA + TW37-     | 7172                              | 10:40           | AQ               | DS                    | ×                 | X                                       |        |            |        |       |   |        |            |           |                                         |           |
|                  |                                   |                 |                  |                       |                   |                                         |        |            |        |       |   |        |            |           |                                         |           |
|                  |                                   |                 |                  |                       |                   |                                         |        |            |        |       |   |        |            |           |                                         |           |
|                  |                                   |                 |                  |                       |                   |                                         |        |            |        |       |   |        |            |           |                                         |           |
|                  |                                   |                 |                  |                       |                   |                                         |        |            |        |       |   |        |            |           |                                         |           |
|                  |                                   |                 |                  |                       |                   |                                         |        |            |        |       |   |        |            |           |                                         |           |
|                  |                                   |                 |                  |                       |                   |                                         |        |            |        |       |   |        |            |           |                                         |           |
|                  |                                   |                 |                  |                       |                   |                                         |        |            |        |       |   |        |            |           |                                         |           |
|                  |                                   |                 |                  |                       |                   |                                         |        |            |        |       |   |        |            |           |                                         |           |
|                  |                                   |                 |                  |                       |                   |                                         |        |            |        |       |   |        |            |           |                                         |           |
| Relinquished By  |                                   |                 | 5:30             | Received E            | *                 |                                         |        | Relinquis  |        |       |   | Rece   | ived for L | aboratory | / By:                                   | Date/Time |
| Relinquished By  | Relinquished By: Date/Time Receiv |                 |                  |                       |                   |                                         |        | Date/Time  | Ship   | pper: |   | Airbil | l No.:     |           |                                         |           |
| Relinquished By  |                                   | Dat             | e/Time           | Received E            | Ву:               |                                         |        | Lab Com    | ments: |       |   |        |            |           |                                         | Temp:     |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference |    |
|------------------------------|----|
|                              | of |

| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | II Cak          | y John          | Sma              |                       | Turnarou          | nd Time | 1      | landard 1 | and my                                | augard/s | hardend/s | arear / | 4+00-9/    | brode if | 1                                     | //                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|------------------|-----------------------|-------------------|---------|--------|-----------|---------------------------------------|----------|-----------|---------|------------|----------|---------------------------------------|--------------------|
| THE RESERVE TO SERVE THE PERSON NAMED IN COLUMN TO SERVE THE PERSO | H:H I           | T-STA           | 3011             |                       | # of Cont         | ainers  | /1     | /1        | 1                                     | /1       | /         | /1      | /          | 1/       |                                       | 7 /                |
| Send Results To:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gene            | 1:0140          | MOOVE            |                       | Containe          | гТуре   | 184.50 | 1801. YV  | 4400 V                                | 1 H MA   | / MANON   | Lanks   | LOW        | /        |                                       | 7 /                |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | veland          | St.              |                       | Preserval<br>Used | tive /  | /      | 1         | 0 /                                   | NOW      | /         | /1      | NO3/       |          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 70.                |
| Vivainia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                 | A                |                       | Type of           | 13      | 1      | 10        | /                                     | /        | 10        | - /     | 4          |          | 100                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | - (028          | 4                |                       | Analysis          | 1301    | /      | 1         | Fa 15                                 | 1        | 1/2       | 3 30    | /          | /        | 2/                                    |                    |
| Sample ID#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | 100               | 1       | 1/3    | 1 / E     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10/3     | 10 mm     | 1       |            |          | /                                     | CLIENT<br>COMMENTS |
| 1-09G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7/21            | 10:15           | So               | DB                    | X                 |         |        |           |                                       |          |           |         |            |          |                                       |                    |
| CICA-5873-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7/21            | 1000            | So               | DB                    | X                 | X       |        |           |                                       |          | 200       | 1       |            |          |                                       |                    |
| CICA -5874-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/21            | 12:15           | 50               | DB                    | X                 |         |        |           |                                       | 1-0      | k t       |         |            |          |                                       |                    |
| CHCA - 3875-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/21            | 12:36           | 50               | DB                    | X                 |         |        | 100       | 70                                    | ,        |           |         |            |          |                                       | *                  |
| QCA -5678-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7/21            | 15:00           | So               | DB                    | X                 |         | V      | TES .     |                                       |          |           |         |            |          |                                       |                    |
| 63CA - 587Z-<br>4-10-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7/21            | 10:10           | SO               | DB                    | ×                 |         | 1      |           |                                       |          |           |         |            |          |                                       |                    |
| 1285-Tiglion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7121            | 17:50           | AQ               | RS                    |                   |         |        |           |                                       |          |           |         |            |          |                                       |                    |
| 1885 -MWUS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7121            | 17:20           | AG               | DS                    |                   |         | X      | X         | X                                     | X        | *         |         |            |          |                                       | 7                  |
| CYA-FEOI-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7/21            | 17:40           | AQ               | RS                    |                   |         | 1      |           |                                       |          | X         |         |            |          |                                       |                    |
| 4-09G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7/21            | 17:50           | 50               | bB                    | X                 |         |        | 1         |                                       |          |           |         |            |          | >                                     |                    |
| 2-096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7/21            | 16:40           | 50               | DB                    | X                 |         |        |           |                                       |          |           |         |            |          |                                       |                    |
| CICA - 5676-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/21            | 17:10           | 50               | DB                    | X                 |         |        |           |                                       |          |           |         |            |          |                                       |                    |
| Relinquished By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 0.00000         | e/Time<br>10:30  | Received E            | By:               |         |        | Relinquis | hed By:                               |          |           | Rece    | ived for L | aborator | y By:                                 | Date/Time          |
| Relinquished By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Date            | e/Time           | Received B            | By:               |         |        | Date/Time | e Ship                                | per:     |           | Airbil  | l No.:     |          |                                       |                    |
| Relinquished By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Dat             | re/Time          | Received E            | Зу:               |         |        | Lab Com   | ments:                                |          |           |         |            |          |                                       | Temp:              |

G.P. W.O. \_\_\_\_\_

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference

of Pgs.

| Project: C70-    | 11 (a                               | mp Jo           | nncon            |                       | Turnarou          | nd Time | /               | Jay day  | /           | 7      | /    | 1          | 1          | /        | 1                                      |           |
|------------------|-------------------------------------|-----------------|------------------|-----------------------|-------------------|---------|-----------------|----------|-------------|--------|------|------------|------------|----------|----------------------------------------|-----------|
| Client: CI47 IU  | Hall                                |                 |                  |                       | # of Conta        | ainers  | /               | 1/       |             |        |      |            |            |          | /                                      | 7 /       |
| Send Results To: |                                     | ieve L          | loore            |                       | Containe          |         | 12 part         | 1        |             | /      | (    |            |            |          |                                        | / / /     |
| Address: 54      | DO C1                               | evelau          | d St.            |                       | Preservat<br>Used | tive    | 100 /           |          |             |        |      |            |            |          | _/ å                                   | 40/       |
| Viv              | q dia                               | Brack           | u, vA            |                       | Type of           | 13 6    |                 | /        | /           | /      |      | /          | /          | /        | ************************************** |           |
|                  |                                     | 71-67           |                  | 1                     | Analysis          |         | /               | / /      | /           | / /    | /    | /          | /          | /        | 8/                                     |           |
| Sample ID#       | Date<br>Sampled                     | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | 50,0              | 5/      |                 |          |             |        |      |            |            |          | /                                      | CLIENT    |
| 072101-15        | 7/21                                | 17:00           | Na               | BP                    | X                 |         |                 |          |             |        |      |            |            |          |                                        |           |
|                  |                                     |                 |                  |                       |                   |         | 1               |          |             |        |      |            |            |          |                                        |           |
|                  |                                     |                 |                  |                       |                   | -       |                 |          |             |        |      |            |            |          |                                        |           |
| 4.5              |                                     |                 |                  |                       |                   | 111     | and the same of |          |             |        |      |            |            |          |                                        |           |
|                  |                                     |                 |                  |                       |                   |         |                 |          |             |        |      |            |            |          |                                        |           |
|                  |                                     | 7.              |                  |                       |                   |         |                 |          |             |        |      |            |            |          |                                        | 1         |
|                  |                                     |                 |                  |                       |                   |         |                 |          | 1           |        |      |            |            |          |                                        |           |
|                  |                                     |                 |                  |                       |                   |         |                 | -        |             |        |      |            |            |          |                                        | 8-        |
|                  |                                     |                 |                  |                       |                   |         |                 |          |             |        |      |            |            |          |                                        |           |
|                  |                                     |                 |                  |                       |                   |         |                 |          |             |        |      |            |            |          |                                        |           |
|                  |                                     |                 | ,                | -                     |                   |         |                 | -        | -           | -      |      |            |            |          |                                        |           |
| Relinquished By  |                                     | Date            | e/Time           | Received E            | By:               |         |                 | Relinqui | ahad Du     |        |      | Poor       | ived for L | aboraton | , By:                                  | Date/Time |
| DASha            |                                     | 7/22            | r leceived L     | y.                    |                   |         | neiinqui        | sned by  |             |        | nece | ived for L | aboratory  | , by.    | Date/fille                             |           |
| Relinquished By  | Received E                          | By:             |                  |                       | Date/Tin          | e Ship  | oper:           |          | Airbil      | l No.: |      |            |            |          |                                        |           |
|                  |                                     |                 |                  |                       |                   |         |                 |          |             |        |      |            |            |          |                                        |           |
| Relinquished By  | Relinquished By: Date/Time Received |                 |                  |                       |                   |         |                 | Lab Con  | nments:     |        |      |            |            |          |                                        | Temp:     |
|                  |                                     |                 |                  |                       |                   |         |                 |          |             |        |      |            |            |          | 1                                      | 1         |
|                  |                                     |                 |                  |                       |                   |         |                 | 1000     | The same of |        |      |            |            |          | -                                      |           |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

THE PARTY OF THE P

Contract #/Billing Reference

Pgs. Jandard Sandare Project: CTO-11 Camp Johnson **Turnaround Time** Client: CH2M 1511 # of Containers BOD MI Send Results To: Genevieve Moore Container Type 646 COOP NO. Preservative Address: 5100 cleveland St Used Type of Virginia Brach, VA Analysis Phone: 757-671-6284 Time Sampler's Date Sample CLIENT Initials Sample ID# Sampled Sampled Matrix COMMENTS 7/22 10:20 DB CA-5675-2 7/22 50 10:25 CJCA - 5861-2 50 7/22 9:30 DB 30A - 5854-50 10:50 avent sample 7/22 DIS CJUI - 3854 15:50 DB CACH 3854-7122 10:50 SO DB MSD CKA-SISTE-7/22 13:50 50 DB CA-SETUD 7/22 13:55 50 DB CICA -5342-7 22 13:20 DB CJCA - SEU8-7/22 SU DB 14:20 CJCA -5800-7/22 14:45 DB Relinquished By: Date/Time Received By: Received for Laboratory By: Date/Time Relinquished By: Shaw Shipper: Relinquished By: Date/Time Received By: Date/Time Airbill No .: Temp: Relinquished By: Received By: Date/Time Lab Comments:

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference

|                    |                 |                 |                  |                       |                   |         | 2    | 301) 020-01 |        |        |     |        |            |           | VI  | ryail              |
|--------------------|-----------------|-----------------|------------------|-----------------------|-------------------|---------|------|-------------|--------|--------|-----|--------|------------|-----------|-----|--------------------|
| Project: CT        | 0-11            |                 |                  |                       | Tumarou           | nd Time | ,    | D.          | 00     | a trad | 1   | ,      | -          |           | (   | ( )                |
| Client:            | 2m              | HILL            |                  |                       | # of Conta        | ainers  | / 3  | 3 /         | /      |        |     |        |            |           |     | 7 /                |
| Send Results To:   | April           | vieve           | Monte            |                       | Container         |         | /40m | //          |        |        |     |        |            |           |     | / /                |
| Address: 5700      |                 |                 | St Ste           |                       | Preservat<br>Used | ive /   | 101/ |             | /      |        |     |        |            |           | 100 | 70/                |
| Virgina            |                 |                 |                  |                       | Type of           | /       | /    | /           | /      |        | /   | /      | /          | /         | /00 | 9/                 |
| DI                 |                 | - 624           |                  |                       | Analysis          | /       | /    | / /         | ,      | /      | / / | /      | /          | / /       | 2/  |                    |
| Sample ID#         | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | 1                 | 3/      |      |             |        |        |     |        |            |           | /   | CLIENT<br>COMMENTS |
| 1R17-TWOI-ORC      | 7/29/09         | 1415            | GW               |                       | ><                |         |      |             |        |        |     |        |            |           |     |                    |
| IRESTABLE OR       | 7/30/09         | 0945            | GW               |                       | X                 |         |      |             |        |        |     |        |            |           |     |                    |
| 1885-Thous-090     | 7/30/09         | 0950            | GUI              |                       | ><                |         |      |             |        |        |     |        |            |           | 1   |                    |
| \$15 TEVEOR        | 7/34/09         | 1200            | Blank            |                       | ><                |         |      |             |        |        |     |        |            |           |     |                    |
| Ke-ther na-        | 7/3/25          | 1200            | Blook            |                       | >4                |         |      |             |        |        |     |        |            |           |     |                    |
| 世のできるからな           | 7/30            | 1200            | SW               |                       | ><                | N. T.   |      |             |        |        |     |        |            |           |     |                    |
| 1853-PURTOR        | 7/30            | 0910            | 610              |                       | >                 | *.      |      |             |        |        |     |        |            |           |     |                    |
| 3CA - EH02 - 07500 | 17/30           | 1245            | Blank            |                       | ><                |         |      |             |        |        |     |        |            |           |     |                    |
|                    |                 |                 |                  |                       |                   |         |      |             |        |        |     |        |            |           |     |                    |
|                    |                 |                 |                  |                       |                   |         |      |             |        |        |     |        |            |           |     |                    |
|                    |                 |                 |                  | 1                     |                   |         |      |             |        |        |     |        |            |           |     |                    |
|                    |                 |                 |                  |                       |                   |         |      |             |        |        |     |        |            |           |     |                    |
| Relinquished By:   | ) [             | 7 30            | e/Time           | Received B            | sy:               |         |      | Relinquish  | ed By: |        |     | Recei  | ived for L | aboratory | Ву: | Date/Time          |
| Relinquished By:   |                 | Date            | e/Time           | Received B            | y:                |         |      | Date/Time   | Ship   | pper:  |     | Airbil | No.:       | .,        |     |                    |
| Relinquished By:   |                 | Dat             | e/Time           | Received B            | By:               |         |      | Lab Comm    | nents: |        |     |        |            |           |     | Temp:              |

G.P. W.O. \_\_\_\_

7210A Corporate Court Frederick, MD 21703 (301) 694-3310 Fax (301) 620-0731

| Contract | #/Billing | Reference |
|----------|-----------|-----------|
|----------|-----------|-----------|

Project: Turnaround Thrio Client: # of Containers Container Type 686 Color Mo Send Results To: Genevieue Moore Preservative Used Type of Analysis Phone: Sample Sampler's Date Time CLIENT Sample ID# Sampled Sampled Matrix Initials COMMENTS 1200 1895-1W-5-00C 1885-TOURT- UPC 0910 7/30 1245 Blank DS 31A-ERVZ-07349 Relinquished By: Received By: Received for Laboratory By: Date/Time Relinquished By: Date/Time Relinquished By: Received By: Date/Time Shipper: Date/Time Airbill No .: Relinquished By: Lab Comments: Date/Time Received By: Temp:

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

Contract #/Billing Reference

Pgs.

|                  |                 |                 |                  |                       |                   |         |     | /          | 7       | 7    | 1   |        |            |          |       |                    |
|------------------|-----------------|-----------------|------------------|-----------------------|-------------------|---------|-----|------------|---------|------|-----|--------|------------|----------|-------|--------------------|
|                  | -11             |                 |                  |                       | Turnarour         | id Time |     | MG         | (4)     | The  | 1   |        |            |          |       |                    |
| Client: (1)2     | mille           | ce              |                  |                       | I we come         | ations  | /   | 1/1        | /       | 1/1  | /   | 1      | 1          |          | /     |                    |
| Send Results To: | Gener           | irove           | Moort            | ×                     | Containe          |         | 11  | 114        | 1/4     | 114  | /   |        |            |          | /     | 1                  |
| Address: 570     | 0 (1            | evelan          | d St             | Steloi                | Preserval<br>Used | tive /  | -/  | - /#       | 103/-   | -/   | _/  | _/     | /          | _/       | 1000  | N. A.              |
| Virania          |                 |                 |                  |                       | Type of Analysis  |         | 130 | 1          | 15      |      | /   |        |            |          | 100   | 5 /                |
| Phone: 757       | 1-671           | -628            | 24               |                       | Allalysis         | 0/      | E   | 1=/        | 2/      | / /  | / / | /      | / /        | /        | 8/    |                    |
| Sample ID#       | Date<br>Sampled | Time<br>Sampled | Sample<br>Matrix | Sampler's<br>Initials | 10                | /2      | 7/  | 3/3        | /       |      |     |        |            |          | 1     | CLIENT<br>COMMENTS |
| IRI7-TWO1-09C    | 7/29/09         | 1415            | GW               |                       | ><                | ×       | ><  | . ><       |         |      |     |        |            |          |       |                    |
| 1898-THOW 09C    | 7/30/09         | 0945            | 6W               |                       | ×                 | ><      | ×   |            |         |      |     |        |            |          |       |                    |
| 1895. TWOLD ORC  | 7/30/09         | 0150            | ew               |                       | ><                | >/      | ><  |            |         |      |     |        |            |          |       |                    |
| 课完一年至1-1250日     | 1/2/19          | 1200            | Black            |                       | ><                | ×       | ><  | 356        | (0)     |      |     |        |            |          |       |                    |
|                  |                 |                 |                  |                       |                   |         |     |            |         |      |     |        |            |          |       |                    |
|                  |                 |                 |                  |                       |                   |         |     |            |         |      |     |        |            |          |       |                    |
|                  |                 |                 |                  |                       |                   |         |     |            |         |      |     |        |            |          |       |                    |
|                  |                 |                 |                  |                       |                   |         |     |            |         |      |     |        |            |          |       |                    |
|                  |                 |                 |                  |                       |                   |         | -   |            |         |      |     |        |            |          |       |                    |
|                  |                 |                 |                  |                       |                   |         |     |            |         |      |     |        | -          |          |       |                    |
|                  |                 |                 |                  |                       | -                 |         | -   |            |         |      |     |        |            |          |       |                    |
| D. F. Jaha I.B.  |                 | 1 54            | 75               | D 1 15                |                   |         |     |            |         |      |     |        | 16.1       | 1        | D     | Determine          |
| Relinquished By: | -               |                 | /Sec             | Received B            | sy:               |         |     | Relinquish | ned By: |      |     | Hece   | ived for L | aborator | у ву: | Date/Time          |
| Relinquished By: |                 | Date            | e/Time           | Received B            | y:                |         |     | Date/Time  | Ship    | per: |     | Airbil | l No.:     | *        |       |                    |
| Relinquished By: |                 | Date            | e/Time           | Received E            | By:               |         |     | Lab Comr   | nents:  |      |     |        |            |          |       | Temp:              |

G.P. W.O. \_\_\_\_

### Nº .01691

# CompuChem a division of Liberty Analytical Corp.

### **CHAIN OF CUSTODY**

501 Madison Ave. Cary, NC 27513

Phone: 919-379-4100 Fax 919-379-4040

Courier
Airbill No.
Sampling Complete? Y or N

|                                         | ent/Reporting Information |       |           |            | Proj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ect Inf  | ormatic | on      |          |        |         | 1000      | Rec | uested | Analysi | s (inclu | de meth | nod and | bottle ty | pe)    |   |             | Matric           | ces                |
|-----------------------------------------|---------------------------|-------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|----------|--------|---------|-----------|-----|--------|---------|----------|---------|---------|-----------|--------|---|-------------|------------------|--------------------|
| Company Name                            | the c                     |       | Project N | ame        | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   |             |                  | nd water           |
|                                         | HILL                      |       |           |            | 0-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | CX      | H       |          |        |         |           |     |        |         |          |         |         |           |        |   | F 447 /1465 |                  | e water            |
| Address<br>5700 Cl                      | eveland St Ste 10         | 21    | Sampling  | Location   | 10 Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hn       | son     |         |          |        |         |           |     |        |         |          |         |         |           |        |   | -37/2015 5  |                  | e water<br>ediment |
| City                                    | State Zip                 |       | Turnarou  | nd time    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |         |          |        |         | 1         |     |        |         |          |         |         |           |        |   | TB - 7      | Trip Bl          | ank                |
| VIVOIDIA B                              | arli VA                   |       |           | Der        | Curt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rac      | +       |         |          |        |         |           |     |        |         |          |         |         |           |        |   | RI - R      | Rinsate          |                    |
| Project Contact                         |                           |       | Batch QC  | or Projec  | t Specific's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ? If Sp  | ecific, | which   | Sampl    | le ID? |         | 1         |     |        |         |          |         |         |           |        |   | WP -        |                  | THE                |
| Cenevie                                 | eve Moore                 |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         | 5         |     |        |         |          |         |         |           |        |   | 0 - 0       | ther             |                    |
| Phone # 757-6                           | 71-6284                   |       | Are aque  | ous sample | es field filt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tered fo | or meta | ıls? Y  | or N     | )      |         | 101       |     |        |         |          |         |         |           |        |   |             |                  |                    |
| Sampler's Name                          |                           |       | Are high  | concentral | tions expec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cted?    | Y or N  | If ye   | s, which | ch ID( | s)?     | =         |     |        |         |          |         |         |           |        |   |             | / Samp<br>(Lab U | ole Info           |
| 100000000000000000000000000000000000000 |                           | Colle | ection    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | Numbe   | r of Pr | eserve   | d Bott | les     |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
|                                         |                           |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        | 1       | 1 2       |     |        |         |          |         |         |           |        |   |             |                  | 17.74              |
| CompuChem No                            |                           |       |           |            | # of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | Ħ       | 33      | H2S04    | НС     | 10      | 2         |     |        |         |          |         |         |           |        |   |             |                  |                    |
| (Lab Use)                               | Field ID                  | Date  | Time      | Matrix     | 3100 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HCI      | NaOH    | HN03    | 42S      | МЕОН   | Other   | 07        |     |        |         |          |         |         |           |        |   |             |                  | 170000             |
| (allo 505)                              | CJCA-EBOI-071909-15       | 7/29  |           | Elank      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         | 1       |          |        |         | X         |     |        |         |          |         |         |           |        |   |             |                  |                    |
| 2                                       | Con Citivitis             |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
|                                         |                           |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
|                                         |                           |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         | -         |     |        |         |          |         |         |           |        |   | H           | +                |                    |
|                                         |                           |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   | $\Box$      | +                |                    |
|                                         |                           |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
|                                         |                           |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         |           |     | .,1    |         |          |         |         |           |        |   |             |                  |                    |
|                                         |                           |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
|                                         |                           |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
|                                         | TYTE WILL BE              |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
|                                         | Vie Value of              |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
|                                         |                           | Li    | ab Use On | lv         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | - 6     |          |        | -       |           |     |        |         | No. in   |         | Com     | ments     |        |   |             |                  |                    |
| Sample Unpacked E                       | By:                       |       |           | 1          | samples ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | necked   | for su  | fide &  | chlor    | ine? Y | or NA   |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
| Sample Order Entry                      |                           |       |           | 1          | enol samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
|                                         | n Good Condition? Y or N  |       |           |            | oles checke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
| If no, explain:                         |                           |       |           | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |          |        |         |           |     |        |         |          |         |         |           |        |   |             |                  |                    |
|                                         |                           | 3555  |           | -1 272     | STATE OF THE PARTY |          |         | Sample  | Custo    | ody    |         | 1 1 1 1 1 |     |        | 10. 10  |          |         | THE     |           |        |   |             |                  |                    |
| Relinquished by:                        | -P-Dir                    |       |           | Date/Ti    | me: 7/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | end!     | (4)     | 17      | 30       | Rece   | ived by | /:        |     |        |         |          |         |         | Date/     | Γime:  |   |             |                  |                    |
| Relinquished by:                        |                           |       |           | Date/Ti    | me:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |         |         |          | Rece   | ived by | /:        |     |        |         |          |         |         | Date/     | Γime:  |   |             |                  |                    |
| Subcontact? Y or                        | N If yes, where?          |       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | Custo   | ody Se   | eal(s) | intact? | Y or 1    | N   | On Ic  | e? Y (  | or N     | H       |         | Coole     | r Temp | : |             |                  | °C                 |

# CompuChem a division of Liberty Analytical Corp.

### **CHAIN OF CUSTODY**

501 Madison Ave. Cary, NC 27513

Phone: 919-379-4100 Fax 919-379-4040

Courier
Airbill No.
Sampling Complete? Y or N

|                    | ient/Reporting Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |           |           | Proj         | ect Inf | ormati  | on      |        |        |                |          | Rec | juested | Analysi | s (inclu | de meth | od and | bottle ty | pe)    |   | 1       | Matrice  | es             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|-----------|--------------|---------|---------|---------|--------|--------|----------------|----------|-----|---------|---------|----------|---------|--------|-----------|--------|---|---------|----------|----------------|
| Company Name       | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Project N | -         |              |         |         |         |        |        |                |          |     |         |         |          |         |        |           |        |   | GW - C  |          |                |
| CHZM               | HILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |           | (TV       |              | 0       | CA      |         |        |        |                |          |     |         |         |          |         |        |           |        |   | WW -    |          | -0.00 marketon |
| Address            | 11-1-1-1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lat   | Sampling  | Location  |              |         | _       |         |        |        |                |          |     |         |         |          |         |        |           |        |   | SW - S  |          | S. Princetonia |
| City               | Clareland St Ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101   | T         | Can       | 79-10        | nn!     | SOM     | _       |        |        |                |          |     |         | 913     |          |         |        |           |        |   | SO - So |          |                |
| Virginia B         | THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW |       | Turnarou  |           | r Cor        | +       | +       |         |        |        |                |          |     |         |         |          |         |        |           |        |   | TB - Ti |          | nk             |
| Project Contact    | IGZN VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | Batch OC  |           | t Specific   |         |         | which   | Samn   | le ID? |                |          |     |         |         |          | 7410    |        |           |        |   | WP - V  |          |                |
| Renovie            | ve Moore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Daten QC  | of Projec | t Specific   | . II op | cerric, | willeli | Samp   | ic iD. |                |          |     |         |         |          |         |        |           |        |   | O - Oth |          |                |
| Phone #            | V= 111001 €                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | Are aque  | ous sampl | es field fil | tered f | or meta | als? Y  | or N   |        |                |          |     |         |         |          |         |        |           |        |   |         |          |                |
| 757-               | 671-6284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |           |           |              |         |         |         |        |        |                |          |     |         |         |          |         |        |           |        |   |         |          |                |
| Sampler's Name     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Are high  | concentra | tions expe   | cted?   | Y or N  | ? If ye | s, whi | ch ID( | s)?            |          |     |         |         |          |         |        |           |        |   |         |          | le Info        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           |              |         |         |         |        |        |                | V)       |     |         |         |          |         |        |           |        |   | 0       | Lab Us   | e)             |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Colle | ection    |           |              |         | Numbe   | r of Pr | eserve | d Bott | les            | V        |     |         |         |          |         |        |           |        |   |         |          | P. 1           |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           |              |         |         |         | +      | -      | 5              | 0        |     |         |         |          |         |        |           |        |   |         |          | 1000           |
| CompuChem No       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           | # of         | _       | NaOH    | HN03    | H2S04  | МЕОН   | Der ler        | ->       |     |         |         |          |         |        |           |        |   |         |          |                |
| (Lab Use)          | Field ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date  | Time      | Matrix    | bottles      | HCI     | Na      | H       | H2     | ME     | Other<br>Mr Bi |          |     |         |         |          |         |        |           |        |   |         |          |                |
|                    | IRIS-5803-2-7-096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7/29  | 1330      | 50        | 3            |         |         |         |        | 1      | 2              | X        |     |         |         |          |         |        |           |        |   |         |          |                |
|                    | IRIS-3801-4-6-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7/29  | 1320      | So        | 3            |         |         |         |        | 1      | 7              | X        |     |         |         |          |         |        |           |        |   |         |          |                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           |              |         |         |         |        | ,      | -              |          |     |         |         |          |         |        |           |        |   |         |          |                |
|                    | 1R15-SB16-2-4-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7/29  | 1400      | So        | 3            |         |         |         |        | 1      | 2              | X        |     |         |         |          |         |        |           |        |   |         |          |                |
|                    | CYA-TB072909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/29  | 1555      | Blank     | 3            | 3       |         | -       |        |        |                | $\times$ |     |         |         |          |         |        |           |        |   |         |          |                |
|                    | IRI7-TW02-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7/29  | 1505      | GW        | 3            | 3       |         |         |        |        |                | X        |     | 4       |         | te.      |         |        |           |        |   |         |          |                |
|                    | IPM-THU20-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7/29  | 1510      | AW        | 3            | 3       |         |         |        |        |                |          |     |         |         |          |         |        |           |        |   |         |          |                |
|                    | TELL- INDEO OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1121  | 1010      | (7.14     | 2            |         |         |         |        |        |                | $\wedge$ |     |         |         |          |         |        |           |        |   |         |          |                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           |              |         |         |         |        |        |                |          |     |         |         |          |         |        |           |        |   |         | $\vdash$ |                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           |              |         |         |         |        |        |                |          |     |         |         |          |         |        |           |        |   |         |          |                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           |              |         |         |         |        |        |                |          |     |         |         |          |         |        |           |        |   |         |          |                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           |              |         |         |         |        |        |                |          |     |         |         |          |         |        |           |        |   |         |          |                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L     | ab Use On | ily       |              |         |         | 4       |        |        |                |          |     |         |         |          |         | Com    | ments     |        |   |         |          |                |
| Sample Unpacked I  | 3v:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |           | ľ         | samples cl   | necked  | for sn  | Ifide & | chlor  | ine? V | or NA          |          |     |         |         |          |         |        |           |        |   |         |          |                |
| Sample Order Entry |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           | nenol samp   |         |         |         |        |        |                |          |     | *       |         |          |         |        |           |        |   |         |          |                |
|                    | n Good Condition? Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |           |           | oles check   |         |         |         |        |        |                |          |     |         |         |          |         |        |           | 4      |   |         |          |                |
| If no, explain:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           |              |         |         |         |        |        |                |          |     |         |         |          |         |        |           |        |   |         |          |                |
|                    | Underweight aus Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |           |           |              |         | 1       | Sample  | Custo  | ody    |                |          |     |         |         |          |         |        |           |        |   |         |          |                |
| Relinquished by:   | 7-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |           | Date/Ti   | me: 🧻        | 201     | 189     | 17      | 30     | Rece   | ived by        | :        |     |         |         |          |         |        | Date/     | Γime:  |   |         |          |                |
| Relinquished by:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           | Date/Ti   | me:          | -       |         |         |        | Rece   | ived by        | :        |     |         |         |          | 7161    |        | Date/     | Γime:  |   |         |          |                |
| Subcontact? Y or   | N If yes, where?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |           |           |              |         |         | Custo   | ody S  | eal(s) | intact?        | Y or 1   | N   | On Ic   | e? Y (  | r N      | 1174    |        | Coole     | r Temp | : |         |          | °C             |

7210A Corporate Court Frederick, MD 21703 (301) 694-5310 Fax (301) 620-0731

| Contract #/Billing Reference |    |     |
|------------------------------|----|-----|
|                              | of | Pgs |

| Project:         | -11 (   | SICA     |         |            | Turnaroui         | nd Time | /   | Pero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | onto       | act/ | /   | /      | /          | /        | /     |                    |
|------------------|---------|----------|---------|------------|-------------------|---------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----|--------|------------|----------|-------|--------------------|
|                  | mH      |          |         |            | # of Conta        | ainers  | /   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /          | /    | /   | /      | /          | /        | /     | ///                |
| Send Results To: | Gener   | PUP II   | 70010   |            | Container         |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      | /   |        |            |          |       | / /                |
| Address: 570     | 000     | 10 lane  | 14      | + 101      | Preservat<br>Used | tive /  | /   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /          | /    | 1   | /      | /          | /        | 100   | 40/                |
| Va Beach         |         | De IGNIC | 1 100   | JL 101     | Type of           | /       | /   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/16       | 1    | /   | /      | /          | /        | 78    | 5/                 |
| Phone: 757-      |         | -1-201   | 1       |            | Analysis          | / /     | 5   | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | may Supply | / /  | / / | /      | /          | /        | 100   |                    |
|                  | Date    | Time     | Sample  | Sampler's  | /                 | 2/2     | S   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/         | /    | /   |        | /          |          | 2/    | OLUENT.            |
| Sample ID#       | Sampled | Sampled  | Matrix  | Initials   | 10                | 3/ 05   | 1/2 | The Contract of the Contract o | /          |      |     |        |            |          |       | CLIENT<br>COMMENTS |
| TW02-09C         | 7/29    | 1505     | GW      |            | ><                | 1       | /   | ><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |      |     |        |            | 1        |       |                    |
| TW020-09C        | 7/29    | 1510     | GW      |            | ><                | ><      | 1   | ><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |      |     |        |            |          |       |                    |
|                  |         |          |         |            |                   |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |     |        |            |          | 1.    |                    |
|                  |         |          |         |            |                   |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |     |        |            |          |       |                    |
|                  |         |          |         |            |                   |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |     |        |            |          |       |                    |
|                  |         |          |         |            |                   |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |     |        |            |          |       |                    |
|                  |         |          |         |            |                   |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |     |        |            |          |       |                    |
|                  |         |          |         |            |                   |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |     | 1.     |            |          |       |                    |
|                  |         |          |         |            |                   |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |     |        |            |          |       |                    |
|                  |         |          |         |            |                   |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |     |        |            |          |       |                    |
|                  |         |          |         |            |                   |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |     |        |            |          |       |                    |
|                  |         |          |         |            | -                 |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |     |        |            |          |       |                    |
| Relinquished By: | 1       | 7/19     | e/Time  | Received B |                   |         |     | Relinquis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1        |      |     | Recei  | ived for L | aborator | у Ву: | Date/Time          |
| Relinquished By: |         | Date     | e/Time  | Received B | y:                |         |     | Date/Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ē Ship     | per: |     | Airbil | No.:       | 4        |       |                    |
| Relinquished By: |         | Dat      | re/Time | Received E | By:               |         |     | Lab Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ments:     |      |     |        |            |          | -4    | Temp:              |

### CompuChem a division of Liberty Analytical Corp.

### **CHAIN OF CUSTODY**

501 Madison Ave. Cary, NC 27513

Phone: 919-379-4100 Fax 919-379-4040

Courier Airbill No.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |       |           |            |               |         |          |          | 919-    | 379-4   | 100 F   | ax 919-    | 379-40 | 40                               |         |          | Sampl | ing Co | mplete'   | ? Y or | N |                        |                          |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|-----------|------------|---------------|---------|----------|----------|---------|---------|---------|------------|--------|----------------------------------|---------|----------|-------|--------|-----------|--------|---|------------------------|--------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ent/Reporting Information |       |           |            | Proj          | ect Inf | ormati   | on       | MILE    |         |         |            | Rec    | juested                          | Analysi |          |       |        | bottle ty |        |   |                        | trices                   |   |
| Company Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12m HILL                  |       |           | TO-        | 11            | C       | SCA      | 9        |         |         |         |            |        |                                  |         |          |       |        |           |        |   |                        | ound water<br>aste water | 1 |
| Address<br>5700 Cla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 1     | Sampling  | Location   | 0 1           | ohr     | 150      | n        |         |         |         |            |        |                                  |         |          |       |        |           |        |   |                        | face water<br>/Sediment  |   |
| City 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | State Zip                 |       | Turnarou  |            | or co         |         |          | -1       |         |         |         |            |        |                                  |         |          |       |        |           |        |   | TB - Trip<br>RI - Rins |                          |   |
| Project Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ve moore                  |       | Batch QC  | or Projec  |               |         |          |          | Samp    | le ID?  |         |            |        |                                  | V       | K        |       |        |           |        |   | WP - Wil               |                          |   |
| Phone #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 671-6284                  |       | Are aque  | ous sample | es field filt | tered f | or met   | als? Y   | or N    | )       |         |            |        |                                  | etal    | to       |       |        |           |        |   |                        |                          |   |
| Sampler's Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V 11 V201                 |       | Are high  | concentrat | tions expe    | cted?   | Y or N   | ? If ye  | s, whi  | ch ID(  | s)?     |            | 60     |                                  | me      | M        |       |        |           |        |   |                        | mple Info                |   |
| DE A SOUTH OF THE PARTY OF THE |                           | Colle | ection    |            |               | ]       | Numbe    | er of Pi | eserve  | ed Bott | tles    | 5          | 7      |                                  |         | t        |       |        |           |        |   |                        |                          |   |
| CompuChem No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |       |           | # of       | НСІ           | NaOH    | HN03     | H2SO4    | МЕОН    | Other   | SVOC    | Pest       | Ta     | Total                            | Sele    |          |       |        |           |        |   |                        |                          |   |
| (Lab Use)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Field ID                  | Time  | Matrix    | bottles    | 田             | Z       | <u>H</u> | H        | Σ       | 0       | /       |            |        |                                  | -       |          |       |        |           |        |   |                        | -                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IR 15-5803-2-7-09C        | 1330  | 30        | 2          |               |         |          |          |         |         | X       | $\geq$     | $\geq$ | $\stackrel{\times}{\rightarrow}$ |         |          |       |        |           |        |   |                        | -                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IR15-SRO1-4-6-09C         | 1320  | So        | 2          |               |         |          |          |         |         | X       | $\times$   | X      | $\times$                         |         |          |       |        |           |        |   |                        | 4                        |   |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IRIS-SB10-2-4-09C         | 1400  | 30        | 2          |               |         |          |          |         |         | ×       | X          | X      | $\times$                         |         |          |       |        |           |        |   |                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A CYA-SED2-2-6 CT         | 0940  | So        | 1          |               |         |          |          |         |         |         |            |        |                                  | X       |          |       |        |           |        |   |                        |                          |   |
| MARKET THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CX(A SB02-2-6-09C-50)     | 0940  | 50        | 1          |               |         |          |          |         |         |         |            |        |                                  | X       |          |       |        |           |        |   |                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CXA-5802-2-6-07C          | 7/29  | 0940      | 50         | 1             |         |          |          |         |         |         |            |        |                                  |         | X        |       |        |           |        |   |                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CXA-SE04-4-7-09C          | 7/29  | 0905      | 50         | 1             |         |          |          |         |         |         |            |        |                                  |         | X        |       |        |           |        |   |                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CXA-SB08-2-7-09C          | 7/29  | 0840      | 50         | 1             |         |          |          |         |         |         |            |        |                                  |         | X        |       |        |           |        |   |                        |                          |   |
| WALL BOOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CXCA- SB12 - 2-7-096      | 7/29  | 1045      | 50         | 1             |         |          |          |         |         |         |            |        |                                  |         | $\times$ |       |        |           |        |   |                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CJCA - SBO6 - 2-7-09C     |       |           | So         | 1             |         |          |          |         |         |         |            |        |                                  |         | X        |       |        |           |        |   |                        |                          |   |
| No. of Persons Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | L     | ab Use On | ľ          |               |         |          |          | 1121    |         |         |            | 10000  |                                  |         |          |       | Com    | ments     |        |   |                        |                          | - |
| Sample Unpacked B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |       |           |            | samples cl    |         |          |          |         |         |         |            |        |                                  |         |          |       |        |           |        |   |                        |                          | 4 |
| Sample Order Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |       |           |            | enol samp     |         |          |          |         |         |         |            |        |                                  |         |          |       |        |           |        |   |                        |                          | 4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n Good Condition? Y or N  |       |           | 608 samp   | oles checke   | ed for  | pH bet   | ween :   | 5.0-9.0 | ? Y or  | NA      |            |        |                                  |         |          |       |        |           |        |   |                        |                          |   |
| If no, explain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |       |           |            |               | -       |          | Sample   | Cust    | ody     |         | 2 00       |        |                                  | 18-1-   | 1000     |       |        |           |        |   |                        |                          |   |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000                      |       |           | Date/Ti    | me: 7         | 129     | 1/00     |          |         |         | ived by | <i>i</i> : |        |                                  |         |          |       |        | Date/     | Γime:  |   |                        |                          |   |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |       |           | Date/Ti    | me:           |         |          |          |         | Rece    | ived by | /:         |        |                                  |         |          |       |        | Date/     | Γime:  |   |                        |                          |   |
| Subcontact? Y or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N If yes, where?          |       |           |            |               |         | Custo    | ody S    | eal(s)  | intact? | Y or 1  | N          | On Ice | ? Y o                            | r N     |          |       | Coole  | r Temp    |        |   | °C                     |                          |   |

| Station ID           | CJCA-SB01         | CJCA-SB02         | CJCA-SB03         | CJCA-SB04         | CJCA-SB05         | CJCA-SB06         | CJCA-SB07         | CJCA-SB08         | CJC               | A-SB09             | CJCA-SB10         | CJCA-SB11         | CJCA-SB12         |
|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|
| Sample ID            | CJCA-SB01-2-7-09C | CJCA-SB02-2-6-09C | CJCA-SB03-2-7-09C | CJCA-SB04-4-7-09C | CJCA-SB05-2-7-09C | CJCA-SB06-2-7-09C | CJCA-SB07-4-7-09C | CJCA-SB08-2-7-09C | CJCA-SB09-2-4-09C | CJCA-SB09D-2-4-09C | CJCA-SB10-2-6-09C | CJCA-SB11-2-7-09C | CJCA-SB12-2-7-09C |
| Sample Date          | 07/26/09          | 07/29/09          | 07/26/09          | 07/29/09          | 07/26/09          | 07/29/09          | 07/26/09          | 07/29/09          | 07/26/09          | 07/26/09           | 07/28/09          | 07/26/09          | 07/29/09          |
| Chemical Name        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |
| Total Metals (mg/kg) |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |
| Antimony             | 1.7 U             | 0.21 J-           | 1.9 U             | 1.6 UJ            | 1.7 U             | 1.5 UJ            | 1.5 U             | 1.6 UJ            | 1.6 U             | 1.7 U              | 1.6 UJ            | 1.5 U             | 1.5 UJ            |
| Arsenic              | 0.61 J            | 1.8 U             | 0.57 J            | 0.48 J            | 0.67 J            | 0.72 J            | 0.51 J            | 4.4               | 1.3 J             | 0.81 J             | 0.25 J            | 1.3 J             | 1.1 J             |
| Copper               | 0.28 J            | 1.4 J             | 0.55 J            | 0.48 J            | 0.77 J            | 0.47 J            | 0.51 J            | 0.72 J            | 3                 | 6.9                | 0.64 J            | 0.55 J            | 0.58 J            |
| Lead                 | 3.4               | 4.2               | 4.3               | 2.6               | 3.3               | 1.9               | 1.8               | 4                 | 4.7               | 4.5                | 2.5               | 2.5               | 2                 |
| Zinc                 | 4.2 U             | 4.6 U             | 4.8 U             | 4.1 U             | 4.1 U             | 3.7 U             | 3.8 U             | 3.9 U             | 16                | 49                 | 4 U               | 3.8 U             | 3.8 U             |
| Wet Chemistry        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |
| pH (ph)              | NA                | NA                | 3.6               | NA                 | NA                | 4.7               | NA                |

Notes:
Shading indicates
detections
NA - Not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not analyzed for, but not detected UJ - Analyte not detected, quantitation limit may be inaccurate mg/kg - Milligrams per kilogram ph - pH units

| Station ID           | CJCA-SB13         | CJCA-SB14         | CJCA-SB15         | CJCA-SB16         | CJCA-SB18         | CJCA-SB19         | CJC               | A-SB20             | CJCA-SB21         | CJCA-SB22         | CJCA-SB23         | CJCA-SB24         | CJCA-SB25         |
|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Sample ID            | CJCA-SB13-2-7-09C | CJCA-SB14-2-7-09C | CJCA-SB15-6-7-09C | CJCA-SB16-2-7-09C | CJCA-SB18-2-5-09C | CJCA-SB19-2-7-09C | CJCA-SB20-2-7-09C | CJCA-SB20D-2-7-09C | CJCA-SB21-2-7-09C | CJCA-SB22-4-7-09C | CJCA-SB23-2-3-09C | CJCA-SB24-2-4-09C | CJCA-SB25-6-7-09C |
| Sample Date          | 07/26/09          | 07/28/09          | 07/25/09          | 07/25/09          | 07/25/09          | 07/28/09          | 07/25/09          | 07/25/09           | 07/28/09          | 07/25/09          | 07/28/09          | 07/24/09          | 07/28/09          |
| Chemical Name        |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |
| Total Metals (mg/kg) |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |
| Antimony             | 1.8 U             | 1.5 UJ            | 1.6 U             | 1.5 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 U              | 1.5 UJ            | 1.5 U             | 1.6 UJ            | 1.6 U             | 1.9 UJ            |
| Arsenic              | 1.2 J             | 0.17 J            | 3.8 U             | 1.5 U             | 1.7 U             | 0.62 J            | 1.7 U             | 2.6 U              | 0.45 J+           | 1.5 U             | 0.79 J+           | 1.6 U             | 13.2 J+           |
| Copper               | 0.51 J            | 0.27 J            | 1.3 J             | 0.77 J            | 0.55 J            | 0.35 J            | 1.7 U             | 1.9                | 0.53 J            | 1.5 U             | 0.34 J            | 0.54 J            | 4.3               |
| Lead                 | 2.6               | 1.6               | 6.2               | 3.1               | 3.2               | 2.2               | 1.5 J             | 7                  | 2.7               | 1.5               | 5                 | 6.8               | 12.1              |
| Zinc                 | 4.6 U             | 3.8 U             | 4.4               | 3.7 U             | 2.1 J             | 3.9 U             | 4.1 U             | 4.1 U              | 3.8 U             | 3.7 U             | 3.9 U             | 6.5               | 9.6               |
| Wet Chemistry        |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |
| pH (ph)              | NA                | NA                | NA                | NA                | 4.4               | NA                | NA                | NA                 | NA                | NA                | NA                | NA                | NA                |

Notes: Shading indicates

detections
NA - Not analyzed

J - Analyte present, value may or may not be accurate or precise

J- - Analyte present, value may be biased low, actual value may be higher

J+ - Analyte present, value may be biased high, actual value may be lower

U - The material was analyzed for, but not detected UJ - Analyte not detected, quantitation limit may be inaccurate mg/kg - Milligrams per kilogram ph - pH units

| Station ID           | CJCA-SB26         | CJCA-SB27         | CJCA-SB28         | CJCA-SB29         | CJCA-SB30         | CJC               | A-SB31             | CJCA-SB32         | CJCA-SB33         | CJCA-SB34         | CJCA-SB35         | CJCA-SB36         | CJCA-SB37         |
|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Sample ID            | CJCA-SB26-4-7-09C | CJCA-SB27-4-7-09C | CJCA-SB28-2-4-09C | CJCA-SB29-2-7-09C | CJCA-SB30-2-7-09C | CJCA-SB31-4-7-09C | CJCA-SB31D-4-7-09C | CJCA-SB32-2-7-09C | CJCA-SB33-4-6-09C | CJCA-SB34-2-4-09C | CJCA-SB35-2-4-09C | CJCA-SB36-4-7-09C | CJCA-SB37-6-7-09C |
| Sample Date          | 07/23/09          | 07/28/09          | 07/23/09          | 07/28/09          | 07/23/09          | 07/23/09          | 07/23/09           | 07/22/09          | 07/23/09          | 07/28/09          | 07/25/09          | 07/28/09          | 07/24/09          |
| Chemical Name        |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   |
| Total Metals (mg/kg) |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   |
| Antimony             | 1.9 UJ            | 1.9 UJ            | 1.7 UJ            | 1.9 UJ            | 1.8 U             | 1.9 U             | 2 U                | 1.9 U             | 1.8 U             | 1.7 UJ            | 1.7 U             | 1.9 UJ            | 1.9 UJ            |
| Arsenic              | 6.9               | 8.9 J+            | 2.6               | 11                | 4.5 J-            | 13.7 J-           | 14.5 J-            | 15.8 J-           | 3.7 J-            | 20.8 J+           | 1.7 U             | 3.3 J+            | 4.2               |
| Copper               | 2.7 U             | 3.6               | 1.7 U             | 4.1               | 3.1               | 4                 | 4.1                | 3.9               | 2.7               | 3.6               | 0.99 J            | 2.2               | 3.5               |
| Lead                 | 8.6               | 12.9              | 7.8               | 13.7              | 12.5              | 14.9              | 16.4               | 13.1              | 12                | 9.7               | 13.6              | 11.2              | 10.4              |
| Zinc                 | 6.9               | 8.3               | 4.3 U             | 7.6               | 5                 | 7.8               | 7.2                | 8.3               | 7.4               | 5.2               | 4.3 U             | 6.8               | 8.9               |
|                      |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   |
| Wet Chemistry        |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   |
| pH (ph)              | NA                | NA                | NA                | 4.2               | NA                | NA                | NA                 | NA                | NA                | NA                | NA                | NA                | NA                |

Notes: Shading indicates

detections NA - Not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not analyzed for, but not detected UJ - Analyte not detected, quantitation limit may be inaccurate mg/kg - Milligrams per kilogram ph - pH units

| Station ID           | CJCA-SB38         | CJCA-SB39         | CJCA-SB40         | CJCA-SB41         | CJCA-SB42         | CJCA-SB43         | CJCA-SB44         | CJCA              | A-SB45             | CJCA-SB46         | CJCA-SB47         | CJCA-SB48         | CJCA-SB49         |
|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|
| Sample ID            | CJCA-SB38-2-4-09C | CJCA-SB39-2-4-09C | CJCA-SB40-4-7-09C | CJCA-SB41-4-6-09C | CJCA-SB42-2-7-09C | CJCA-SB43-6-7-09C | CJCA-SB44-6-7-09C | CJCA-SB45-2-5-09C | CJCA-SB45D-2-5-09C | CJCA-SB46-4-7-09C | CJCA-SB47-6-7-09C | CJCA-SB48-4-6-09C | CJCA-SB49-2-4-09C |
| Sample Date          | 07/24/09          | 07/23/09          | 07/28/09          | 07/23/09          | 07/28/09          | 07/22/09          | 07/23/09          | 07/22/09          | 07/22/09           | 07/27/09          | 07/25/09          | 07/27/09          | 07/25/09          |
| Chemical Name        |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |
| Total Metals (mg/kg) |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |
| Antimony             | 1.7 UJ            | 1.9 UJ            | 2 UJ              | 1.7 U             | 2 UJ              | 1.9 U             | 2 U               | 1.8 U             | 1.8 U              | 2 UJ              | 1.9 U             | 1.8 UJ            | 1.6 U             |
| Arsenic              | 2.6               | 13.1              | 7.4 J+            | 2.6 J-            | 17.7 J+           | 5.3 J-            | 17.8 J-           | 11.6 J-           | 2.9 J-             | 14.4 J+           | 6.5               | 5.7 J+            | 3 U               |
| Copper               | 1.8 U             | 2.6 U             | 4.1               | 1.3 J             | 4.2               | 3.2               | 4.7               | 4.4               | 2.1                | 2.5               | 2.5               | 2.2               | 1.3 J             |
| Lead                 | 7.5               | 11.9              | 14.6              | 8.2               | 14.2              | 12                | 14.5              | 16.1              | 11.1               | 11                | 11.9              | 8.7               | 7.6               |
| Zinc                 | 4.2 U             | 6.4               | 7.9               | 3.3 J             | 8.2               | 7.9               | 7.9               | 5                 | 5.3                | 6.5               | 7.6               | 6.9               | 4.2               |
| Wet Chemistry        |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |
| pH (ph)              | NA                | NA                | 4.4               | NA                | NA                | NA                | NA                | NA                | NA                 | NA                | NA                | 4.6               | NA                |

Notes:
Shading indicates
detections
NA - Not analyzed

J - Analyte present, value may or may not be accurate or precise

J- - Analyte present, value may be biased low, actual value may be higher

J+ - Analyte present, value may be biased high, actual value may be lower

U - The material was analyzed for, but not analyzed for, but not detected UJ - Analyte not detected, quantitation limit may be inaccurate mg/kg - Milligrams per kilogram ph - pH units

| Station ID           | CJCA              | A-SB50             | CJCA-SB51         | CJCA-SB52         | CJCA-SB53         | CJCA-SB54         | CJCA-SB55         | CJCA-SB56         | CJCA-SB57         | CJCA-SB58         | CJC/              | N-SB59             | CJCA-SB60         |
|----------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|
| Sample ID            | CJCA-SB50-4-6-09C | CJCA-SB50D-4-6-09C | CJCA-SB51-2-7-09C | CJCA-SB52-4-6-09C | CJCA-SB53-2-7-09C | CJCA-SB54-6-7-09C | CJCA-SB55-4-6-09C | CJCA-SB56-2-7-09C | CJCA-SB57-2-4-09C | CJCA-SB58-2-6-09C | CJCA-SB59-2-4-09C | CJCA-SB59D-2-4-09C | CJCA-SB60-4-6-09C |
| Sample Date          | 07/27/09          | 07/27/09           | 07/25/09          | 07/27/09          | 07/22/09          | 07/22/09          | 07/22/09          | 07/27/09          | 07/23/09          | 07/27/09          | 07/23/09          | 07/23/09           | 07/22/09          |
| Chemical Name        |                   |                    |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |
| Total Metals (mg/kg) |                   |                    |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |
| Antimony             | 1.7 UJ            | 1.7 UJ             | 1.8 U             | 1.7 UJ            | 1.8 U             | 1.8 U             | 1.9 U             | 1.7 UJ            | 1.7 U             | 1.8 UJ            | 1.8 U             | 1.8 U              | 1.8 U             |
| Arsenic              | 6 J+              | 4.6 J+             | 2.4               | 0.98 J+           | 21.1 J+           | 14.3 J+           | 9.2 J+            | 4.5 J+            | 2.3 J-            | 1.9 J+            | 3.9 J-            | 3.5 J-             | 14.8 J+           |
| Copper               | 1.8               | 1.7                | 1.3 J             | 0.49 J            | 3.5               | 3.6               | 3                 | 1.9               | 0.75 J            | 2                 | 3                 | 2.3                | 4.6               |
| Lead                 | 8.7               | 8.8                | 7.5               | 6.1               | 11.6              | 14                | 12.1              | 8.5               | 5.9               | 9                 | 11.5              | 10.1               | 17.3              |
| Zinc                 | 5                 | 5.5                | 4.4 U             | 4.2 U             | 7.7               | 6.3               | 5.7               | 4.4 U             | 3.3 J             | 5.3               | 6.7               | 6.3                | 7.7               |
| Wet Chemistry        |                   |                    |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |
| pH (ph)              | NA                | NA                 | NA                | NA                | 4.3               | NA                | NA                | NA                | NA                | 4.4               | NA                | NA                 | NA                |

Notes: Shading indicates

detections NA - Not analyzed J - Analyte present, value may or may not be accurate or precise

J- - Analyte present, value may be biased low, actual value may be higher

J+ - Analyte present, value may be biased high, actual value may be lower

U - The material was analyzed for, but not analyzed for, but not detected UJ - Analyte not detected, quantitation limit may be inaccurate mg/kg - Milligrams per kilogram ph - pH units

| Station ID           | CJCA-SB61         | CJCA-SB62         | CJCA-SB63         | CJCA              | A-SB64             | CJCA-SB65         | CJCA-SB66         | CJCA-SB67         | CJCA-SB68         | CJCA-SB69         | CJC               | A-SB70             | CJCA-SB71         |
|----------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|
| Sample ID            | CJCA-SB61-2-4-09C | CJCA-SB62-2-4-09C | CJCA-SB63-2-4-09C | CJCA-SB64-4-7-09C | CJCA-SB64D-4-7-09C | CJCA-SB65-2-4-09C | CJCA-SB66-4-6-09C | CJCA-SB67-6-7-09C | CJCA-SB68-4-6-09C | CJCA-SB69-6-7-09C | CJCA-SB70-4-6-09C | CJCA-SB70D-4-6-09C | CJCA-SB71-6-7-09C |
| Sample Date          | 07/22/09          | 07/22/09          | 07/23/09          | 07/27/09          | 07/27/09           | 07/22/09          | 07/22/09          | 07/22/09          | 07/22/09          | 07/21/09          | 07/22/09          | 07/22/09           | 07/21/09          |
| Chemical Name        |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   |                    |                   |
| Total Metals (mg/kg) |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   |                    |                   |
| Antimony             | 1.6 U             | 1.8 U             | 1.6 U             | 1.9 UJ            | 2 UJ               | 1.7 U             | 2 U               | 1.9 U             | 1.8 U             | 2.1 U             | 2 U               | 1.9 U              | 3.7 U             |
| Arsenic              | 1.1 J+            | 4.7 J+            | 2.6 J-            | 12 J+             | 15 J+              | 5.6 J-            | 12.3 J-           | 11.6 J-           | 11.6 J+           | 10.1 J-           | 14.2 J+           | 4.7 J+             | 46.5 J-           |
| Copper               | 1 J               | 3.2               | 0.65 J            | 4.6               | 4.2                | 0.84 J            | 2.9               | 4.5               | 3.7               | 4                 | 4                 | 3.7                | 6.8               |
| Lead                 | 4.9               | 10.8              | 5                 | 14.4              | 13.3               | 7.2               | 9.7               | 15.6              | 13.7              | 15.4              | 15.4              | 14.4               | 17.6              |
| Zinc                 | 3.9 U             | 6.6               | 2 J               | 8.7               | 9                  | 3.2 J             | 8.7               | 8.2               | 7.4               | 7.9               | 8                 | 8                  | 9.7               |
|                      |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   |                    |                   |
| Wet Chemistry        |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |                   |                    |                   |
| pH (ph)              | NA                | NA                | NA                | NA                | NA                 | NA                | NA                | 4.6               | NA                | NA                | NA                | NA                 | NA                |

Notes: Shading indicates

detections NA - Not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not analyzed for, but not detected UJ - Analyte not detected, quantitation limit may be inaccurate mg/kg - Milligrams per kilogram ph - pH units

| Station ID           | CJCA-SB72         | CJCA-SB73         | CJCA-SB74         | CJCA-SB75         | CJCA-SB76         | CJCA-SB77         | CJCA-SB78         |
|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Sample ID            | CJCA-SB72-4-6-09C | CJCA-SB73-4-6-09C | CJCA-SB74-2-7-09C | CJCA-SB75-4-6-09C | CJCA-SB76-4-6-09C | CJCA-SB77-2-4-09C | CJCA-SB78-4-6-09C |
| Sample Date          | 07/21/09          | 07/21/09          | 07/21/09          | 07/21/09          | 07/21/09          | 07/21/09          | 07/21/09          |
| Chemical Name        |                   |                   |                   |                   |                   |                   |                   |
|                      |                   |                   |                   |                   |                   |                   |                   |
| Total Metals (mg/kg) |                   |                   |                   |                   |                   |                   |                   |
| Antimony             | 1.9 U             | 1.9 U             | 1.7 U             | 1.9 U             | 1.8 U             | 1.5 U             | 3.5 U             |
| Arsenic              | 21.3 J-           | 14.1 J-           | 1.1 J-            | 7 J-              | 4.9 J-            | 0.92 J-           | 24.8 J-           |
| Copper               | 5.4               | 4.2               | 0.66 J            | 4.1               | 3.5               | 0.5 J             | 6.3               |
| Lead                 | 13.8              | 14                | 4                 | 14.2              | 10.4              | 4.1               | 14.8              |
| Zinc                 | 8.4               | 8.9               | 4.2 U             | 8.1               | 5.4               | 3.8 U             | 10.2              |
|                      |                   |                   |                   |                   |                   |                   |                   |
| Wet Chemistry        |                   |                   |                   |                   |                   |                   |                   |
| pH (ph)              | NA                | 4.6               | NA                | NA                | NA                | NA                | NA                |

Notes: Shading indicates

detections

NA - Not analyzed

J - Analyte present, value
may or may not be
accurate or precise

J- - Analyte present, value may be biased low, actual value may be higher

J+ - Analyte present, value may be biased high, actual value may be lower

U - The material was analyzed for, but not analyzed for, but not detected UJ - Analyte not detected, quantitation limit may be inaccurate mg/kg - Milligrams per kilogram ph - pH units

### Table 5-9

Former Range Area Groundwater Analyticl Results
Camp Johnson Construction Area
Focused PA/SI Report
MCB CamLej
North Carolina

| Station ID              | CJCA-TW01     | CJCA-TW02     | CJCA-TW03     | CJCA-TW04     | CJCA-TW05     | CJCA-TW06     | CJCA-TW08     | CJCA-TW09     | CJCA-TW10     | CJCA-TW11     | CJCA-TW12     | CJCA-TW13     | CJCA-TW14     | CJCA          | A-TW15         | CJCA-TW16     | CJCA-TW17     | CJCA-TW18     | CJCA-TW19     | CJCA-TW20                                        |
|-------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|--------------------------------------------------|
| Sample ID               | CJCA-TW01-09C | CJCA-TW02-09C | CJCA-TW03-09C | CJCA-TW04-09C | CJCA-TW05-09C | CJCA-TW06-09C | CJCA-TW08-09C | CJCA-TW09-09C | CJCA-TW10-09C | CJCA-TW11-09C | CJCA-TW12-09C | CJCA-TW13-09C | CJCA-TW14-09C | CJCA-TW15-09C | CJCA-TW15D-09C | CJCA-TW16-09C | CJCA-TW17-09C | CJCA-TW18-09C | CJCA-TW19-09C | CJCA-TW20-09C                                    |
| Sample Date             | 07/28/09      | 07/28/09      | 07/28/09      | 07/29/09      | 07/28/09      | 07/28/09      | 07/27/09      | 07/26/09      | 07/27/09      | 07/27/09      | 07/26/09      | 07/26/09      | 07/26/09      | 07/26/09      | 07/26/09       | 07/25/09      | 07/24/09      | 07/26/09      | 07/26/09      | 07/26/09                                         |
| Chemical Name           |               |               |               |               |               |               |               |               |               |               |               |               |               |               |                |               |               |               |               |                                                  |
| Total Metals (μg/l)     |               |               |               |               |               |               |               |               |               |               |               |               |               |               |                |               |               |               |               | <del>                                     </del> |
| Antimony                | 100 U         | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U           | 20 U          | 20 U          | 20 U          | 20 U          | 20 U                                             |
| Arsenic                 | 20 U          | 20 U          | 20 U          | 3 J           | 20 U          | 20 U          | 2.2 J         | 20 U          | 2.6 J         | 20 U          | 20 U          | 20 U          | 2.9 J         | 20 U          | 20 U           | 20 U          | 20 U          | 20 U          | 20 U          | 20 U                                             |
| Copper                  | 100 U         | 20 U          | 7.4 J         | 20 U          | 20 U          | 3.2 J         | 20 U          | 4.4 J         | 20 U          | 20 U          | 20 U          | 3.9 J         | 20 U          | 20 U          | 3.5 J          | 20 U          | 10.4 J        | 20 U          | 20 U          | 20 U                                             |
| Lead                    | 19.1 J        | 20 U          | 14.1 J        | 20 U           | 20 U          | 11.5 J        | 20 U          | 20 U          | 20 U                                             |
| Zinc                    | 250 U         | 18 J          | 18.5 J        | 4.5 J         | 18.2 J        | 8.4 J         | 6.9 J         | 14.3 J        | 10.4 J        | 18.6 J        | 6.5 J         | 17.4 J        | 36.8 J        | 6.9 J         | 14.2 J         | 32 J          | 160           | 112           | 7.5 J         | 81.5                                             |
| Dissolved Metals (µg/l) |               |               |               |               |               |               |               |               |               |               |               |               |               |               |                |               |               |               |               |                                                  |
| Antimony, Dissolved     | 20 U          | NA            | 20 U          | NA             | NA            | 20 U          | NA            | NA            | NA                                               |
| Arsenic, Dissolved      | 20 U          | NA            | 20 U          | NA             | NA            | 20 U          | NA            | NA            | NA                                               |
| Copper, Dissolved       | 20 U          | NA            | 20 U          | NA             | NA            | 20 U          | NA            | NA            | NA                                               |
| Lead, Dissolved         | 2 J           | NA            | 20 U          | NA             | NA            | 20 U          | NA            | NA            | NA                                               |
| Zinc, Dissolved         | 50 U          | NA            | 10.1 J        | NA             | NA            | 82.3          | NA            | NA            | NA                                               |

Shading indicates detections

NA - Not analyzed J - Analyte present, value may or may not be accurate or precise

U - The material was analyzed for, but not detected

μg/l - Micrograms per liter

### Table 5-9

Former Range Area Groundwater Analyticl Results
Camp Johnson Construction Area
Focused PA/SI Report
MCB CamLej
North Carolina

| Station ID              | CJCA-TW21     | CJCA-TW22     | CJCA-TW23     | CJCA          | A-TW24         | CJCA-TW25     | CJCA-TW26     | CJCA-TW27     | CJCA-TW28     | CJCA-TW29     | CJCA-TW30     | CJCA-TW31     | CJCA-TW32     | CJCA-TW33     | CJCA-TW34     | CJCA          | A-TW35         | CJCA-TW36     | CJCA-TW37     | CJCA-TW38     |
|-------------------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|
| Sample ID               | CJCA-TW21-09C | CJCA-TW22-09C | CJCA-TW23-09C | CJCA-TW24-09C | CJCA-TW24D-09C | CJCA-TW25-09C | CJCA-TW26-09C | CJCA-TW27-09C | CJCA-TW28-09C | CJCA-TW29-09C | CJCA-TW30-09C | CJCA-TW31-09C | CJCA-TW32-09C | CJCA-TW33-09C | CJCA-TW34-09C | CJCA-TW35-09C | CJCA-TW35D-09C | CJCA-TW36-09C | CJCA-TW37-09C | CJCA-TW38-09C |
| Sample Date             | 07/26/09      | 07/24/09      | 07/23/09      | 07/27/09      | 07/27/09       | 07/27/09      | 07/27/09      | 07/23/09      | 07/23/09      | 07/25/09      | 07/25/09      | 07/23/09      | 07/25/09      | 07/25/09      | 07/25/09      | 07/22/09      | 07/22/09       | 07/22/09      | 07/22/09      | 07/23/09      |
| Chemical Name           |               |               |               |               |                |               |               |               |               |               |               |               |               |               |               |               |                |               |               |               |
| Total Metals (µg/l)     |               |               |               |               |                |               |               |               |               |               |               |               |               |               |               |               |                |               |               |               |
| Antimony                | 20 U           | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U          | 20 U           | 20 U          | 20 U          | 20 U          |
| Arsenic                 | 3.1 J         | 20 U          | 20 U          | 20 U          | 20 U           | 20 U          | 20 U          | 9.4 J         | 2.9 J         | 20 U          | 6.1 J         | 4 J           | 2.6 J         | 3.5 J         | 20 U          | 20 U          | 20 U           | 5.5 J         | 20 U          | 20 U          |
| Copper                  | 20 U          | 20 U          | 2.7 J         | 20 U          | 20 U           | 20 U          | 20 U          | 5.5 J         | 10 J          | 20 U          | 20 U          | 4.2 J         | 20 U          | 20 U          | 6.6 J         | 20 U          | 20 U           | 20 U          | 2.7 J         | 20 U          |
| Lead                    | 20 U           | 20 U          | 2 J           | 10.3 J        | 2.3 J         | 20 U          | 20 U          | 6.6 J         | 3.6 J         | 2.2 J         | 4.5 J         | 20 U          | 20 U           | 2 J           | 20 U          | 2.9 J         |
| Zinc                    | 21.2 J        | 5.6 J         | 69.8          | 11.6 J        | 14.8 J         | 14.3 J        | 11.9 J        | 63.5          | 56.7          | 15.1 J        | 16.9 J        | 91.6          | 53.8          | 77.6          | 19.7 J        | 8.3 J         | 10.4 J         | 4.3 J         | 42.6 J        | 30.9 J        |
| Dissolved Metals (µg/l) |               |               |               |               |                |               |               |               |               |               |               |               |               |               |               |               |                |               |               |               |
| Antimony, Dissolved     | NA            | 20 U          | 20 U          | NA            | NA             | NA            | NA            | 20 U          | 20 U          | NA            | NA            | 20 U          | NA            | NA            | NA            | 20 U          | 20 U           | 20 U          | 20 U          | 20 U          |
| Arsenic, Dissolved      | NA            | 20 U          | 20 U          | NA            | NA             | NA            | NA            | 20 U          | 20 U          | NA            | NA            | 20 U          | NA            | NA            | NA            | 20 U          | 20 U           | 4.9 J         | 20 U          | 20 U          |
| Copper, Dissolved       | NA            | 20 U          | 20 U          | NA            | NA             | NA            | NA            | 20 U          | 3.6 J         | NA            | NA            | 20 U          | NA            | NA            | NA            | 20 U          | 20 U           | 20 U          | 3.1 J         | 20 U          |
| Lead, Dissolved         | NA            | 2 J           | 20 U          | NA            | NA             | NA            | NA            | 20 U          | 20 U          | NA            | NA            | 20 U          | NA            | NA            | NA            | 20 U          | 20 U           | 20 U          | 20 U          | 20 U          |
| Zinc, Dissolved         | NA            | 4.3 J         | 32.4 J        | NA            | NA             | NA            | NA            | 50 U          | 39.6 J        | NA            | NA            | 61.7          | NA            | NA            | NA            | 8 J           | 8.4 J          | 50 U          | 42.5 J        | 27 J          |

Shading indicates detections

NA - Not analyzed J - Analyte present, value may or may not be accurate or precise

U - The material was analyzed for, but not detected

μg/l - Micrograms per liter

| Station ID                                                             | IR15-SS01           | IR15-SS02           | IR1:                | 5-SS03               | IR15-SS04           | IR15-SS05           | IR15-SS06           | IR15-SS07           | IR15-SS08           | IR15-SS09           | IR15-SS10           |
|------------------------------------------------------------------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Sample ID                                                              | IR15-SS01-00-01-09C | IR15-SS02-00-01-09C | IR15-SS03-00-01-09C | IR15-SS03D-00-01-09C | IR15-SS04-00-01-09C | IR15-SS05-00-01-09C | IR15-SS06-00-01-09C | IR15-SS07-00-01-09C | IR15-SS08-00-01-09C | IR15-SS09-00-01-09C | IR15-SS10-00-01-09C |
| Sample Date                                                            | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09             | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            |
| Chemical Name                                                          |                     |                     |                     |                      |                     |                     |                     |                     |                     |                     |                     |
| Volatile Organic Compounds (µg/kg)                                     |                     |                     |                     |                      |                     |                     |                     |                     |                     |                     |                     |
| 1,1,1-Trichloroethane                                                  | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 U               | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| 1,1,2,2-Tetrachloroethane                                              | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA<br>NA            | 5.4 R               | 5.3 UJ              | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) 1,1,2-Trichloroethane | 5.8 UJ<br>5.8 UJ    | 4.6 R<br>4.6 R      | 4.2 UJ<br>4.2 UJ    | 5.4 R<br>5.4 R       | 5.9 UJ<br>5.9 UJ    | NA<br>NA            | 5.4 R<br>5.4 R      | 5.3 U<br>5.3 UJ     | 7 UJ<br>7 UJ        | 5.5 UJ<br>5.5 UJ    | 4.7 UJ<br>4.7 UJ    |
| 1,1-Dichloroethane                                                     | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA NA               | 5.4 R               | 5.3 U               | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| 1,1-Dichloroethene                                                     | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 U               | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| 1,2,4-Trichlorobenzene                                                 | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 UJ              | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| 1,2-Dibromo-3-chloropropane<br>1,2-Dibromoethane                       | 5.8 UJ<br>5.8 UJ    | 4.6 R<br>4.6 R      | 4.2 UJ<br>4.2 UJ    | 5.4 R<br>5.4 R       | 5.9 UJ<br>5.9 UJ    | NA<br>NA            | 5.4 R<br>5.4 R      | 5.3 UJ<br>5.3 U     | 7 UJ<br>7 UJ        | 5.5 UJ<br>5.5 UJ    | 4.7 UJ<br>4.7 UJ    |
| 1,2-Dichlorobenzene                                                    | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA<br>NA            | 5.4 R               | 5.3 UJ              | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| 1,2-Dichloroethane                                                     | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 UJ              | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| 1,2-Dichloropropane                                                    | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 U               | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene                             | 5.8 UJ<br>5.8 UJ    | 4.6 R<br>4.6 R      | 4.2 UJ<br>4.2 UJ    | 5.4 R<br>5.4 R       | 5.9 UJ<br>5.9 UJ    | NA<br>NA            | 5.4 R<br>5.4 R      | 5.3 UJ<br>5.3 UJ    | 7 UJ<br>7 UJ        | 5.5 UJ<br>5.5 UJ    | 4.7 UJ<br>4.7 UJ    |
| 2-Butanone                                                             | 22 J                | 9.2 R               | 4.2 UJ<br>8.5 UJ    | 11 R                 | 4.4 J               | NA<br>NA            | 11 R                | 4.5 J               | 40 J                | 11 UJ               | 9.5 UJ              |
| 2-Hexanone                                                             | 12 UJ               | 9.2 R               | 8.5 UJ              | 11 R                 | 12 UJ               | NA NA               | 11 R                | 11 UJ               | 14 UJ               | 11 UJ               | 9.5 UJ              |
| 4-Methyl-2-pentanone                                                   | 12 UJ               | 9.2 R               | 8.5 UJ              | 11 R                 | 12 UJ               | NA                  | 11 R                | 11 UJ               | 14 UJ               | 11 UJ               | 9.5 UJ              |
| Acetone                                                                | 240 J               | 9.2 R               | 14 J                | 11 R                 | 52 J                | NA<br>NA            | 77 J                | 160 J               | 1,700 J             | 11 UJ               | 150 J               |
| Benzene<br>Bromodichloromethane                                        | 5.8 UJ<br>5.8 UJ    | 4.6 R<br>4.6 R      | 4.2 UJ<br>4.2 UJ    | 5.4 R<br>5.4 R       | 5.9 UJ<br>5.9 UJ    | NA<br>NA            | 5.4 R<br>5.4 R      | 5.3 U<br>5.3 U      | 7 UJ<br>7 UJ        | 5.5 UJ<br>5.5 UJ    | 4.7 UJ<br>4.7 UJ    |
| Bromoform                                                              | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA<br>NA            | 5.4 R               | 5.3 UJ              | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| Bromomethane                                                           | 12 UJ               | 9.2 R               | 8.5 UJ              | 11 R                 | 12 UJ               | NA                  | 11 R                | 11 R                | 14 R                | 11 UJ               | 9.5 UJ              |
| Carbon disulfide                                                       | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA<br>NA            | 5.4 R               | 5.3 U               | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| Carbon tetrachloride Chlorobenzene                                     | 5.8 UJ<br>5.8 UJ    | 4.6 R<br>4.6 R      | 4.2 UJ<br>4.2 UJ    | 5.4 R<br>5.4 R       | 5.9 UJ<br>5.9 UJ    | NA<br>NA            | 5.4 R<br>5.4 R      | 5.3 U<br>5.3 UJ     | 7 UJ<br>7 UJ        | 5.5 UJ<br>5.5 UJ    | 4.7 UJ<br>4.7 UJ    |
| Chloroethane                                                           | 12 UJ               | 9.2 R               | 8.5 UJ              | 11 R                 | 12 UJ               | NA<br>NA            | 11 R                | 11 U                | 14 UJ               | 11 UJ               | 9.5 UJ              |
| Chloroform                                                             | 5.2 J               | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 U               | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| Chloromethane                                                          | 12 UJ               | 9.2 R               | 8.5 UJ              | 11 R                 | 12 UJ               | NA<br>NA            | 11 R                | 11 U                | 14 UJ               | 11 UJ               | 9.5 UJ              |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene                      | 5.8 UJ<br>5.8 UJ    | 4.6 R<br>4.6 R      | 4.2 UJ<br>4.2 UJ    | 5.4 R<br>5.4 R       | 5.9 UJ<br>5.9 UJ    | NA<br>NA            | 5.4 R<br>5.4 R      | 5.3 U<br>5.3 U      | 7 UJ<br>7 UJ        | 5.5 UJ<br>5.5 UJ    | 4.7 UJ<br>4.7 UJ    |
| Cyclohexane                                                            | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA<br>NA            | 5.4 R               | 5.3 U               | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| Dibromochloromethane                                                   | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 U               | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| Dichlorodifluoromethane (Freon-12)                                     | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 UJ              | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| Ethylbenzene                                                           | 5.8 UJ<br>5.8 UJ    | 4.6 R<br>4.6 R      | 4.2 UJ<br>4.2 UJ    | 5.4 R<br>5.4 R       | 5.9 UJ<br>5.9 UJ    | NA<br>NA            | 5.4 R<br>5.4 R      | 5.3 U<br>5.3 U      | 7 UJ<br>7 UJ        | 5.5 UJ<br>5.5 UJ    | 4.7 UJ<br>4.7 UJ    |
| Isopropylbenzene<br>Methyl acetate                                     | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 4.5 J               | NA<br>NA            | 14 J                | 10 J                | 2,100               | 5.5 UJ              | 24 J                |
| Methylcyclohexane                                                      | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 U               | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| Methylene chloride                                                     | 12 UJ               | 9.2 R               | 8.5 UJ              | 11 R                 | 12 UJ               | NA                  | 11 R                | 11 U                | 14 UJ               | 11 UJ               | 9.5 UJ              |
| Methyl-tert-butyl ether (MTBE)                                         | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA<br>NA            | 5.4 R               | 5.3 UJ              | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| Styrene<br>Tetrachloroethene                                           | 5.8 UJ<br>5.8 UJ    | 4.6 R<br>4.6 R      | 4.2 UJ<br>4.2 UJ    | 5.4 R<br>5.4 R       | 5.9 UJ<br>5.9 UJ    | NA<br>NA            | 5.4 R<br>5.4 R      | 5.3 U<br>5.3 U      | 7 UJ<br>7 UJ        | 5.5 UJ<br>5.5 UJ    | 4.7 UJ<br>4.7 UJ    |
| Toluene                                                                | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA NA               | 5.4 R               | 5.3 U               | 10 J                | 5.5 UJ              | 4.7 UJ              |
| trans-1,2-Dichloroethene                                               | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 U               | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| trans-1,3-Dichloropropene                                              | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA<br>NA            | 5.4 R               | 5.3 UJ              | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
| Trichloroethene Trichlorofluoromethane(Freon-11)                       | 5.8 UJ<br>5.8 UJ    | 4.6 R<br>4.6 R      | 4.2 UJ<br>4.2 UJ    | 5.4 R<br>5.4 R       | 5.9 UJ<br>5.9 UJ    | NA<br>NA            | 5.4 R<br>5.4 R      | 5.3 U<br>5.3 U      | 7 UJ<br>7 UJ        | 5.5 UJ<br>5.5 UJ    | 4.7 UJ<br>4.7 UJ    |
| Vinyl chloride                                                         | 12 UJ               | 9.2 R               | 8.5 UJ              | 11 R                 | 12 UJ               | NA<br>NA            | 11 R                | 11 U                | 14 UJ               | 11 UJ               | 9.5 UJ              |
| Xylene, total                                                          | 5.8 UJ              | 4.6 R               | 4.2 UJ              | 5.4 R                | 5.9 UJ              | NA                  | 5.4 R               | 5.3 U               | 7 UJ                | 5.5 UJ              | 4.7 UJ              |
|                                                                        |                     |                     |                     |                      |                     |                     |                     |                     |                     |                     |                     |
| Semivolatile Organic Compounds (µg/kg)                                 | 100 11              | 190 11              | 100 111             | 100 11               | 190 11              | 100 11              | 170 11              | 190 11              | 210 11              | 100 11              | 190 11              |
| 1,1-Biphenyl<br>2,2'-Oxybis(1-chloropropane)                           | 190 U<br>190 U      | 180 U<br>180 U      | 190 UJ<br>190 UJ    | 190 U<br>190 U       | 180 U<br>180 U      | 180 U<br>180 U      | 170 U<br>170 U      | 180 U<br>180 U      | 210 U<br>210 U      | 190 U<br>190 U      | 180 U<br>180 U      |
| 2,4,5-Trichlorophenol                                                  | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 2,4-Dichlorophenol                                                     | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 2,4-Dimethylphenol<br>2,4-Dinitrophenol                                | 190 U<br>190 U      | 180 U<br>180 U      | 190 UJ<br>190 UJ    | 190 U<br>190 U       | 180 U<br>180 U      | 180 U<br>180 U      | 170 U<br>170 U      | 180 U<br>180 U      | 210 U<br>210 U      | 190 U<br>190 U      | 180 U<br>180 U      |
| 2,4-Dinitrophenoi<br>2,4-Dinitrotoluene                                | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 2,6-Dinitrotoluene                                                     | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 2-Chloronaphthalene                                                    | 190 U               | 180 UJ              | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 2-Chlorophenol                                                         | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 2-Methylnaphthalene<br>2-Methylphenol                                  | 190 U<br>190 U      | 180 U<br>180 U      | 190 UJ<br>190 UJ    | 190 U<br>190 U       | 180 U<br>180 U      | 180 U<br>180 U      | 170 U<br>170 U      | 180 U<br>180 U      | 210 U<br>210 U      | 190 U<br>190 U      | 180 U<br>180 U      |
| 2-Nitroaniline                                                         | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 2-Nitrophenol                                                          | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 3,3'-Dichlorobenzidine                                                 | 190 UJ              | 180 UJ              | 190 UJ              | 190 UJ               | 180 UJ              | 180 UJ              | 170 UJ              | 180 UJ              | 210 UJ              | 190 U               | 180 U               |
| 3-Nitroaniline 4,6-Dinitro-2-methylphenol                              | 190 U<br>190 U      | 180 U<br>180 U      | 190 UJ<br>190 UJ    | 190 U<br>190 U       | 180 U<br>180 U      | 180 U<br>180 U      | 170 U<br>170 U      | 180 U<br>180 U      | 210 U<br>210 U      | 190 U<br>190 U      | 180 U<br>180 U      |
| 4-Bromophenyl-phenylether                                              | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 4-Chloro-3-methylphenol                                                | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 4-Chloroaniline                                                        | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 4-Chlorophenyl-phenylether                                             | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| 4-Methylphenol 4-Nitroaniline                                          | 190 U<br>190 U      | 180 U<br>180 U      | 190 UJ<br>190 UJ    | 190 U<br>190 U       | 180 U<br>180 U      | 180 U<br>180 U      | 170 U<br>170 U      | 180 U<br>180 U      | 210 U<br>210 U      | 190 U<br>190 U      | 180 U<br>180 U      |
| 4-Nitrophenol                                                          | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| Acenaphthene                                                           | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| Acenaphthylene                                                         | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| Actophenone                                                            | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| Anthracene<br>Atrazine                                                 | 190 U<br>190 U      | 180 U<br>180 U      | 190 UJ<br>190 UJ    | 190 U<br>190 U       | 180 U<br>180 U      | 180 U<br>180 U      | 170 U<br>170 U      | 180 U<br>180 U      | 210 U<br>210 U      | 190 U<br>190 U      | 180 U<br>180 U      |
| Atrazine<br>Benzaldehyde                                               | 190 U               | 180 U               | 190 UJ              | 190 U                | 180 U               | 180 U               | 170 U               | 180 U               | 210 U               | 190 U               | 180 U               |
| Benzo(a)anthracene                                                     | 39 U                | 36 U                | 38 UJ               | 38 U                 | 37 U                | 36 U                | 35 U                | 36 U                | 42 U                | 37 U                | 36 U                |

CTO-11 Camp Lejeune - Site 15 Validated Surface Soil Raw Analytical Results July 2009

| Station ID Sample ID Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IR15-SS01<br>IR15-SS01-00-01-09C | IR15-SS02                       | IR1                             | 5-SS03                           | IR15-SS04                       | IR15-SS05                       | IR15-SS06                       | IR15-SS07                       | IR15-SS08                       | IR15-SS09                       |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 | ID4E CC00 00 04 00C             | ID45 0000D 00 04 000             |                                 |                                 |                                 |                                 |                                 |                                 | IR15-SS10                       |
| . IOU II DE LIAIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 07/10/09                         | IR15-SS02-00-01-09C<br>07/10/09 | IR15-SS03-00-01-09C<br>07/10/09 | IR15-SS03D-00-01-09C<br>07/10/09 | IR15-SS04-00-01-09C<br>07/10/09 | IR15-SS05-00-01-09C<br>07/10/09 | IR15-SS06-00-01-09C<br>07/10/09 | IR15-SS07-00-01-09C<br>07/10/09 | IR15-SS08-00-01-09C<br>07/10/09 | IR15-SS09-00-01-09C<br>07/10/09 | IR15-SS10-00-01-09C<br>07/10/09 |
| Chemical Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07/10/03                         | 01/10/09                        | 07/10/03                        | 01/10/03                         | 01/10/03                        | 07/10/09                        | 01/10/09                        | 07/10/09                        | 01/10/03                        | 01/10/03                        | 01/10/03                        |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39 U                             | 36 U                            | 38 UJ                           | 38 U                             | 37 U                            | 36 U                            | 35 U                            | 36 U                            | 42 U                            | 37 U                            | 36 U                            |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39 U                             | 36 U                            | 38 UJ                           | 38 U                             | 37 U                            | 36 U                            | 35 U                            | 36 U                            | 42 U                            | 37 U                            | 36 U                            |
| Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                            | 180 UJ<br>180 UJ                | 190 UJ<br>190 UJ                | 95 J<br>190 U                    | 180 U<br>180 U                  | 180 U<br>180 U                  | 170 U<br>170 U                  | 180 U<br>180 U                  | 210 U<br>210 U                  | 190 U<br>190 U                  | 180 U<br>180 U                  |
| Benzo(k)fluoranthene<br>bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190 U<br>190 U                   | 180 UJ                          | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 U                           | 180 U                           |
| bis(2-Chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 U                           | 180 U                           |
| bis(2-Ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180 J                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 110 J                           | 88 J                            | 210 U                           | 190 U                           | 180 U                           |
| Butylbenzylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 J                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 U                           | 180 U                           |
| Caprolactam Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U<br>190 U                   | 180 U<br>180 U                  | 190 UJ<br>190 UJ                | 190 U<br>190 U                   | 180 U<br>180 U                  | 180 R<br>180 U                  | 170 U<br>170 U                  | 180 U<br>180 U                  | 210 U<br>210 U                  | 190 U<br>190 U                  | 180 U<br>180 U                  |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 190 U                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 U                           | 180 U                           |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39 U                             | 36 U                            | 38 UJ                           | 64 J                             | 37 U                            | 36 U                            | 35 U                            | 36 U                            | 42 U                            | 37 U                            | 36 U                            |
| Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190 U                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 U                           | 180 U                           |
| Diethylphthalate Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190 U<br>190 U                   | 180 U<br>180 U                  | 190 UJ<br>190 UJ                | 190 U<br>190 U                   | 180 U<br>180 U                  | 180 U<br>180 U                  | 170 U<br>170 U                  | 180 U<br>180 U                  | 210 U<br>210 U                  | 190 U<br>190 U                  | 180 U<br>180 U                  |
| Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190 U                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 120 J                           | 150 J                           |
| Di-n-octylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190 UJ                           | 180 UJ                          | 190 UJ                          | 190 UJ                           | 180 UJ                          | 180 UJ                          | 170 UJ                          | 180 UJ                          | 210 UJ                          | 190 U                           | 180 U                           |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190 U                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 U                           | 180 U                           |
| Fluorene<br>Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190 U<br>190 U                   | 180 U<br>180 U                  | 190 UJ<br>190 UJ                | 190 U<br>190 U                   | 180 U<br>180 U                  | 180 U<br>180 U                  | 170 U<br>170 U                  | 180 U<br>180 U                  | 210 U<br>210 U                  | 190 U<br>190 U                  | 180 U<br>180 U                  |
| Hexachlorobutadiene Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 U                           | 180 U                           |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 190 U                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 U                           | 180 U                           |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 190 U                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 U                           | 180 U                           |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39 U                             | 36 U                            | 38 UJ                           | 52 J                             | 37 U                            | 36 U                            | 35 U                            | 36 U                            | 42 U                            | 37 U                            | 36 U                            |
| Isophorone<br>Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39 U<br>190 U                    | 36 U<br>180 U                   | 38 UJ<br>190 UJ                 | 38 U<br>190 U                    | 37 U<br>180 U                   | 36 U<br>180 U                   | 35 U<br>170 U                   | 36 U<br>180 U                   | 42 U<br>210 U                   | 37 U<br>190 U                   | 36 U<br>180 U                   |
| n-Nitroso-di-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39 U                             | 36 U                            | 38 UJ                           | 38 U                             | 37 U                            | 36 U                            | 35 U                            | 36 U                            | 42 U                            | 37 U                            | 36 U                            |
| n-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                            | 180 UJ                          | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 U                           | 180 U                           |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190 U                            | 180 U<br>180 U                  | 190 UJ<br>190 UJ                | 190 U<br>190 U                   | 180 U<br>180 U                  | 180 U                           | 170 U<br>170 U                  | 180 U<br>180 U                  | 210 U<br>210 U                  | 190 U<br>190 U                  | 180 U<br>180 U                  |
| Pentachlorophenol Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                   | 180 U<br>180 U                  | 190 UJ<br>190 UJ                | 190 U<br>190 U                   | 180 U<br>180 U                  | 180 U<br>180 U                  | 170 U<br>170 U                  | 180 U<br>180 U                  | 210 U<br>210 U                  | 190 U<br>190 U                  | 180 U<br>180 U                  |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 U                           | 180 U                           |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                            | 180 U                           | 190 UJ                          | 190 U                            | 180 U                           | 180 U                           | 170 U                           | 180 U                           | 210 U                           | 190 UJ                          | 180 U                           |
| Description of the second of t |                                  |                                 |                                 |                                  |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| Pesticide/Polychlorinated Biphenyls (µg/kg)<br>4,4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.5 J                            | 1.8 U                           | 1.9 U                           | 1.9 U                            | 1.9 U                           | 1.8 U                           | 1.7 U                           | 1.8 U                           | 2.1 U                           | 2.7                             | 3.7                             |
| 4,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25 J                             | 1.8 U                           | 0.75 J                          | 0.88 J                           | 1.9 U                           | 1.8 U                           | 0.56 J                          | 1.0 J                           | 2.1 J                           | 21 J                            | 22 J                            |
| 4,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16 J                             | 1.8 UJ                          | 1 J                             | 1.3 J                            | 1.9 UJ                          | 1.8 UJ                          | 0.39 J                          | 0.62 J                          | 0.99 J                          | 1.8 UJ                          | 24 J                            |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9 U                            | 1.8 U                           | 1.9 U                           | 1.9 U                            | 1.9 U                           | 1.8 U                           | 1.7 U                           | 1.8 U                           | 2.1 U                           | 1.8 UJ                          | 1.8 UJ                          |
| alpha-BHC<br>alpha-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.9 U<br>7.4 J                   | 1.8 U<br>1.8 U                  | 1.9 U<br>1.9 U                  | 1.9 U<br>1.9 U                   | 1.9 U<br>1.9 U                  | 1.8 U<br>1.8 U                  | 1.7 U<br>1.7 U                  | 1.8 U<br>1.8 U                  | 2.1 U<br>2.1 U                  | 1.8 UJ<br>1.1 J                 | 1.8 UJ<br>1 J                   |
| Aroclor-1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U                             | 1.8 U                           | 1.9 U                           | 1.9 U                            | 18 U                            | 1.8 U                           | 1.7 U                           | 1.8 U                           | 21 U                            | 1.1 J                           | 17 U                            |
| Aroclor-1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U                             | 18 U                            | 19 U                            | 19 U                             | 18 U                            | 18 U                            | 17 U                            | 18 U                            | 21 U                            | 17 U                            | 17 U                            |
| Aroclor-1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U                             | 18 U                            | 19 U                            | 19 U                             | 18 U                            | 18 U                            | 17 U                            | 18 U                            | 21 U                            | 17 U                            | 17 U                            |
| Aroclor-1242<br>Aroclor-1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U                     | 18 U<br>18 U                    | 19 U<br>19 U                    | 19 U<br>19 U                     | 18 U<br>18 U                    | 18 U<br>18 U                    | 17 U<br>17 U                    | 18 U                            | 21 U<br>21 U                    | 17 U<br>17 U                    | 17 U<br>17 U                    |
| Aroclor-1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 360 J                            | 18 U                            | 19 U                            | 19 U                             | 18 U                            | 18 U                            | 17 U                            | 18 U<br>18 U                    | 21 U                            | 17 U                            | 17 U                            |
| Aroclor-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U                             | 18 U                            | 19 U                            | 19 U                             | 18 U                            | 18 U                            | 17 U                            | 18 U                            | 21 U                            | 17 U                            | 17 U                            |
| beta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9 U                            | 1.8 U                           | 1.9 U                           | 1.9 U                            | 1.9 U                           | 1.8 U                           | 1.7 U                           | 1.8 U                           | 2.1 U                           | 1.8 UJ                          | 1.8 UJ                          |
| delta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.9 U                            | 1.8 U                           | 1.9 U                           | 1.9 U                            | 1.9 U                           | 1.8 U                           | 1.7 U                           | 1.8 U                           | 2.1 U                           | 1.8 UJ                          | 1.8 UJ                          |
| Dieldrin<br>Endosulfan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9 U<br>1.9 U                   | 1.8 U<br>1.8 U                  | 1.9 U<br>1.9 U                  | 1.9 U<br>1.9 U                   | 1.9 U<br>1.9 U                  | 1.8 U<br>1.8 U                  | 1.7 U<br>1.7 U                  | 1.8 U<br>1.8 U                  | 2.1 U<br>2.1 U                  | 1.7 J<br>1.8 UJ                 | 0.91 J<br>1.8 UJ                |
| Endosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.9 U                            | 1.8 U                           | 1.9 U                           | 1.9 U                            | 1.9 U                           | 1.8 U                           | 1.7 U                           | 1.8 U                           | 2.1 U                           | 1.8 UJ                          | 1.8 UJ                          |
| Endosulfan sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9 U                            | 1.8 U                           | 1.9 U                           | 1.9 U                            | 1.9 U                           | 1.8 U                           | 1.7 U                           | 1.8 U                           | 2.1 U                           | 1.8 UJ                          | 1.8 UJ                          |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9 U                            | 1.8 U                           | 1.9 U                           | 1.9 U                            | 1.9 U                           | 1.8 U                           | 1.7 U                           | 1.8 U                           | 2.1 U                           | 1.8 UJ                          | 1.8 UJ                          |
| Endrin aldehyde<br>Endrin ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.9 U<br>1.9 UJ                  | 1.8 U<br>1.8 UJ                 | 1.9 U<br>1.9 UJ                 | 1.9 U<br>1.9 UJ                  | 1.9 U<br>1.9 UJ                 | 1.8 U<br>1.8 UJ                 | 1.7 U<br>1.7 UJ                 | 1.8 U<br>1.8 UJ                 | 2.1 U<br>2.1 UJ                 | 1.8 UJ<br>1.8 UJ                | 1.8 UJ<br>1.8 UJ                |
| gamma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9 U                            | 1.8 U                           | 1.9 U                           | 1.9 U                            | 1.9 U                           | 1.8 U                           | 1.7 U                           | 1.8 U                           | 2.1 U                           | 1.8 UJ                          | 1.8 UJ                          |
| gamma-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.6 J                            | 1.8 U                           | 1.9 U                           | 1.9 U                            | 1.9 U                           | 1.8 U                           | 1.7 U                           | 1.8 U                           | 2.1 U                           | 0.58 J                          | 0.71 J                          |
| Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.9 U                            | 1.8 U                           | 1.9 U                           | 1.9 U                            | 1.9 U                           | 1.8 U                           | 1.7 U                           | 1.8 U                           | 2.1 U                           | 1.8 UJ                          | 1.8 UJ                          |
| Heptachlor epoxide<br>Methoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9 U<br>1.9 UJ                  | 1.8 U<br>1.8 UJ                 | 1.9 U<br>1.9 UJ                 | 1.9 U<br>1.9 UJ                  | 1.9 U<br>1.9 UJ                 | 1.8 U<br>1.8 UJ                 | 1.7 U<br>1.7 UJ                 | 1.8 U<br>1.8 UJ                 | 2.1 U<br>2.1 UJ                 | 1.8 UJ<br>1.8 UJ                | 1.8 UJ<br>1.8 UJ                |
| Toxaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39 U                             | 36 U                            | 38 U                            | 38 U                             | 37 U                            | 36 U                            | 35 U                            | 36 U                            | 42 U                            | 37 UJ                           | 36 UJ                           |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                 |                                 |                                  |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| Total Metals (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.000                            | F 700                           | 40.500                          | 44.400                           | 2012                            | 4.50                            | 4.050                           | 4.000 1                         | 4.040                           | 7 100                           | 0.040                           |
| Aluminum<br>Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,280<br>0.64 J-                 | 5,720<br>1.5 UJ                 | 12,500<br>1.6 UJ                | 11,400<br>1.6 UJ                 | 3,910 J+<br>1.6 U               | 1,150 J+<br>1.6 U               | 1,250 J+<br>0.27 J              | 1,380 J+<br>0.27 J              | 4,640 J+<br>0.34 J              | 7,490<br>1.5 UJ                 | 6,340<br>1.5 UJ                 |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7                              | 0.76 J                          | 4.1                             | 4.7                              | 1 J                             | 0.24 J                          | 0.39 J                          | 0.49 J                          | 2.1                             | 4.1                             | 2.7                             |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.3                             | 9.2                             | 15.7                            | 14.8                             | 6.5                             | 4.6                             | 2.9 J                           | 4.3                             | 17.5                            | 12.6                            | 13.6                            |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.055 J                          | 0.039 J                         | 0.14 J                          | 0.14 J                           | 0.16 U                          | 0.16 U                          | 0.15 U                          | 0.16 U                          | 0.18 U                          | 0.076 J                         | 0.1 J                           |
| Cadmium<br>Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.61<br>36,500                   | 0.45 U<br>1,680                 | 0.49 U<br>12,600                | 0.49 U<br>29,900                 | 0.015 J<br>94.3                 | 0.47 U<br>157                   | 0.014 J<br>182                  | 0.054 J<br>366                  | 0.11 J<br>2,230                 | 0.044 J<br>742                  | 0.45 U<br>555                   |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.2                              | 5.7                             | 17.1                            | 17.2                             | 94.3                            | 1.7                             | 1.4 J                           | 1.9                             | 6.2                             | 10.2                            | 8.4                             |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.57                             | 0.24 J                          | 0.57                            | 0.56                             | 0.086 J                         | 0.069 J                         | 0.38 U                          | 0.067 J                         | 0.45 U                          | 0.42                            | 0.3 J                           |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.1                             | 1.1 J                           | 2.9                             | 3.2                              | 0.73 J                          | 0.54 J                          | 1.4 J                           | 1.9                             | 13.1                            | 4.1                             | 7.9                             |
| ron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,010                            | 1,620                           | 9,030                           | 10,200                           | 2,410                           | 559                             | 903                             | 930                             | 3,430                           | 6,430                           | 5,270                           |
| _ead<br>Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70.3<br>312                      | 3.7<br>197                      | 9.1<br>614                      | 12.1<br>796                      | 3.9<br>103                      | 3<br>46.7                       | 9.1<br>53.7                     | 12.2<br>60.4                    | 38.6<br>247                     | 11<br>339                       | 19.4<br>263                     |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.2                             | 5.5                             | 9.7                             | 14                               | 4.6                             | 5.2                             | 6.2                             | 7.6                             | 14.3                            | 7.9                             | 12.5                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 0.034 U                         | 0.035 U                         | 0.041                            | 0.034 U                         | 0.034 U                         | 0.033 U                         | 0.019 J                         | 0.039 U                         | 0.044                           | 0.049                           |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.51                             |                                 |                                 |                                  |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.51<br>2.7<br>184               | 1.3                             | 1.8<br>497                      | 2.1<br>475                       | 0.55 J<br>109                   | 0.48 J<br>78.8 U                | 0.49 J<br>76.3 U                | 0.53 J<br>78.8 U                | 1.6<br>220                      | 1.7<br>367                      | 1.6<br>249                      |

| Station ID    | IR15-SS01           | IR15-SS02           | IR1                 | 5-SS03               | IR15-SS04           | IR15-SS05           | IR15-SS06           | IR15-SS07           | IR15-SS08           | IR15-SS09           | IR15-SS10           |
|---------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Sample ID     | IR15-SS01-00-01-09C | IR15-SS02-00-01-09C | IR15-SS03-00-01-09C | IR15-SS03D-00-01-09C | IR15-SS04-00-01-09C | IR15-SS05-00-01-09C | IR15-SS06-00-01-09C | IR15-SS07-00-01-09C | IR15-SS08-00-01-09C | IR15-SS09-00-01-09C | IR15-SS10-00-01-09C |
| Sample Date   | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09             | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            |
| Chemical Name |                     |                     |                     |                      |                     |                     |                     |                     |                     |                     |                     |
| Silver        | 1.6 U               | 1.5 U               | 1.6 U               | 1.6 U                | 1.6 U               | 0.17 J              | 1.5 U               | 1.6 U               | 1.8 U               | 1.5 U               | 1.5 U               |
| Sodium        | 17.5 J              | 6.7 J               | 40.9 J              | 68.7 J               | 202 U               | 197 U               | 191 U               | 197 U               | 17.1 J              | 13.8 J              | 188 U               |
| Thallium      | 2.4 U               | 2.3 U               | 2.4 U               | 2.4 U                | 2.4 U               | 2.4 U               | 2.3 U               | 2.4 U               | 2.7 U               | 2.3 U               | 2.3 U               |
| Vanadium      | 7.5                 | 7.2                 | 20.1                | 22.3                 | 5.5                 | 2.2 J               | 2.3 J               | 2.7 J               | 8.9                 | 18                  | 13.2                |
| Zinc          | 170                 | 3.8 U               | 10                  | 11.9                 | 4 U                 | 3.9 U               | 6                   | 7.5                 | 26.2                | 12.5                | 18                  |
|               |                     |                     |                     |                      |                     |                     |                     |                     |                     |                     |                     |
| Wet Chemistry |                     |                     |                     |                      |                     |                     |                     |                     |                     |                     |                     |
| pH (ph)       | 7.8                 | 8.3                 | 7.9                 | 8                    | 4.7                 | 4.8                 | 4.8                 | 5.6                 | 5.6                 | 5.2                 | 5.5                 |

- Notes:

  Shading indicates detections

  NA Not analyzed

  J Analyte present, value may or may not be accurate or precise

  J Analyte present, value may be biased low, actual value may be higher

  J+ Analyte present, value may be biased high, actual value may be lower

  R Unreliable Result

  U The material was analyzed for, but not detected

  UJ Analyte not detected, quantitation limit may be inaccurate

  mg/kg Milligrams per kilogram

  ph pH units

  µg/kg Micrograms per kilogram

CTO-11 Camp Lejeune - Site 15 Validated Subsurface Soil Raw Analytical Results July 2009

| lover in the                                       | 1                              |                           |                             | 10.15.0000                     | I 1515 6561                    | 10.1-000-                      | 15.5.555                       | 10.1-000-                      | 10.15.0000                     | 10.15.0000                     | 10.15.00.10                    |
|----------------------------------------------------|--------------------------------|---------------------------|-----------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Station ID<br>Sample ID                            | IR15-SB01<br>IR15-SB01-4-6-09C | IR15<br>IR15-SB02-2-7-09C | -SB02<br>IR15-SB02D-2-7-09C | IR15-SB03<br>IR15-SB03-2-7-09C | IR15-SB04<br>IR15-SB04-2-7-09C | IR15-SB05<br>IR15-SB05-2-7-09C | IR15-SB06<br>IR15-SB06-2-7-09C | IR15-SB07<br>IR15-SB07-2-4-09C | IR15-SB08<br>IR15-SB08-2-4-09C | IR15-SB09<br>IR15-SB09-2-7-09C | IR15-SB10<br>IR15-SB10-2-4-09C |
| Sample Date                                        | 07/29/09                       | 07/26/09                  | 07/26/09                    | 07/29/09                       | 07/27/09                       | 07/27/09                       | 07/27/09                       | 07/27/09                       | 07/29/09                       | 07/29/09                       | 07/29/09                       |
| Chemical Name                                      |                                | 0.7,20,00                 |                             | 31,120,330                     |                                | 011=1100                       |                                | 011=1100                       | 011=0100                       | 011-0100                       | 0.7.2.7.00                     |
|                                                    |                                |                           |                             |                                |                                |                                |                                |                                |                                |                                |                                |
| Volatile Organic Compounds (μg/kg)                 |                                |                           |                             |                                |                                |                                |                                |                                |                                | 10.5                           | 4.0.11                         |
| 1,1,1-Trichloroethane<br>1,1,2,2-Tetrachloroethane | 1.7 U<br>1.7 U                 | 2 UJ<br>2 UJ              | 2.4 UJ<br>2.4 UJ            | 1.8 U<br>1.8 U                 | 1.9 UJ<br>1.9 UJ               | 1.8 UJ<br>1.8 UJ               | 1.6 R<br>1.6 R                 | 2.1 UJ<br>2.1 UJ               | 1.6 U<br>1.6 U                 | 1.9 R<br>1.9 R                 | 1.6 U<br>1.6 U                 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113)   | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| 1,1,2-Trichloroethane                              | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| 1,1-Dichloroethane                                 | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| 1,1-Dichloroethene<br>1,2,4-Trichlorobenzene       | 1.7 U<br>1.7 U                 | 2 UJ<br>2 UJ              | 2.4 UJ<br>2.4 UJ            | 1.8 U<br>1.8 U                 | 1.9 UJ<br>2.4 J                | 1.8 UJ<br>1.8 UJ               | 1.6 R<br>3.2 R                 | 2.1 UJ<br>2.5 J                | 1.6 U<br>1.9 J                 | 1.9 R<br>2.4 J                 | 1.6 U<br>1.6 U                 |
| 1,2-Dibromo-3-chloropropane                        | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| 1,2-Dibromoethane                                  | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| 1,2-Dichlorobenzene                                | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| 1,2-Dichloroethane<br>1,2-Dichloropropane          | 1.7 U<br>1.7 U                 | 2 UJ<br>2 UJ              | 2.4 UJ<br>2.4 UJ            | 1.8 U<br>1.8 U                 | 1.9 UJ<br>1.9 UJ               | 1.8 UJ<br>1.8 UJ               | 1.6 R<br>1.6 R                 | 2.1 UJ<br>2.1 UJ               | 1.6 U<br>1.6 U                 | 1.9 R<br>1.9 R                 | 1.6 U<br>1.6 U                 |
| 1,3-Dichlorobenzene                                | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.4 J                          | 1.8 UJ                         | 3.2 R                          | 1.6 J                          | 1.6 U                          | 1.3 J                          | 1.6 U                          |
| 1,4-Dichlorobenzene                                | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 1.6 J                          | 1.6 U                          | 1.4 J                          | 1.6 U                          |
| 2-Butanone                                         | 3.4 U                          | 4 UJ                      | 4.8 UJ                      | 3.6 U                          | 6.6 J                          | 3.7 UJ                         | 3.2 R                          | 21 J                           | 3.1 U                          | 15 J                           | 3.2 U                          |
| 2-Hexanone<br>4-Methyl-2-pentanone                 | 3.4 U<br>3.4 U                 | 4 UJ<br>4 UJ              | 4.8 UJ<br>4.8 UJ            | 3.6 U<br>3.6 U                 | 3.9 UJ<br>3.9 UJ               | 3.7 UJ<br>3.7 UJ               | 3.2 R<br>3.2 R                 | 4.1 J<br>4.2 UJ                | 3.1 U<br>3.1 U                 | 0.6 J<br>1.7 J                 | 3.2 U<br>3.2 U                 |
| Acetone                                            | 3.4 U                          | 42 J                      | 39 J                        | 6.4 J                          | 41 J                           | 19 J                           | 60 J                           | 120 J                          | 18 J                           | 1.7 J                          | 4.6                            |
| Benzene                                            | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 0.97 J                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 0.42 J                         | 1.6 U                          |
| Bromodichloromethane                               | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| Bromoform<br>Bromomethane                          | 1.7 U<br>3.4 U                 | 2 UJ<br>4 UJ              | 2.4 UJ<br>4.8 UJ            | 1.8 U<br>3.6 U                 | 1.9 UJ<br>3.9 UJ               | 1.8 UJ<br>3.7 UJ               | 1.6 R<br>3.2 R                 | 2.1 UJ<br>4.2 UJ               | 1.6 U<br>3.1 R                 | 1.9 R<br>3.9 R                 | 1.6 U<br>3.2 U                 |
| Carbon disulfide                                   | 1.7 U                          | 2 UJ                      | 1.4 J                       | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| Carbon tetrachloride                               | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| Chlorobenzene                                      | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 2.6 J                          | 1.6 U                          |
| Chloroethane<br>Chloroform                         | 3.4 U<br>1.7 U                 | 4 UJ<br>2 UJ              | 4.8 UJ<br>2.4 UJ            | 3.6 U<br>1.8 U                 | 3.9 UJ<br>1.9 UJ               | 3.7 UJ<br>1.8 UJ               | 3.2 R<br>1.6 R                 | 4.2 UJ<br>2.1 UJ               | 3.1 R<br>1.6 U                 | 3.9 R<br>1.9 R                 | 3.2 U<br>1.6 U                 |
| Chloromethane                                      | 3.4 U                          | 4 UJ                      | 4.8 UJ                      | 3.6 U                          | 3.9 UJ                         | 3.7 UJ                         | 3.2 R                          | 4.2 UJ                         | 3.1 U                          | 3.9 R                          | 3.2 U                          |
| cis-1,2-Dichloroethene                             | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| cis-1,3-Dichloropropene                            | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| Cyclohexane Dibromochloromethane                   | 1.7 U<br>1.7 U                 | 2 UJ<br>2 UJ              | 2.4 UJ<br>2.4 UJ            | 1.8 U<br>1.8 U                 | 1.9 UJ<br>1.9 UJ               | 1.8 UJ<br>1.8 UJ               | 1.6 R<br>1.6 R                 | 2.1 UJ<br>2.1 UJ               | 1.6 U<br>1.6 U                 | 1.9 R<br>1.9 R                 | 1.6 U<br>1.6 U                 |
| Dichlorodifluoromethane (Freon-12)                 | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| Ethylbenzene                                       | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| Isopropylbenzene                                   | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 3.9 UJ                         | 1.8 UJ                         | 3.2 R                          | 4.2 UJ                         | 2 U                            | 2.6 R                          | 1.6 U                          |
| Methyl acetate Methylcyclohexane                   | 1.7 U<br>1.7 U                 | 1.9 J<br>2 UJ             | 3.5 J<br>2.4 UJ             | 1.8 U<br>1.8 U                 | 1.9 UJ<br>1.9 UJ               | 7.8 J<br>1.8 UJ                | 1.6 R<br>1.6 R                 | 2.1 UJ<br>2.1 UJ               | 1.6 U<br>1.6 U                 | 1.9 R<br>1.9 R                 | 1.6 U<br>1.6 U                 |
| Methylene chloride                                 | 3.4 UJ                         | 2.2 J                     | 3.1 J                       | 3.6 UJ                         | 2.9 J                          | 8.9 J                          | 3.2 R                          | 3.3 J                          | 3.1 U                          | 3.9 R                          | 3.2 UJ                         |
| Methyl-tert-butyl ether (MTBE)                     | 1.7 UJ                         | 2 UJ                      | 2.4 UJ                      | 1.8 UJ                         | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 UJ                         |
| Styrene                                            | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 3.9 UJ                         | 1.8 UJ                         | 3.2 R                          | 2.9 J                          | 3.1 U                          | 2.6 J                          | 1.6 U                          |
| Tetrachloroethene Toluene                          | 1.7 U<br>1.7 U                 | 2 UJ<br>2 UJ              | 2.4 UJ<br>2.4 UJ            | 1.8 U<br>1.8 U                 | 1.9 UJ<br>2.8 J                | 1.8 UJ<br>1.8 UJ               | 1.6 R<br>1.6 R                 | 2.1 UJ<br>2.9 J                | 1.6 U<br>1.6 U                 | 1.5 J<br>0.42 J                | 1.6 U<br>1.6 U                 |
| trans-1,2-Dichloroethene                           | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| trans-1,3-Dichloropropene                          | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| Trichloroethene                                    | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 1.9 UJ                         | 1.8 UJ                         | 1.6 R                          | 2.1 UJ                         | 1.6 U                          | 1.9 R                          | 1.6 U                          |
| Trichlorofluoromethane(Freon-11) Vinyl chloride    | 1.7 U<br>3.4 U                 | 2 UJ<br>4 UJ              | 2.4 UJ<br>4.8 UJ            | 1.8 U<br>3.6 U                 | 1.9 UJ<br>3.9 UJ               | 1.8 UJ<br>3.7 UJ               | 1.6 R<br>3.2 R                 | 2.1 UJ<br>4.2 UJ               | 1.6 U<br>3.1 U                 | 1.9 R<br>3.9 R                 | 1.6 U<br>3.2 U                 |
| Xylene, total                                      | 1.7 U                          | 2 UJ                      | 2.4 UJ                      | 1.8 U                          | 7.8 UJ                         | 1.8 UJ                         | 6.4 R                          | 8.3 UJ                         | 3.1 U                          | 3.9 R                          | 1.6 U                          |
|                                                    |                                |                           |                             |                                |                                |                                |                                |                                |                                |                                |                                |
| Semivolatile Organic Compounds (μg/kg)             |                                |                           |                             |                                | 21211                          |                                |                                |                                |                                |                                | 400.11                         |
| 1,1-Biphenyl<br>2,2'-Oxybis(1-chloropropane)       | 190 U<br>190 U                 | 190 U<br>190 U            | 190 U<br>190 U              | 190 U<br>190 U                 | 210 U<br>210 U                 | 190 U<br>190 U                 | 180 U<br>180 U                 | 210 U<br>210 U                 | 190 U<br>190 U                 | 200 U<br>200 U                 | 180 U<br>180 U                 |
| 2,4,5-Trichlorophenol                              | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| 2,4-Dichlorophenol                                 | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| 2,4-Dimethylphenol                                 | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| 2,4-Dinitrophenol 2,4-Dinitrotoluene               | 190 U<br>190 U                 | 190 UJ<br>190 U           | 190 UJ<br>190 U             | 190 U<br>190 U                 | 210 U<br>210 U                 | 190 UJ<br>190 U                | 180 U<br>180 U                 | 210 U<br>210 U                 | 190 U<br>190 U                 | 200 U<br>200 U                 | 180 U<br>180 U                 |
| 2,6-Dinitrotoluene                                 | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| 2-Chloronaphthalene                                | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| 2-Chlorophenol                                     | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| 2-Methylnaphthalene<br>2-Methylphenol              | 190 U<br>190 U                 | 190 U<br>190 U            | 190 U<br>190 U              | 190 U<br>190 U                 | 210 U<br>210 U                 | 190 U<br>190 U                 | 180 U<br>180 U                 | 210 U<br>210 U                 | 190 U<br>190 U                 | 200 U<br>200 U                 | 180 U<br>180 U                 |
| 2-Nitroaniline                                     | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| 2-Nitrophenol                                      | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| 3,3'-Dichlorobenzidine                             | 190 UJ                         | 190 UJ                    | 190 UJ                      | 190 UJ                         | 210 UJ                         | 190 UJ                         | 180 UJ                         | 210 UJ                         | 190 UJ                         | 200 UJ                         | 180 UJ                         |
| 3-Nitroaniline 4,6-Dinitro-2-methylphenol          | 190 U<br>190 U                 | 190 U<br>190 U            | 190 U<br>190 U              | 190 U<br>190 U                 | 210 U<br>210 U                 | 190 U<br>190 U                 | 180 U<br>180 U                 | 210 U<br>210 U                 | 190 U<br>190 U                 | 200 U<br>200 U                 | 180 U<br>180 U                 |
| 4-Bromophenyl-phenylether                          | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| 4-Chloro-3-methylphenol                            | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| 4-Chloroaniline                                    | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| 4-Chlorophenyl-phenylether<br>4-Methylphenol       | 190 U<br>190 U                 | 190 U<br>190 U            | 190 U<br>190 U              | 190 U<br>190 U                 | 210 U<br>210 U                 | 190 U<br>190 U                 | 180 U<br>180 U                 | 210 U<br>210 U                 | 190 U<br>190 U                 | 200 U<br>200 U                 | 180 U<br>180 U                 |
| 4-Nitroaniline                                     | 190 UJ                         | 190 UJ                    | 190 UJ                      | 190 UJ                         | 210 UJ                         | 190 UJ                         | 180 UJ                         | 210 UJ                         | 190 UJ                         | 200 UJ                         | 180 UJ                         |
| 4-Nitrophenol                                      | 190 U                          | 190 UJ                    | 190 UJ                      | 190 U                          | 210 U                          | 190 UJ                         | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| Acenaphthene                                       | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| Acetaphanana                                       | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |
| Acetophenone                                       | 190 U                          | 190 U                     | 190 U                       | 190 U                          | 210 U                          | 190 U                          | 180 U                          | 210 U                          | 190 U                          | 200 U                          | 180 U                          |

CTO-11 Camp Lejeune - Site 15 Validated Subsurface Soil Raw Analytical Results July 2009

| Station ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                             |                                                                                          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IR15-SB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -SB02                                                                                                                                                                                                                                                                                                                                                                  | IR15-SB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IR15-SB04                                                                                                                                                         | IR15-SB05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IR15-SB06                                                                                                                                                                                                                                                                                                                                | IR15-SB07                                                                                                                                                                                   | IR15-SB08                                                                                | IR15-SB09                                                                                                                | IR15-SB10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IR15-SB01-4-6-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IR15-SB02-2-7-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IR15-SB02D-2-7-09C                                                                                                                                                                                                                                                                                                                                                     | IR15-SB03-2-7-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IR15-SB04-2-7-09C                                                                                                                                                 | IR15-SB05-2-7-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IR15-SB06-2-7-09C                                                                                                                                                                                                                                                                                                                        | IR15-SB07-2-4-09C                                                                                                                                                                           | IR15-SB08-2-4-09C                                                                        | IR15-SB09-2-7-09C                                                                                                        | IR15-SB10-2-4-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07/29/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07/26/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07/26/09                                                                                                                                                                                                                                                                                                                                                               | 07/29/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07/27/09                                                                                                                                                          | 07/27/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07/27/09                                                                                                                                                                                                                                                                                                                                 | 07/27/09                                                                                                                                                                                    | 07/29/09                                                                                 | 07/29/09                                                                                                                 | 07/29/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Chemical Name Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Atrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190 UJ                                                                                                                                                                                                                                                                                                                                                                 | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Benzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190 UJ                                                                                                                                                                                                                                                                                                                                                                 | 190 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 R                                                                                                                                                             | 190 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 R                                                                                                                                                                                                                                                                                                                                    | 210 R                                                                                                                                                                                       | 190 R                                                                                    | 200 R                                                                                                                    | 180 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 U                                                                                                                                                                                                                                                                                                                                                                   | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42 U                                                                                                                                                              | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 U                                                                                                                                                                                                                                                                                                                                     | 41 U                                                                                                                                                                                        | 38 U                                                                                     | 39 U                                                                                                                     | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 U                                                                                                                                                                                                                                                                                                                                                                   | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42 U                                                                                                                                                              | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 U                                                                                                                                                                                                                                                                                                                                     | 41 U                                                                                                                                                                                        | 38 U                                                                                     | 39 U                                                                                                                     | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 U                                                                                                                                                                                                                                                                                                                                                                   | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42 U                                                                                                                                                              | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 U                                                                                                                                                                                                                                                                                                                                     | 41 U                                                                                                                                                                                        | 38 U                                                                                     | 39 U                                                                                                                     | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Benzo(g,h,i)perylene Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                         | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 210 U<br>210 U                                                                                                                                                    | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                           | 210 U<br>210 U                                                                                                                                                                              | 190 U<br>190 U                                                                           | 200 U<br>200 U                                                                                                           | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| bis(2-Chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| bis(2-Ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 320 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 330 U                                                                                                                                                                                                                                                                                                                                                                  | 31 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 360 U                                                                                                                                                             | 330 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 32 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Butylbenzylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Caprolactam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U<br>190 UJ                                                                          | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Carbazole<br>Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 UJ<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                         | 190 UJ<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210 U<br>210 U                                                                                                                                                    | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                           | 210 U<br>210 U                                                                                                                                                                              | 190 UJ                                                                                   | 200 UJ<br>200 U                                                                                                          | 180 UJ<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 U                                                                                                                                                                                                                                                                                                                                                                   | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42 U                                                                                                                                                              | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 U                                                                                                                                                                                                                                                                                                                                     | 41 U                                                                                                                                                                                        | 38 U                                                                                     | 39 U                                                                                                                     | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Diethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190 U<br>190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                         | 190 U<br>190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210 U<br>210 U                                                                                                                                                    | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                           | 210 U<br>210 U                                                                                                                                                                              | 190 U<br>190 UJ                                                                          | 200 U<br>200 UJ                                                                                                          | 180 U<br>180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Di-n-octylphthalate<br>Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190 UJ<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 UJ<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U<br>210 U                                                                                                                                                                              | 190 UJ<br>190 U                                                                          | 200 UJ<br>200 U                                                                                                          | 180 UJ<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 UJ                                                                                   | 200 UJ                                                                                                                   | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Hexachloroethane<br>Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 190 U<br>38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190 U<br>37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 190 U<br>38 U                                                                                                                                                                                                                                                                                                                                                          | 190 U<br>37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 210 U<br>42 U                                                                                                                                                     | 190 U<br>38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 180 U<br>36 U                                                                                                                                                                                                                                                                                                                            | 210 U<br>41 U                                                                                                                                                                               | 190 U<br>38 U                                                                            | 200 U<br>39 U                                                                                                            | 180 U<br>36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 U                                                                                                                                                                                                                                                                                                                                                                   | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42 U                                                                                                                                                              | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 U                                                                                                                                                                                                                                                                                                                                     | 41 U                                                                                                                                                                                        | 38 U                                                                                     | 39 U                                                                                                                     | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| n-Nitroso-di-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 U                                                                                                                                                                                                                                                                                                                                                                   | 37 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42 U                                                                                                                                                              | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 U                                                                                                                                                                                                                                                                                                                                     | 41 U                                                                                                                                                                                        | 38 UJ                                                                                    | 39 UJ                                                                                                                    | 36 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| n-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pentachlorophenol Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                         | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 210 U<br>210 U                                                                                                                                                    | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                           | 210 U<br>210 U                                                                                                                                                                              | 190 U<br>190 U                                                                           | 200 U<br>200 U                                                                                                           | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U                                                                                                                                                                                                                                                                                                                                                                  | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 U                                                                                                                                                             | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                    | 210 U                                                                                                                                                                                       | 190 U                                                                                    | 200 U                                                                                                                    | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                             |                                                                                          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pesticide/Polychlorinated Biphenyls (μg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4011                                                                                                                                                                                                                                                                                                                                                                   | 4011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4.11                                                                                                                                                            | 4011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0.11                                                                                                                                                                                                                                                                                                                                   | 0.50                                                                                                                                                                                        | 0.04                                                                                     | 10                                                                                                                       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4,4'-DDD<br>4.4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.61 J<br>9.7 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.9 U<br>0.54 J                                                                                                                                                                                                                                                                                                                                                        | 1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.1 U<br>1.6 J                                                                                                                                                    | 1.9 U<br>0.56 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                           | 0.58 J<br>0.68 J                                                                                                                                                                            | 0.61 J<br>0.92 J                                                                         | 13<br>6.8                                                                                                                | 46<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                 | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.92 J                                                                                                                                                            | 1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8 U                                                                                                                                                                                                                                                                                                                                    | 2.1 U                                                                                                                                                                                       | 1.9 U                                                                                    | 25                                                                                                                       | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9 U                                                                                                                                                                                                                                                                                                                                                                  | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1 U                                                                                                                                                             | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 U                                                                                                                                                                                                                                                                                                                                    | 2.1 U                                                                                                                                                                                       | 1.9 U                                                                                    | 2 U                                                                                                                      | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| alpha-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9 U                                                                                                                                                                                                                                                                                                                                                                  | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1 U                                                                                                                                                             | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 U                                                                                                                                                                                                                                                                                                                                    | 2.1 U                                                                                                                                                                                       | 1.9 U                                                                                    | 2 U                                                                                                                      | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| alpha-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9 U                                                                                                                                                                                                                                                                                                                                                                  | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1 U                                                                                                                                                             | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 U                                                                                                                                                                                                                                                                                                                                    | 2.1 U                                                                                                                                                                                       | 1.9 U                                                                                    | 3.7 J                                                                                                                    | 9.9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Aroclor-1016<br>Aroclor-1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                           | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21 U<br>21 U                                                                                                                                                      | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U                                                                                                                                                                                                                                                                                                                                     | 21 U                                                                                                                                                                                        | 19 U                                                                                     |                                                                                                                          | 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Aroclor-1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   | 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 11                                                                                                                                                                                                                                                                                                                                    | 21 11                                                                                                                                                                                       |                                                                                          | 20 U                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U<br>18 U                                                                                                                                                                                                                                                                                                                             | 21 U<br>21 U                                                                                                                                                                                | 19 U                                                                                     | 20 U                                                                                                                     | 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Aroclor-1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                           | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21 U<br>21 U<br>21 U                                                                                                                                              | 19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                     | 21 U<br>21 U<br>21 U                                                                                                                                                                        |                                                                                          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 U                                                                                                                                                                                                                                                                                                                                                                   | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21 U                                                                                                                                                              | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U                                                                                                                                                                                                                                                                                                                                     | 21 U                                                                                                                                                                                        | 19 U<br>19 U                                                                             | 20 U<br>20 U                                                                                                             | 18 UJ<br>18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                           | 19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21 U<br>21 U<br>21 U<br>21 U                                                                                                                                      | 19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U<br>18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                             | 21 U<br>21 U<br>21 U<br>21 U                                                                                                                                                                | 19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                     | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U                                                                             | 18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21 U<br>21 U<br>21 U<br>21 U<br>21 U                                                                                                                              | 19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U<br>18 U<br>18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                     | 21 U<br>21 U<br>21 U<br>21 U<br>21 U                                                                                                                                                        | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U                                             | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U                                                                     | 18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>beta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                           | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U                                                                                                     | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U<br>18 U<br>18 U<br>18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                             | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U                                                                                                                                       | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U                                     | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U                                                             | 18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21 U<br>21 U<br>21 U<br>21 U<br>21 U                                                                                                                              | 19 U<br>19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U<br>18 U<br>18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                     | 21 U<br>21 U<br>21 U<br>21 U<br>21 U                                                                                                                                                        | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U                                             | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U                                                                     | 18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>beta-BHC<br>delta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U                                                                                                                                                                                                                                                                                                                          | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U                                                                                                    | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U<br>18 U<br>18 U<br>18 U<br>18 U<br>1.8 U                                                                                                                                                                                                                                                                                            | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U                                                                                                                              | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U                            | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U                                                             | 18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>18 UJ<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                               | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U                                                                | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>2.3<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18 U                                                                                                                                                                                                                                                                                                  | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U                                                                                                   | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>2 U<br>2 U<br>2 U<br>2 U<br>2 U<br>2 U                           | 18 UJ 18 U 1.8 U 1.8 U 1.8 U 1.8 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                             | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U                                                       | 19 U<br>19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>2.3<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 U 1.8 U                                                                                                                                                                                                                                                             | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U                                                                                          | 19 U                                                  | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>2 U<br>2 U<br>2 U<br>2 U<br>2 U<br>2 U<br>2 U<br>2 U                     | 18 UJ 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 U 1.9 U                                                                                                                                                                                                                                                                         | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U                                              | 19 U 1.9 U 2.3 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U 1.8 U                                                                                                                                                                                                                                           | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U                                                                        | 19 U                                                  | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>2 | 18 UJ 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 peta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U                                     | 19 U 1.9 U 2.3 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U 1.8 U                                                                                                                                                                                                                                     | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U                                                               | 19 U                                                  | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>2 | 18 UJ 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 U 1.9 U                                                                                                                                                                                                                                                                         | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U                                              | 19 U 1.9 U 2.3 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U 1.8 U                                                                                                                                                                                                                                           | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U<br>2.1 U                                                                        | 19 U                                                  | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>2 | 18 UJ 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin Aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                   | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U                   | 19 U 1.9 U 1.9 U 2.3 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 U 1.8 U                                                                                                                                                                   | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U                                             | 19 U                                                  | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>2 | 18 UJ 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aroclor-1242 Aroclor-1248 Aroclor-1260 Deta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Lindane) damma-Chlordane Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                             | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 U                                                                                                                                                                                                                                                                                                  | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U                                             | 19 U                                                  | 20 U                                                                                  | 18 UJ 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin Hendrin Endrin Endrin Hendrin Endrin Endr | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                         | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21 U                                                                                                                           | 19 U 1.9 U 1.9 U 2.3 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 U                                                                                                                                                                                                                                                                                                  | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U                                             | 19 U                                                  | 20 U                                                                                  | 18 UJ 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 U 1.9 U                                                                                                                                                                                                                                                                                                             | 19 U 1.9 U                                                                                                                                                       | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21 U                                                                                                                           | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 U                                                                                                                                                                                                                                                                                                  | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U                           | 19 U                                                  | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>2         | 18 UJ 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin Hendrin Endrin Endrin Hendrin Endrin Endr | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                         | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U          | 19 U 1.9 U 1.9 U 2.3 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 U                                                                                                                                                                                                                                                                                                  | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U                                             | 19 U                                                  | 20 U                                                                                  | 18 UJ 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor epoxide Methoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                          | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21 U                                                                                                                           | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U 1.9 U 2.3 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 U                                                                                                                                                                                                                                                                                                  | 21 U                                                                                                                                                     | 19 U                                                  | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>2         | 18 UJ 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene  Total Metals (mg/kg) Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U  | 19 U 1.9 U                                                                                                                                                                                                                                                                                                             | 19 U 1.9 U | 19 U 1.9 U 1 | 21 U                                                                                                                           | 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18 U 1.8 U | 21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>21 U<br>2.1 U | 19 U                                                  | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>2         | 18 UJ 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan II Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin etone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor Heptachlor epoxide Methoxychlor Toxaphene  Total Metals (mg/kg) Aluminum Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 U 1.9 U 38 U 3,380 0.82 J-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19 U 1.9 U                   | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U 1.9 U 1 | 21 U                                                                                                                           | 19 U 1.9 U 2.3 1.9 U 3.9 U 1.9 U 3.9 U 3.9 U 3.9 U 3.9 U 3.9 U 4.10 U 4.10 U 4.10 U 4.10 U 4.10 U 4.10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 U 1.8 U 1.5 U 1.5 U 1.5 U 1.5 U 1.5 U 1.5 U                                                                                                                                           | 21 U                                                                                                                                                     | 19 U                                                  | 20 U                                                                                  | 18 UJ 18 U 1.8 U 1.9 U 1 |
| Aroclor-1242 Aroclor-1248 Aroclor-1260 Deta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin ladehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor epoxide Methoxychlor Toxaphene  Total Metals (mg/kg) Aluminum Antimony Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U 1.9 U 3.9 U 1.9 U 1 | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21 U                                                                                                                           | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 U                                                                                                                                                                                                                                                                                                  | 21 U                                                                                                                                                     | 19 U                                                  | 20 U                                                                                  | 18 UJ 18 U 1.8 U 1 |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor epoxide Methoxychlor Toxaphene  Total Metals (mg/kg) Aluminomy Arsenic Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 U 1.9 U | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21 U                                                                                                                           | 19 U 1.9 U 1 | 18 U                                                                                                                                                                                                                                                                                                  | 21 U                                                                                                                                                     | 19 U                                                  | 20 U                                                                                  | 18 UJ 1.8 U  |
| Aroclor-1242 Aroclor-1248 Aroclor-1260 Deta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin ladehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor epoxide Methoxychlor Toxaphene  Total Metals (mg/kg) Aluminum Antimony Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U 1.9 U 3.9 U 1.9 U 1 | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21 U                                                                                                                           | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 U                                                                                                                                                                                                                                                                                                  | 21 U                                                                                                                                                     | 19 U                                                  | 20 U                                                                                  | 18 UJ 18 U 1.8 U 1 |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor Toxaphene  Total Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 U 1.9 U 1 | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21 U                                                                                                                           | 19 U 1.9 U 1.9 U 2.3 1.9 U 3.9 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18 U                                                                                                                                                                                                                                                                                                  | 21 U                                                                                                                                                     | 19 U                                                  | 20 U                                                                                  | 18 UJ 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene  Fotal Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21 U                                                                                                                           | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 U                                                                                                                                                                                                                                                                                                  | 21 U                                                                                                                                                     | 19 U                                                  | 20 U                                                                                  | 18 UJ 1.8 U  |
| Aroclor-1242 Aroclor-1254 Aroclor-1254 Aroclor-1260 beta-BHC beta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor Foxaphene  Total Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 U                                                                                                                                                                                                                                                                                                                                | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21 U                                                                                                                           | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 U                                                                                                                                                                                                                                                                                                  | 21 U                                                                                                                                                     | 19 U                                                  | 20 U                                                                                  | 18 UJ 18 U 1.8 U 1 |

| Station ID    | IR15-SB01         | IR15              | i-SB02             | IR15-SB03         | IR15-SB04         | IR15-SB05         | IR15-SB06         | IR15-SB07         | IR15-SB08         | IR15-SB09         | IR15-SB10         |
|---------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Sample ID     | IR15-SB01-4-6-09C | IR15-SB02-2-7-09C | IR15-SB02D-2-7-09C | IR15-SB03-2-7-09C | IR15-SB04-2-7-09C | IR15-SB05-2-7-09C | IR15-SB06-2-7-09C | IR15-SB07-2-4-09C | IR15-SB08-2-4-09C | IR15-SB09-2-7-09C | IR15-SB10-2-4-09C |
| Sample Date   | 07/29/09          | 07/26/09          | 07/26/09           | 07/29/09          | 07/27/09          | 07/27/09          | 07/27/09          | 07/27/09          | 07/29/09          | 07/29/09          | 07/29/09          |
| Chemical Name |                   |                   |                    |                   |                   |                   |                   |                   |                   |                   |                   |
| Iron          | 5,830             | 4,050             | 2,640              | 2,540             | 3,470             | 2,260             | 718               | 1,290             | 153 J+            | 179,000 J+        | 3,020             |
| Lead          | 483               | 28.4              | 21.6               | 2.9               | 53                | 4.6               | 2.7               | 5.7               | 1.3 J             | 111               | 5.8               |
| Magnesium     | 219               | 174               | 178                | 130               | 206               | 180               | 58                | 89.6              | 17.2 J            | 200               | 105               |
| Manganese     | 69.6              | 9.2               | 9.2                | 6.8               | 21.9 J+           | 5.9               | 5.6 J+            | 8 J+              | 1.5               | 626               | 6.9               |
| Mercury       | 0.14              | 0.036             | 0.013 J            | 0.033 U           | 0.036 J           | 0.035 U           | 0.0027 J          | 0.032 J           | 0.033 U           | 0.037 U           | 0.045             |
| Nickel        | 3.9               | 1.7               | 1.5                | 0.79 U            | 1.5 J             | 0.88              | 0.74 J            | 0.74 J            | 0.82 U            | 24.4              | 1                 |
| Potassium     | 143               | 121               | 137                | 144               | 199               | 166               | 54.4 J            | 64.3 J            | 18.2 J            | 236 J             | 102               |
| Selenium      | 1.6 U             | 1.6 U             | 1.6 U              | 1.6 U             | 1.8 U             | 1.6 U             | 1.5 U             | 1.7 U             | 1.6 U             | 8.6 U             | 1.6 U             |
| Silver        | 1.6 U             | 1.6 U             | 1.6 U              | 1.6 U             | 1.8 U             | 1.6 U             | 1.5 U             | 1.7 U             | 1.6 U             | 8.6 U             | 1.6 U             |
| Sodium        | 202 U             | 8.8 J             | 7.7 J              | 5.6 J             | 15 J              | 7.2 J             | 4.3 J             | 8.2 J             | 205 U             | 1,080 U           | 194 U             |
| Thallium      | 2.4 U             | 2.3 U             | 2.4 U              | 2.4 U             | 2.7 U             | 2.5 U             | 2.3 U             | 2.6 U             | 2.5 U             | 1.9 J             | 2.3 U             |
| Vanadium      | 7                 | 10.4 J+           | 7.3 J+             | 6                 | 8.9 J             | 8.8 J+            | 2.3 J             | 3.4 J             | 4.1 U             | 21.5 U            | 7.1               |
| Zinc          | 345               | 19.5              | 17.1               | 3.9 U             | 34.3              | 4.1 U             | 1.5 J             | 4.1 J             | 4.1 U             | 99                | 8 U               |
|               |                   |                   |                    |                   |                   |                   |                   |                   |                   |                   |                   |
| Wet Chemistry |                   |                   |                    |                   |                   |                   |                   |                   |                   |                   |                   |
| pH (ph)       | 7.5               | 6.9               | 7.3                | 5.1               | 7.4               | 5.9               | 5.4               | 6                 | 6.8               | 7.5               | 5                 |

- Notes:

  Shading indicates detections

  NA Not analyzed

  J Analyte present, value may or may not be accurate or precise
  J Analyte present, value may be biased low, actual value may be higher
  J Analyte present, value may be biased high, actual value may be lower
  R Unreliable Result
  U The material was analyzed for, but not detected
  UJ Analyte not detected, quantitation limit may be inaccurate
  mg/kg Milligrams per kilogram
  ph pH units

- ph pH units μg/kg Micrograms per kilogram

### CTO-11 Camp Lejeune - Site 15 Validated Groundwater Raw Analytical Results July 2009

| Station ID                                         | ID45 TW04                  | ID45 TW02                  | ID4            | TW02                     | ID45 TMO4                  | ID45 TWOS                  |
|----------------------------------------------------|----------------------------|----------------------------|----------------|--------------------------|----------------------------|----------------------------|
| Sample ID                                          | IR15-TW01<br>IR15-TW01-09C | IR15-TW02<br>IR15-TW02-09C | IR15-TW03-09C  | 5-TW03<br>IR15-TW03D-09C | IR15-TW04<br>IR15-TW04-09C | IR15-TW05<br>IR15-TW05-09C |
| Sample Date                                        | 07/29/09                   | 07/29/09                   | 07/28/09       | 07/28/09                 | 07/29/09                   | 07/28/09                   |
| Chemical Name                                      | Ï                          |                            |                |                          |                            |                            |
|                                                    |                            |                            |                |                          |                            |                            |
| Volatile Organic Compounds (μg/l)                  | 4.11                       | 4.11                       | 4 111          | 4.0                      | 4.11                       | 4.0                        |
| 1,1,1-Trichloroethane<br>1,1,2,2-Tetrachloroethane | 1 U                        | 1 U                        | 1 UJ<br>2.4 UJ | 1 R<br>2.4 R             | 1 U                        | 1 R<br>2.4 R               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113)   | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| 1,1,2-Trichloroethane                              | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| 1,1-Dichloroethane                                 | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| 1,1-Dichloroethene<br>1,2,4-Trichlorobenzene       | 1 U                        | 1 U                        | 1 UJ<br>1 UJ   | 1 R<br>1 R               | 1 U                        | 1 R<br>1 R                 |
| 1,2-Dibromo-3-chloropropane                        | 2 R                        | 2 R                        | 2 R            | 2 R                      | 2 R                        | 2 R                        |
| 1,2-Dibromoethane                                  | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| 1,2-Dichlorobenzene                                | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| 1,2-Dichloroethane<br>1,2-Dichloropropane          | 1 U                        | 1 U<br>1 U                 | 1 UJ<br>1 UJ   | 1 R<br>1 R               | 1 U                        | 1 R<br>1 R                 |
| 1,3-Dichlorobenzene                                | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| 1,4-Dichlorobenzene                                | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| 2-Butanone                                         | 5 U                        | 5 U                        | 5 UJ           | 5 R                      | 5 U                        | 5 R                        |
| 2-Hexanone                                         | 5 U                        | 5 U                        | 5 UJ           | 5 R                      | 5 U                        | 5 R                        |
| 4-Methyl-2-pentanone<br>Acetone                    | 5 U<br>5 U                 | 5 U<br>5 U                 | 5 UJ<br>5 UJ   | 5 R<br>5 R               | 5 U<br>5 U                 | 5 R<br>5 R                 |
| Benzene                                            | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Bromodichloromethane                               | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Bromoform                                          | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Bromomethane<br>Carbon disulfide                   | 1.1 U<br>1 U               | 1.1 U<br>1 U               | 1.1 UJ<br>1 UJ | 1.1 R<br>1 R             | 1.1 U<br>1 U               | 1.1 R<br>1 R               |
| Carbon distillide Carbon tetrachloride             | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Chlorobenzene                                      | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Chloroethane                                       | 1 UJ                       | 1 UJ                       | 1 UJ           | 1 R                      | 1 UJ                       | 1 R                        |
| Chloroform                                         | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Chloromethane<br>cis-1,2-Dichloroethene            | 1 UJ<br>1 U                | 1 UJ<br>1 U                | 1 UJ<br>1 UJ   | 1 R<br>1 R               | 1 UJ<br>1 U                | 1 R<br>1 R                 |
| cis-1,3-Dichloropropene                            | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Cyclohexane                                        | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Dibromochloromethane                               | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Dichlorodifluoromethane (Freon-12)                 | 1 UJ<br>1 U                | 1 UJ<br>1 U                | 1 UJ<br>1 UJ   | 1 R<br>1 R               | 1 UJ<br>1 U                | 1 R                        |
| Ethylbenzene<br>Isopropylbenzene                   | 1 U                        | 1 U                        | 1 UJ           | 4.9 J                    | 1 U                        | 2.3 R<br>1 R               |
| Methyl acetate                                     | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Methylcyclohexane                                  | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Methylene chloride                                 | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Methyl-tert-butyl ether (MTBE) Styrene             | 1 U                        | 1 U                        | 1 UJ<br>1 UJ   | 1 R<br>5.9 J             | 1 U                        | 1 R<br>1 R                 |
| Tetrachloroethene                                  | 1.1 U                      | 1.1 U                      | 1.1 UJ         | 1.1 R                    | 1.1 U                      | 1.1 R                      |
| Toluene                                            | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| trans-1,2-Dichloroethene                           | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| trans-1,3-Dichloropropene Trichloroethene          | 1 U<br>5.1 U               | 1 U<br>5.1 U               | 1 UJ<br>5.1 UJ | 1 R<br>5.1 R             | 1 U<br>5.1 U               | 1 R<br>5.1 R               |
| Trichlorofluoromethane(Freon-11)                   | 1 UJ                       | 1 UJ                       | 1 UJ           | 1 R                      | 1 UJ                       | 1 R                        |
| Vinyl chloride                                     | 1 U                        | 1 U                        | 1 UJ           | 1 R                      | 1 U                        | 1 R                        |
| Xylene, total                                      | 1.2 U                      | 1.2 U                      | 1.2 UJ         | 1.2 R                    | 1.2 U                      | 1.2 R                      |
| Semivolatile Organic Compounds (μg/l)              | 1                          |                            |                |                          |                            |                            |
| 1,1-Biphenyl                                       | 11 U                       | 10 U                       | NA             | NA                       | 11 U                       | NA                         |
| 2,2'-Oxybis(1-chloropropane)                       | 11 U                       | 10 U                       | NA             | NA                       | 11 U                       | NA                         |
| 2,4,5-Trichlorophenol                              | 11 U                       | 10 U                       | NA<br>NA       | NA<br>NA                 | 11 U                       | NA<br>NA                   |
| 2,4-Dichlorophenol 2,4-Dimethylphenol              | 11 U<br>11 U               | 10 U<br>10 U               | NA<br>NA       | NA<br>NA                 | 11 U<br>11 U               | NA<br>NA                   |
| 2,4-Dintethylphenol                                | 21 U                       | 20 U                       | NA<br>NA       | NA<br>NA                 | 22 U                       | NA<br>NA                   |
| 2,4-Dinitrotoluene                                 | 11 U                       | 10 U                       | NA             | NA                       | 11 U                       | NA                         |
| 2,6-Dinitrotoluene                                 | 11 U                       | 10 U                       | NA<br>NA       | NA                       | 11 U                       | NA                         |
| 2-Chloronaphthalene<br>2-Chlorophenol              | 11 U<br>11 U               | 10 U<br>10 U               | NA<br>NA       | NA<br>NA                 | 11 U<br>11 U               | NA<br>NA                   |
| 2-Methylnaphthalene                                | 11 U                       | 10 U                       | NA<br>NA       | NA<br>NA                 | 11 U                       | NA<br>NA                   |
| 2-Methylphenol                                     | 11 UJ                      | 10 UJ                      | NA             | NA                       | 11 UJ                      | NA                         |
| 2-Nitroaniline                                     | 11 U                       | 10 U                       | NA             | NA                       | 11 U                       | NA                         |
| 2-Nitrophenol                                      | 11 U                       | 10 U                       | NA<br>NA       | NA<br>NA                 | 11 U                       | NA<br>NA                   |
| 3,3'-Dichlorobenzidine<br>3-Nitroaniline           | 21 UJ<br>11 U              | 20 UJ<br>10 U              | NA<br>NA       | NA<br>NA                 | 22 UJ<br>11 U              | NA<br>NA                   |
| 4,6-Dinitro-2-methylphenol                         | 21 U                       | 20 U                       | NA NA          | NA NA                    | 22 U                       | NA                         |
| 4-Bromophenyl-phenylether                          | 11 U                       | 10 U                       | NA             | NA                       | 11 U                       | NA                         |
| 4-Chloro-3-methylphenol                            | 11 U                       | 10 U                       | NA<br>NA       | NA<br>NA                 | 11 U                       | NA<br>NA                   |
| 4-Chloroaniline 4-Chlorophenyl-phenylether         | 11 U<br>11 U               | 10 U<br>10 U               | NA<br>NA       | NA<br>NA                 | 11 U<br>11 U               | NA<br>NA                   |
| 4-Uniorophenyi-phenyiether 4-Methylphenol          | 21 U                       | 20 U                       | NA<br>NA       | NA<br>NA                 | 22 U                       | NA<br>NA                   |
| 4-Nitroaniline                                     | 11 U                       | 10 U                       | NA             | NA                       | 11 U                       | NA                         |
| 4-Nitrophenol                                      | 21 U                       | 20 U                       | NA             | NA                       | 22 U                       | NA                         |
| Acenaphthylene                                     | 11 U                       | 10 U<br>10 U               | NA<br>NA       | NA<br>NA                 | 11 U                       | NA<br>NA                   |
| Acenaphthylene<br>Acetophenone                     | 11 U<br>11 U               | 10 U                       | NA<br>NA       | NA<br>NA                 | 11 U<br>11 U               | NA<br>NA                   |
| rp.10110110                                        |                            | 100                        | 17/7           | 1471                     | 0                          | 13/1                       |

### CTO-11 Camp Lejeune - Site 15 Validated Groundwater Raw Analytical Results July 2009

|                                                       | 11                        | T                         | 1                         |                            | 1                         | <del></del>               |
|-------------------------------------------------------|---------------------------|---------------------------|---------------------------|----------------------------|---------------------------|---------------------------|
| Station ID                                            | IR15-TW01                 | IR15-TW02                 |                           | 5-TW03                     | IR15-TW04                 | IR15-TW05                 |
| Sample ID<br>Sample Date                              | IR15-TW01-09C<br>07/29/09 | 1R15-TW02-09C<br>07/29/09 | IR15-TW03-09C<br>07/28/09 | IR15-TW03D-09C<br>07/28/09 | IR15-TW04-09C<br>07/29/09 | IR15-TW05-09C<br>07/28/09 |
| Chemical Name                                         | 01/23/03                  | 01129109                  | 01/20/03                  | 01/20/09                   | 01129/09                  | 01/20/03                  |
| Anthracene                                            | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| Atrazine                                              | 21 U                      | 20 U                      | NA                        | NA                         | 22 U                      | NA                        |
| Benzaldehyde                                          | 11 R                      | 10 R                      | NA                        | NA                         | 11 R                      | NA                        |
| Benzo(a)anthracene Benzo(a)pyrene                     | 11 U<br>11 U              | 10 U<br>10 U              | NA<br>NA                  | NA<br>NA                   | 11 U<br>11 U              | NA<br>NA                  |
| Benzo(b)fluoranthene                                  | 11 U                      | 10 U                      | NA<br>NA                  | NA<br>NA                   | 11 U                      | NA<br>NA                  |
| Benzo(g,h,i)perylene                                  | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| Benzo(k)fluoranthene                                  | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| bis(2-Chloroethoxy)methane<br>bis(2-Chloroethyl)ether | 11 U<br>11 U              | 10 U<br>10 U              | NA<br>NA                  | NA<br>NA                   | 11 U<br>11 U              | NA<br>NA                  |
| bis(2-Ethylhexyl)phthalate                            | 11 U                      | 10 U                      | NA<br>NA                  | NA<br>NA                   | 11 U                      | NA<br>NA                  |
| Butylbenzylphthalate                                  | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| Caprolactam                                           | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| Carbazole<br>Chrysene                                 | 11 U<br>11 U              | 10 U<br>10 U              | NA<br>NA                  | NA<br>NA                   | 11 U<br>11 U              | NA<br>NA                  |
| Dibenz(a,h)anthracene                                 | 11 U                      | 10 U                      | NA<br>NA                  | NA<br>NA                   | 11 U                      | NA<br>NA                  |
| Dibenzofuran                                          | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| Diethylphthalate                                      | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| Dimethyl phthalate Di-n-butylphthalate                | 11 U<br>21 U              | 10 U<br>20 U              | NA<br>NA                  | NA<br>NA                   | 11 U<br>22 U              | NA<br>NA                  |
| Di-n-octylphthalate                                   | 11 U                      | 10 U                      | NA<br>NA                  | NA<br>NA                   | 11 U                      | NA<br>NA                  |
| Fluoranthene                                          | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| Fluorene                                              | 11 U                      | 10 U                      | NA<br>NA                  | NA<br>NA                   | 11 U                      | NA<br>NA                  |
| Hexachlorobenzene<br>Hexachlorobutadiene              | 11 U<br>11 U              | 10 U<br>10 U              | NA<br>NA                  | NA<br>NA                   | 11 U<br>11 U              | NA<br>NA                  |
| Hexachlorocyclopentadiene                             | 11 U                      | 10 U                      | NA<br>NA                  | NA<br>NA                   | 11 U                      | NA<br>NA                  |
| Hexachloroethane                                      | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| Indeno(1,2,3-cd)pyrene                                | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| Isophorone<br>Naphthalene                             | 11 U<br>11 U              | 10 U<br>10 U              | NA<br>NA                  | NA<br>NA                   | 11 U<br>11 U              | NA<br>NA                  |
| n-Nitroso-di-n-propylamine                            | 11 U                      | 10 U                      | NA<br>NA                  | NA NA                      | 11 U                      | NA<br>NA                  |
| n-Nitrosodiphenylamine                                | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| Nitrobenzene                                          | 11 U                      | 10 U                      | NA                        | NA<br>NA                   | 11 U                      | NA                        |
| Pentachlorophenol Phenanthrene                        | 21 U<br>11 U              | 20 U<br>10 U              | NA<br>NA                  | NA<br>NA                   | 22 U<br>11 U              | NA<br>NA                  |
| Phenol                                                | 11 U                      | 10 U                      | NA NA                     | NA NA                      | 11 U                      | NA NA                     |
| Pyrene                                                | 11 U                      | 10 U                      | NA                        | NA                         | 11 U                      | NA                        |
| B                                                     |                           |                           |                           |                            |                           |                           |
| Pesticide/Polychlorinated Biphenyls (μg/l) 4.4'-DDD   | 0.051 U                   | 0.052 U                   | NA                        | NA                         | 0.053 U                   | NA                        |
| 4,4'-DDE                                              | 0.051 U                   | 0.052 U                   | NA NA                     | NA<br>NA                   | 0.053 U                   | NA NA                     |
| 4,4'-DDT                                              | 0.051 U                   | 0.052 U                   | NA                        | NA                         | 0.053 U                   | NA                        |
| Aldrin                                                | 0.051 U                   | 0.052 U                   | NA                        | NA                         | 0.053 U                   | NA                        |
| alpha-BHC<br>alpha-Chlordane                          | 0.051 U<br>0.051 U        | 0.052 U<br>0.052 U        | NA<br>NA                  | NA<br>NA                   | 0.053 U<br>0.053 U        | NA<br>NA                  |
| Aroclor-1016                                          | 0.51 U                    | 0.52 U                    | NA NA                     | NA NA                      | 0.53 U                    | NA NA                     |
| Aroclor-1221                                          | 0.51 U                    | 0.52 U                    | NA                        | NA                         | 0.53 U                    | NA                        |
| Aroclor-1232                                          | 0.51 U                    | 0.52 U                    | NA                        | NA                         | 0.53 U                    | NA                        |
| Aroclor-1242<br>Aroclor-1248                          | 0.51 U<br>0.51 U          | 0.52 U<br>0.52 U          | NA<br>NA                  | NA<br>NA                   | 0.53 U<br>0.53 U          | NA<br>NA                  |
| Aroclor-1254                                          | 0.51 U                    | 0.52 U                    | NA NA                     | NA                         | 0.53 U                    | NA<br>NA                  |
| Aroclor-1260                                          | 0.51 U                    | 0.52 U                    | NA                        | NA                         | 0.53 U                    | NA                        |
| beta-BHC                                              | 0.051 U                   | 0.052 U                   | NA<br>NA                  | NA<br>NA                   | 0.053 U                   | NA<br>NA                  |
| delta-BHC<br>Dieldrin                                 | 0.051 U<br>0.051 U        | 0.052 U<br>0.052 U        | NA<br>NA                  | NA<br>NA                   | 0.053 U<br>0.053 U        | NA<br>NA                  |
| Endosulfan I                                          | 0.051 U                   | 0.052 U                   | NA<br>NA                  | NA<br>NA                   | 0.053 U                   | NA<br>NA                  |
| Endosulfan II                                         | 0.051 U                   | 0.052 U                   | NA                        | NA                         | 0.053 U                   | NA                        |
| Endosulfan sulfate                                    | 0.051 U                   | 0.052 U                   | NA<br>NA                  | NA<br>NA                   | 0.053 U                   | NA<br>NA                  |
| Endrin<br>Endrin aldehyde                             | 0.051 U<br>0.051 U        | 0.052 U<br>0.052 U        | NA<br>NA                  | NA<br>NA                   | 0.053 U<br>0.053 U        | NA<br>NA                  |
| Endrin ketone                                         | 0.051 U                   | 0.052 U                   | NA NA                     | NA                         | 0.053 U                   | NA<br>NA                  |
| gamma-BHC (Lindane)                                   | 0.051 U                   | 0.052 U                   | NA                        | NA                         | 0.053 U                   | NA                        |
| gamma-Chlordane                                       | 0.051 U                   | 0.052 U                   | NA<br>NA                  | NA<br>NA                   | 0.053 U                   | NA<br>NA                  |
| Heptachlor<br>Heptachlor epoxide                      | 0.051 U<br>0.051 U        | 0.052 U<br>0.052 U        | NA<br>NA                  | NA<br>NA                   | 0.053 U<br>0.053 U        | NA<br>NA                  |
| Methoxychlor                                          | 0.051 U                   | 0.052 U                   | NA NA                     | NA                         | 0.053 U                   | NA<br>NA                  |
| Toxaphene                                             | 1 U                       | 1 U                       | NA                        | NA                         | 1.1 U                     | NA                        |
| Total Matala (vall)                                   | <b> </b>                  |                           |                           |                            |                           |                           |
| Total Metals (µg/l)<br>Aluminum                       | 45.8 J                    | 148 J                     | 612 J                     | 1,000 U                    | 307 J                     | 3,360                     |
| Antimony                                              | 20 U                      | 20 U                      | 20 U                      | 20 U                       | 20 U                      | 20 U                      |
| Arsenic                                               | 20 U                      | 20 U                      | 20 U                      | 20 U                       | 3.2 J                     | 20 U                      |
| Barium                                                | 28 J                      | 24.3 J                    | 92.1                      | 95                         | 24.1 J                    | 19.2 J                    |
| Beryllium<br>Cadmium                                  | 2 U<br>6 U                | 2 U<br>6 U                | 0.17 J<br>6 U             | 0.18 J<br>6 U              | 2 U<br>6 U                | 2 U<br>6 U                |
| Cadmium<br>Calcium                                    | 27,500                    | 4,110                     | 3,580                     | 3,540                      | 45,500                    | 42,500                    |
| Chromium                                              | 20 U                      | 20 U                      | 20 U                      | 1.7 J                      | 20 U                      | 5 J                       |
| Cobalt                                                | 3.9 J                     | 0.63 J                    | 1 J                       | 2.6 J                      | 0.66 J                    | 5 U                       |
| Copper                                                | 20 U                      | 2.8 J                     | 20 U                      | 2.9 J                      | 20 U                      | 3.8 J                     |

# CTO-11 Camp Lejeune - Site 15 Validated Groundwater Raw Analytical Results July 2009

| Station ID              | IR15-TW01 | IR15-TW02 | ID4           | 5-TW03   | IR15-TW04     | IR15-TW05 |
|-------------------------|-----------|-----------|---------------|----------|---------------|-----------|
| Sample ID               |           |           | IR15-TW03-09C |          | IR15-TW04-09C |           |
| Sample Date             | 07/29/09  | 07/29/09  | 07/28/09      | 07/28/09 | 07/29/09      | 07/28/09  |
| p                       | 07/29/09  | 07/29/09  | 07/28/09      | 07/28/09 | 07/29/09      | 07/28/09  |
| Chemical Name           |           |           |               |          |               |           |
| Iron                    | 25,800    | 2,910     | 6,450         | 6,440    | 10,600        | 1,040     |
| Lead                    | 20 U      | 20 U      | 20 U          | 20 U     | 20 U          | 20 U      |
| Magnesium               | 1,410     | 393       | 4,520         | 4,620    | 2,940         | 1,040     |
| Manganese               | 439       | 49.6      | 87            | 89.6     | 149           | 5.2       |
| Mercury                 | 0.2 U     | 0.2 U     | 0.2 U         | 0.2 U    | 0.2 U         | 0.2 U     |
| Nickel                  | 30        | 21.2      | 10.1          | 12.1     | 10 U          | 2.3 J     |
| Potassium               | 1,330     | 2,540     | 1,480         | 1,550    | 808 J         | 624 J     |
| Selenium                | 20 U      | 20 U      | 20 U          | 20 U     | 20 U          | 20 U      |
| Silver                  | 20 U      | 20 U      | 20 U          | 20 U     | 20 U          | 20 U      |
| Sodium                  | 1,590 J   | 5,120     | 7,670         | 8,000    | 2,910         | 4,510     |
| Thallium                | 30 U      | 30 U      | 30 U          | 30 U     | 3.2 J         | 30 U      |
| Vanadium                | 50 U      | 50 U      | 50 U          | 50 U     | 50 U          | 50 U      |
| Zinc                    | 5.3 J     | 5.5 J     | 10.9 J        | 7.8 J    | 9.2 J         | 7.1 J     |
|                         |           |           |               |          |               |           |
| Dissolved Metals (µg/l) |           |           |               |          |               |           |
| Aluminum, Dissolved     | 1,000 U   | 40 J      | 516 J         | 629 J    | 1,000 U       | 1,000 U   |
| Antimony, Dissolved     | 20 U      | 20 U      | 20 U          | 20 U     | 20 U          | 20 U      |
| Arsenic, Dissolved      | 20 U      | 20 U      | 20 U          | 20 U     | 20 U          | 20 U      |
| Barium, Dissolved       | 25.6 J    | 21.8 J    | 94            | 96.8     | 23.2 J        | 20 U      |
| Beryllium, Dissolved    | 2 U       | 0.089 J   | 0.21 J        | 0.2 J    | 2 U           | 2 U       |
| Cadmium, Dissolved      | 6 U       | 6 U       | 6 U           | 6 U      | 6 U           | 6 U       |
| Calcium, Dissolved      | 25,000    | 3,980     | 3,550         | 3,710    | 44,100        | 42,900    |
| Chromium, Dissolved     | 20 U      | 20 U      | 20 U          | 20 U     | 20 U          | 20 U      |
| Cobalt, Dissolved       | 3.1 J     | 0.54 J    | 1.1 J         | 1.1 J    | 0.66 J        | 5 U       |
| Copper, Dissolved       | 2.7 J     | 4.6 J     | 2.7 J         | 20 U     | 20 U          | 20 U      |
| Iron, Dissolved         | 20,500    | 2,570     | 6,620         | 6,720    | 7,240         | 102 J     |
| Lead, Dissolved         | 20 U      | 20 U      | 20 U          | 20 U     | 20 U          | 20 U      |
| Magnesium, Dissolved    | 1,350     | 370       | 4,580         | 4,740    | 2,840         | 912       |
| Manganese, Dissolved    | 236       | 45.7      | 90.2          | 88.8     | 165           | 2.8 J     |
| Mercury, Dissolved      | 0.2 U     | 0.2 U     | 0.2 U         | 0.2 U    | 0.2 U         | 0.2 U     |
| Nickel, Dissolved       | 25        | 23        | 10.2          | 10.4     | 10 U          | 10 U      |
| Potassium, Dissolved    | 1,110     | 2,460     | 1,560         | 1,600    | 780 J         | 472 J     |
| Selenium, Dissolved     | 20 U      | 20 U      | 20 U          | 20 U     | 20 U          | 20 U      |
| Silver, Dissolved       | 20 U      | 20 U      | 20 U          | 20 U     | 20 U          | 20 U      |
| Sodium, Dissolved       | 1,580 J   | 5,010     | 7,910         | 8,120    | 2,900         | 4,290     |
| Thallium, Dissolved     | 30 U      | 30 U      | 30 U          | 30 U     | 30 U          | 30 U      |
| Vanadium, Dissolved     | 50 U      | 50 U      | 50 U          | 50 U     | 50 U          | 50 U      |
| Zinc, Dissolved         | 50 U      | 9.9 J     | 7.6 J         | 12.1 J   | 50 U          | 50 U      |
|                         |           |           |               |          |               |           |
| Wet Chemistry           |           |           |               |          |               |           |
| pH (ph)                 | NA        | NA        | NA            | NA       | NA            | 6.4       |

### Shading indicates detections

- Shading indicates detections

  NA Not analyzed

  J Analyte present, value may or may not be accurate or precise

  R Unreliable Result

  U The material was analyzed for, but not detected

  UJ Analyte not detected, quantitation limit may be inaccurate

  ph pH units

  uol Microorams per liter

- μg/I Micrograms per liter

| laa                                                                           | T                          | July 200                       |                                  | 12.17.0000                       | 10.17.0001                       | 10.10.000                        |
|-------------------------------------------------------------------------------|----------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Station ID<br>Sample ID                                                       | IR1<br>IR17-SS01-00-01-09C | 7-SS01<br>IR17-SS01D-00-01-09C | IR17-SS02<br>IR17-SS02-00-01-09C | IR17-SS03<br>IR17-SS03-00-01-09C | IR17-SS04<br>IR17-SS04-00-01-09C | IR17-SS05<br>IR17-SS05-00-01-09C |
| Sample Date                                                                   | 07/10/09                   | 07/10/09                       | 07/10/09                         | 07/10/09                         | 07/10/09                         | 07/10/09                         |
| Chemical Name                                                                 |                            |                                |                                  |                                  |                                  |                                  |
| Volatile Organic Compounds (µg/kg)                                            |                            |                                |                                  |                                  |                                  |                                  |
| 1,1,1-Trichloroethane                                                         | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| 1,1,2,2-Tetrachloroethane<br>1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | 6.5 UJ<br>6.5 UJ           | 3 UJ<br>3 UJ                   | 4.6 UJ<br>4.6 UJ                 | 5.4 UJ<br>5.4 UJ                 | 5.2 R<br>5.2 R                   | 4.8 UJ<br>4.8 UJ                 |
| 1,1,2-Trichloroethane                                                         | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| 1,1-Dichloroethane 1,1-Dichloroethene                                         | 6.5 UJ<br>6.5 UJ           | 3 UJ<br>3 UJ                   | 4.6 UJ<br>4.6 UJ                 | 5.4 UJ<br>5.4 UJ                 | 5.2 R<br>5.2 R                   | 4.8 UJ<br>4.8 UJ                 |
| 1,2,4-Trichlorobenzene                                                        | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| 1,2-Dibromo-3-chloropropane                                                   | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| 1,2-Dibromoethane<br>1,2-Dichlorobenzene                                      | 6.5 UJ<br>6.5 UJ           | 3 UJ<br>3 UJ                   | 4.6 UJ<br>4.6 UJ                 | 5.4 UJ<br>5.4 UJ                 | 5.2 R<br>5.2 R                   | 4.8 UJ<br>4.8 UJ                 |
| 1,2-Dichloroethane                                                            | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| 1,2-Dichloropropane<br>1,3-Dichlorobenzene                                    | 6.5 UJ<br>6.5 UJ           | 3 UJ<br>3 UJ                   | 4.6 UJ<br>4.6 UJ                 | 5.4 UJ<br>5.4 UJ                 | 5.2 R<br>5.2 R                   | 4.8 UJ<br>4.8 UJ                 |
| 1,4-Dichlorobenzene                                                           | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| 2-Butanone<br>2-Hexanone                                                      | 14 J<br>13 UJ              | 4.9 J<br>6.1 UJ                | 5.1 J<br>9.2 UJ                  | 11 UJ<br>11 UJ                   | 23 J<br>10 R                     | 2.8 J<br>9.7 UJ                  |
| 4-Methyl-2-pentanone                                                          | 13 UJ                      | 6.1 UJ                         | 9.2 UJ                           | 11 UJ                            | 10 R                             | 9.7 UJ                           |
| Acetone                                                                       | 680 J<br>6.5 UJ            | 200 J<br>3 UJ                  | 70 J<br>4.6 UJ                   | 11 UJ<br>5.4 UJ                  | 900 J<br>5.2 R                   | 72 J<br>4.8 UJ                   |
| Benzene<br>Bromodichloromethane                                               | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R<br>5.2 R                   | 4.8 UJ                           |
| Bromoform                                                                     | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| Bromomethane<br>Carbon disulfide                                              | 13 R<br>6.5 UJ             | 6.1 R<br>3 UJ                  | 9.2 UJ<br>4.6 UJ                 | 11 UJ<br>5.4 UJ                  | 10 R<br>5.2 R                    | 9.7 UJ<br>4.8 UJ                 |
| Carbon tetrachloride                                                          | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| Chlorobenzene<br>Chloroethane                                                 | 6.5 UJ<br>13 UJ            | 3 UJ<br>6.1 UJ                 | 4.6 UJ<br>9.2 UJ                 | 5.4 UJ<br>11 UJ                  | 5.2 R<br>10 R                    | 4.8 UJ<br>9.7 UJ                 |
| Chloroform                                                                    | 6.5 UJ                     | 3 UJ                           | 13 J                             | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| Chloromethane<br>cis-1,2-Dichloroethene                                       | 6.5 J<br>6.5 UJ            | 2.8 J<br>3 UJ                  | 9.2 UJ<br>4.6 UJ                 | 11 UJ<br>5.4 UJ                  | 10 R<br>5.2 R                    | 9.7 UJ<br>4.8 UJ                 |
| cis-1,3-Dichloropropene                                                       | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| Cyclohexane                                                                   | 6.5 UJ<br>6.5 UJ           | 3 UJ<br>3 UJ                   | 4.6 UJ<br>4.6 UJ                 | 5.4 UJ<br>5.4 UJ                 | 5.2 R<br>5.2 R                   | 4.8 UJ<br>4.8 UJ                 |
| Dibromochloromethane Dichlorodifluoromethane (Freon-12)                       | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ<br>5.4 UJ                 | 5.2 R<br>5.2 R                   | 4.8 UJ<br>4.8 UJ                 |
| Ethylbenzene                                                                  | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| Isopropylbenzene<br>Methyl acetate                                            | 6.5 UJ<br>6.5 UJ           | 3 UJ<br>3 UJ                   | 4.6 UJ<br>4.3 J                  | 5.4 UJ<br>3.6 J                  | 5.2 R<br>70 J                    | 4.8 UJ<br>7 J                    |
| Methylcyclohexane                                                             | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| Methylene chloride<br>Methyl-tert-butyl ether (MTBE)                          | 13 UJ<br>6.5 UJ            | 6.1 UJ<br>3 UJ                 | 9.2 UJ<br>4.6 UJ                 | 11 UJ<br>5.4 UJ                  | 10 R<br>5.2 R                    | 9.7 UJ<br>4.8 UJ                 |
| Styrene                                                                       | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| Tetrachloroethene<br>Toluene                                                  | 6.5 UJ<br>6.5 UJ           | 3 UJ<br>3 UJ                   | 4.6 UJ<br>4.6 UJ                 | 5.4 UJ<br>5.4 UJ                 | 5.2 R<br>5.2 R                   | 4.8 UJ<br>4.8 UJ                 |
| trans-1,2-Dichloroethene                                                      | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| trans-1,3-Dichloropropene                                                     | 6.5 UJ                     | 3 UJ                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 R                            | 4.8 UJ                           |
| Trichloroethene Trichlorofluoromethane(Freon-11)                              | 6.5 UJ<br>6.5 UJ           | 3 UJ<br>3 UJ                   | 4.6 UJ<br>4.6 UJ                 | 5.4 UJ<br>5.4 UJ                 | 5.2 R<br>5.2 R                   | 4.8 UJ<br>4.8 UJ                 |
| Vinyl chloride<br>Xylene, total                                               | 13 UJ<br>6.5 UJ            | 6.1 UJ<br>3 UJ                 | 9.2 UJ<br>4.6 UJ                 | 11 UJ<br>5.4 UJ                  | 10 R<br>5.2 R                    | 9.7 UJ<br>4.8 UJ                 |
| Ayrene, total                                                                 | 6.5 03                     | 3 03                           | 4.6 UJ                           | 5.4 UJ                           | 5.2 K                            | 4.6 UJ                           |
| Semivolatile Organic Compounds (μg/kg)                                        |                            |                                |                                  |                                  |                                  |                                  |
| 1,1-Biphenyl 2,2'-Oxybis(1-chloropropane)                                     | 240 U<br>240 U             | 240 U<br>240 U                 | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   |
| 2,4,5-Trichlorophenol                                                         | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| 2,4-Dichlorophenol<br>2,4-Dimethylphenol                                      | 240 U<br>240 U             | 240 U<br>240 U                 | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   |
| 2,4-Dinitrophenol                                                             | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| 2,4-Dinitrotoluene<br>2,6-Dinitrotoluene                                      | 240 U<br>240 U             | 240 U<br>240 U                 | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   |
| 2-Chloronaphthalene                                                           | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| 2-Chlorophenol                                                                | 240 U<br>240 U             | 240 U<br>240 U                 | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   |
| 2-Methylnaphthalene<br>2-Methylphenol                                         | 240 U<br>240 U             | 240 U<br>240 U                 | 180 U<br>180 U                   | 180 U                            | 180 U<br>180 U                   | 180 U                            |
| 2-Nitroaniline                                                                | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| 2-Nitrophenol<br>3,3'-Dichlorobenzidine                                       | 240 U<br>240 UJ            | 240 U<br>240 UJ                | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   |
| 3-Nitroaniline                                                                | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| 4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether                          | 240 U<br>240 U             | 240 U<br>240 U                 | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   |
| 4-Chloro-3-methylphenol                                                       | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| 4-Chloroaniline 4-Chlorophenyl-phenylether                                    | 240 U<br>240 U             | 240 U<br>240 U                 | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   |
| 4-Methylphenol                                                                | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| 4-Nitroaniline<br>4-Nitrophenol                                               | 240 U<br>240 U             | 240 U<br>240 U                 | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   |
| Acenaphthene                                                                  | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| Acenaphthylene                                                                | 240 U<br>240 U             | 240 U                          | 180 U<br>180 U                   | 180 U                            | 180 U<br>180 U                   | 180 U<br>180 U                   |
| Acetophenone<br>Anthracene                                                    | 240 U<br>240 U             | 240 U<br>240 U                 | 180 U                            | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U                            |
| Atrazine                                                                      | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| Benzaldehyde<br>Benzo(a)anthracene                                            | 240 U<br>49 U              | 240 U<br>47 U                  | 180 U<br>36 U                    | 180 U<br>36 U                    | 180 U<br>35 U                    | 180 U<br>35 U                    |
| Benzo(a)pyrene                                                                | 49 U                       | 47 U                           | 36 U                             | 36 U                             | 35 U                             | 35 U                             |
| Benzo(b)fluoranthene Benzo(g,h,i)perylene                                     | 49 U<br>240 U              | 47 U<br>240 U                  | 36 U<br>180 U                    | 36 U<br>180 U                    | 35 U<br>180 U                    | 35 U<br>180 U                    |
| Benzo(k)fluoranthene                                                          | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| bis(2-Chloroethoxy)methane                                                    | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| bis(2-Chloroethyl)ether<br>bis(2-Ethylhexyl)phthalate                         | 240 U<br>96 J              | 240 U<br>240 U                 | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   |
| Butylbenzylphthalate                                                          | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| Caprolactam<br>Carbazole                                                      | 240 U<br>240 U             | 240 U<br>240 U                 | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   | 180 U<br>180 U                   |
| Chrysene                                                                      | 240 U                      | 240 U                          | 180 U                            | 180 U                            | 180 U                            | 180 U                            |
| Dibenz(a,h)anthracene                                                         | 49 U                       | 47 U                           | 36 U                             | 36 U                             | 35 U                             | 35 U                             |

## CTO-11 Camp Lejeune - Site 17 Validated Surface Soil Raw Analytical Results July 2009

| []                                          |                     |                      | 1                   |                     |                     |                     |
|---------------------------------------------|---------------------|----------------------|---------------------|---------------------|---------------------|---------------------|
| Station ID                                  |                     | 7-SS01               | IR17-SS02           | IR17-SS03           | IR17-SS04           | IR17-SS05           |
| Sample ID                                   | IR17-SS01-00-01-09C | IR17-SS01D-00-01-09C | IR17-SS02-00-01-09C | IR17-SS03-00-01-09C | IR17-SS04-00-01-09C | IR17-SS05-00-01-09C |
| Sample Date                                 | 07/10/09            | 07/10/09             | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            |
| Chemical Name                               |                     |                      |                     |                     |                     |                     |
| Dibenzofuran                                | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Diethylphthalate                            | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Dimethyl phthalate                          | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Di-n-butylphthalate                         | 93 J                | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Di-n-octylphthalate                         | 240 UJ              | 240 UJ               | 180 U               | 180 U               | 180 U               | 180 U               |
| Fluoranthene                                | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Fluorene                                    | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Hexachlorobenzene<br>Hexachlorobutadiene    | 240 U<br>240 U      | 240 U<br>240 U       | 180 U<br>180 U      | 180 U<br>180 U      | 180 U<br>180 U      | 180 U<br>180 U      |
| Hexachlorocyclopentadiene                   | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Hexachloroethane                            | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Indeno(1,2,3-cd)pyrene                      | 49 U                | 47 U                 | 36 U                | 36 U                | 35 U                | 35 U                |
| Isophorone                                  | 49 U                | 47 U                 | 36 U                | 36 U                | 35 U                | 35 U                |
| Naphthalene                                 | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| n-Nitroso-di-n-propylamine                  | 49 U                | 47 U                 | 36 U                | 36 U                | 35 U                | 35 U                |
| n-Nitrosodiphenylamine                      | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Nitrobenzene                                | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Pentachlorophenol                           | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Phenanthrene                                | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Phenol                                      | 240 U               | 240 U                | 180 U               | 180 U               | 180 U               | 180 U               |
| Pyrene                                      | 240 U               | 240 U                | 180 UJ              | 180 U               | 180 UJ              | 180 U               |
|                                             | 270 0               | 270 0                | 100 00              | 100 0               | 100 00              | 100 0               |
| Pesticide/Polychlorinated Biphenyls (µg/kg) |                     |                      |                     |                     |                     |                     |
| 4,4'-DDD                                    | 2.5 U               | 2.4 U                | 1.8 U               | 1.8 U               | 1.8 U               | 1.7 U               |
| 4,4'-DDE                                    | 0.63 J              | 0.6 J                | 1.1 J               | 1.8 UJ              | 0.83 J              | 2.2 J               |
| 4,4'-DDT                                    | 2.5 UJ              | 2.4 UJ               | 1.9 J               | 1.8 UJ              | 1 J                 | 0.9 J               |
| Aldrin                                      | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| alpha-BHC                                   | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| alpha-Chlordane                             | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Aroclor-1016                                | 24 U                | 24 U                 | 17 U                | 17 U                | 17 U                | 17 U                |
| Aroclor-1221                                | 24 U                | 24 U                 | 17 U                | 17 U                | 17 U                | 17 U                |
| Aroclor-1232                                | 24 U                | 24 U                 | 17 U                | 17 U                | 17 U                | 17 U                |
| Aroclor-1242                                | 24 U                | 24 U                 | 17 U                | 17 U                | 17 U                | 17 U                |
| Aroclor-1248                                | 24 U                | 24 U                 | 17 U                | 17 U                | 17 U                | 17 U                |
| Aroclor-1254                                | 24 U                | 24 U                 | 17 U                | 17 U                | 17 U                | 17 U                |
| Aroclor-1260                                | 24 U                | 24 U                 | 17 U                | 17 U                | 17 U                | 17 U                |
| beta-BHC                                    | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| delta-BHC                                   | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Dieldrin                                    | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Endosulfan I                                | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Endosulfan II                               | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Endosulfan sulfate                          | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Endrin                                      | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Endrin aldehyde                             | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Endrin ketone                               | 2.5 UJ              | 2.4 UJ               | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| gamma-BHC (Lindane)                         | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| gamma-Chlordane                             | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Heptachlor                                  | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Heptachlor epoxide                          | 2.5 U               | 2.4 U                | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Methoxychlor<br>Toyonhone                   | 2.5 UJ              | 2.4 UJ               | 1.8 UJ              | 1.8 UJ              | 1.8 UJ              | 1.7 UJ              |
| Toxaphene                                   | 49 U                | 48 U                 | 36 UJ               | 36 UJ               | 35 UJ               | 35 UJ               |
| Total Motals (malka)                        |                     |                      |                     |                     |                     |                     |
| Total Metals (mg/kg) Aluminum               | 7.580 J+            | 7,110 J+             | 7,320               | 5,150               | 5,810               | 5,520               |
| Antimony                                    | 7,580 J+<br>2.1 U   | 7,110 J+<br>2 U      | 7,320<br>1.5 UJ     | 5,150<br>1.5 UJ     | 5,810<br>1.5 UJ     | 5,520<br>1.5 UJ     |
| Arsenic                                     | 4.9                 | 3.3                  | 1.3 J               | 1.9                 | 1.8                 | 1.5 03<br>1.1 J     |
| Barium                                      | 16.1                | 19.2                 | 21.3                | 12.7                | 14.8                | 14.9                |
| Beryllium                                   | 0.21 U              | 0.2 U                | 0.16                | 0.15 U              | 0.14 J              | 0.14 J              |
| Cadmium                                     | 0.64 U              | 0.61 U               | 0.02 J              | 0.15 U              | 0.14 J              | 0.46 U              |
| Calcium                                     | 356                 | 372                  | 91.5                | 210                 | 92.5                | 181                 |
| Chromium                                    | 8.3                 | 7.5                  | 3.8                 | 3.7                 | 3.3                 | 2.7                 |
| Cobalt                                      | 0.54 U              | 0.51 U               | 0.29 J              | 0.21 J              | 0.33 J              | 0.31 J              |
| Copper                                      | 1 J                 | 0.95 J               | 0.92 J              | 0.7 J               | 0.81 J              | 0.93 J              |
| Iron                                        | 7,640               | 5,230                | 2,190               | 1,800               | 1,670               | 1,880               |
| Lead                                        | 17.1                | 13.9                 | 7.5                 | 9.3                 | 8.7                 | 9.3                 |
| Magnesium                                   | 667                 | 646                  | 221                 | 178                 | 186                 | 132                 |
| Manganese                                   | 9.1                 | 8.2                  | 9.3                 | 8.7                 | 10.8                | 5.9                 |
| Mercury                                     | 0.052               | 0.045 U              | 0.033 U             | 0.042               | 0.033 U             | 0.033 U             |
| Nickel                                      | 1.5                 | 1.2                  | 2                   | 1.4                 | 1.5                 | 1.4                 |
| Potassium                                   | 495                 | 461                  | 134                 | 119                 | 116                 | 113                 |
| Selenium                                    | 0.69 J              | 0.57 J               | 1.5 U               | 1.5 U               | 1.5 U               | 1.5 U               |
| Silver                                      | 0.4 J               | 0.16 J               | 1.5 U               | 1.5 U               | 1.5 U               | 1.5 U               |
| Sodium                                      | 1,840               | 1,870                | 30.8 J              | 188 U               | 13.5 J              | 13.1 J              |
| Thallium                                    | 3.2 U               | 3 U                  | 2.3 U               | 2.3 U               | 2.2 U               | 2.3 U               |
| Vanadium                                    | 20.8                | 15.9                 | 6.8                 | 6.2                 | 6.2                 | 5.8                 |
| Zinc                                        | 5.4 U               | 5.1 U                | 5.2                 | 4.3                 | 4.3                 | 5.2                 |
|                                             |                     |                      |                     |                     |                     |                     |
|                                             |                     |                      |                     |                     |                     |                     |
| Wet Chemistry<br>pH (ph)                    | 4.2                 | 4.2                  | 4.7                 | 4.6                 | 4.9                 | 4.3                 |

- Notes:

  Shading indicates detections

  NA Not analyzed

  J Analyte present, value may or may not be accurate or precise

  J+ Analyte present, value may be biased high, actual value may be lower

  R Unreliable Result

  U The material was analyzed for, but not detected

  UJ Analyte not detected, quantitation limit may be inaccurate

  mg/kg Milligrams per kilogram

  ph pH units

  µg/kg Micrograms per kilogram

### CTO-11 Camp Lejeune - Site 17 Validated Subsurface Soil Raw Analytical Results July 2009

| Station ID                                                                    | IR17-SB01         | IR17-SB02         | IR17              | -SB03              | IR17-SB04         | IR17-SB05         |
|-------------------------------------------------------------------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|
| Sample ID                                                                     | IR17-SB01-2-4-09C | IR17-SB02-2-7-09C | IR17-SB03-2-7-09C | IR17-SB03D-2-7-09C | IR17-SB04-2-7-09C | IR17-SB05-2-7-09C |
| Sample Date                                                                   | 07/27/09          | 07/28/09          | 07/28/09          | 07/28/09           | 07/28/09          | 07/28/09          |
| Chemical Name                                                                 |                   |                   |                   |                    |                   |                   |
|                                                                               |                   |                   |                   |                    |                   |                   |
| Volatile Organic Compounds (µg/kg)                                            |                   |                   |                   |                    |                   |                   |
| 1,1,1-Trichloroethane                                                         | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| 1,1,2,2-Tetrachloroethane<br>1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | 2.2 UJ<br>2.2 UJ  | 1.4 U<br>1.4 U    | 2 UJ<br>2 UJ      | 1.8 UJ<br>1.8 UJ   | 1.7 UJ<br>1.7 UJ  | 1.8 UJ<br>1.8 UJ  |
| 1,1,2-Trichloroethane                                                         | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| 1,1-Dichloroethane                                                            | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| 1,1-Dichloroethene                                                            | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| 1,2,4-Trichlorobenzene                                                        | 1.1 J             | 1.4 U             | 2 UJ              | 1.8 R              | 1.7 UJ            | 1.8 UJ            |
| 1,2-Dibromo-3-chloropropane                                                   | 1.6 J             | 1.4 U             | 2 UJ              | 1.8 R              | 1.7 UJ            | 1.8 UJ            |
| 1,2-Dibromoethane                                                             | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| 1,2-Dichlorobenzene                                                           | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 R              | 1.7 UJ            | 1.8 UJ            |
| 1,2-Dichloroethane                                                            | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| 1,2-Dichloropropane<br>1,3-Dichlorobenzene                                    | 2.2 UJ<br>2.2 UJ  | 1.4 U<br>1.4 U    | 2 UJ<br>2 UJ      | 1.8 UJ<br>1.8 UJ   | 1.7 UJ<br>1.7 UJ  | 1.8 UJ<br>1.8 UJ  |
| 1,4-Dichlorobenzene                                                           | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| 2-Butanone                                                                    | 1.4 J             | 2.9 U             | 2.6 J             | 1.3 J              | 3.3 UJ            | 3.5 UJ            |
| 2-Hexanone                                                                    | 4.4 UJ            | 2.9 U             | 3.9 UJ            | 3.5 UJ             | 3.3 UJ            | 3.5 UJ            |
| 4-Methyl-2-pentanone                                                          | 4.4 UJ            | 2.9 U             | 3.9 UJ            | 3.5 UJ             | 3.3 UJ            | 3.5 UJ            |
| Acetone                                                                       | 70 J              | 2.9 U             | 99 J              | 41 J               | 3.3 UJ            | 3.5 UJ            |
| Benzene                                                                       | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Bromodichloromethane                                                          | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Bromoform                                                                     | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Bromomethane<br>Carbon disulfide                                              | 4.4 UJ<br>2.2 UJ  | 2.9 UJ<br>1.4 U   | 3.9 UJ<br>2 UJ    | 3.5 UJ<br>1.8 UJ   | 3.3 UJ<br>1.7 UJ  | 3.5 UJ<br>1.8 UJ  |
| Carbon disulfide  Carbon tetrachloride                                        | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Chlorobenzene                                                                 | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Chloroethane                                                                  | 4.4 UJ            | 2.9 U             | 3.9 UJ            | 3.5 UJ             | 3.3 UJ            | 3.5 UJ            |
| Chloroform                                                                    | 4.9 J             | 2.3               | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Chloromethane                                                                 | 4.4 UJ            | 2.9 U             | 3.9 UJ            | 3.5 UJ             | 3.3 UJ            | 3.5 UJ            |
| cis-1,2-Dichloroethene                                                        | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| cis-1,3-Dichloropropene                                                       | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Cyclohexane                                                                   | 2.2 UJ<br>2.2 UJ  | 1.4 U<br>1.4 U    | 2 UJ<br>2 UJ      | 1.8 UJ<br>1.8 UJ   | 1.7 UJ<br>1.7 UJ  | 1.8 UJ            |
| Dibromochloromethane Dichlorodifluoromethane (Freon-12)                       | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ<br>1.8 UJ  |
| Ethylbenzene                                                                  | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Isopropylbenzene                                                              | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Methyl acetate                                                                | 1.3 J             | 1.4 U             | 96 J              | 13 J               | 5.1 J             | 1.3 J             |
| Methylcyclohexane                                                             | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Methylene chloride                                                            | 2.2 UJ            | 1.4 U             | 1.5 J             | 1.8 UJ             | 3.3 UJ            | 1.8 UJ            |
| Methyl-tert-butyl ether (MTBE)                                                | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Styrene                                                                       | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Tetrachloroethene<br>Toluene                                                  | 2.2 UJ<br>2.2 UJ  | 1.4 U<br>1.4 U    | 2 UJ<br>2 UJ      | 1.8 UJ<br>1.8 UJ   | 1.7 UJ<br>1.7 UJ  | 1.8 UJ<br>1.8 UJ  |
| trans-1,2-Dichloroethene                                                      | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| trans-1,3-Dichloropropene                                                     | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Trichloroethene                                                               | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Trichlorofluoromethane(Freon-11)                                              | 2.2 UJ            | 1.4 U             | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Vinyl chloride                                                                | 4.4 R             | 2.9 UJ            | 3.9 R             | 3.5 UJ             | 3.3 UJ            | 3.5 UJ            |
| Xylene, total                                                                 | 2.2 UJ            | 1.4 UJ            | 2 UJ              | 1.8 UJ             | 1.7 UJ            | 1.8 UJ            |
| Saminalatila Ormania Carron de ( a fi a )                                     |                   |                   |                   |                    |                   |                   |
| Semivolatile Organic Compounds (µg/kg)                                        | 210 U             | 200 11            | 210 U             | 220 U              | 190 U             | 190 U             |
| 1,1-Biphenyl<br>2,2'-Oxybis(1-chloropropane)                                  | 210 U             | 200 U<br>200 U    | 210 U             | 220 U              | 190 U             | 190 U             |
| 2,4,5-Trichlorophenol                                                         | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 2,4-Dichlorophenol                                                            | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 2,4-Dimethylphenol                                                            | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 2,4-Dinitrophenol                                                             | 210 UJ            | 200 UJ            | 210 UJ            | 220 UJ             | 190 UJ            | 190 UJ            |
| 2,4-Dinitrotoluene                                                            | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 2,6-Dinitrotoluene                                                            | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 2-Chloronaphthalene<br>2-Chlorophenol                                         | 210 U<br>210 U    | 200 U<br>200 U    | 210 U<br>210 U    | 220 U<br>220 U     | 190 U<br>190 U    | 190 U<br>190 U    |
| 2-Methylnaphthalene                                                           | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 2-Methylphenol                                                                | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 2-Nitroaniline                                                                | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 2-Nitrophenol                                                                 | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 3,3'-Dichlorobenzidine                                                        | 210 UJ            | 200 UJ            | 210 UJ            | 220 UJ             | 190 UJ            | 190 UJ            |
| 3-Nitroaniline                                                                | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 4,6-Dinitro-2-methylphenol                                                    | 210 UJ            | 200 UJ            | 210 UJ            | 220 UJ             | 190 UJ            | 190 UJ            |
| 4-Bromophenyl-phenylether                                                     | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 4-Chloro-3-methylphenol 4-Chloroaniline                                       | 210 U<br>210 U    | 200 U<br>200 U    | 210 U<br>210 U    | 220 U<br>220 U     | 190 U<br>190 U    | 190 U<br>190 U    |
| 4-Chlorophenyl-phenylether                                                    | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 4-Methylphenol                                                                | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| 4-Nitroaniline                                                                | 210 UJ            | 200 UJ            | 210 UJ            | 220 UJ             | 190 UJ            | 190 UJ            |
| 4-Nitrophenol                                                                 | 210 UJ            | 200 UJ            | 210 UJ            | 220 UJ             | 190 UJ            | 190 UJ            |
| Acenaphthene                                                                  | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| Acenaphthylene                                                                | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |
| Acetophenone                                                                  | 210 U             | 200 U             | 210 U             | 220 U              | 190 U             | 190 U             |

### CTO-11 Camp Lejeune - Site 17 Validated Subsurface Soil Raw Analytical Results July 2009

| Station ID                                           | IR17-SB01         | IR17-SB02         | ID17              | -SB03              | IR17-SB04      | IR17-SB05         |
|------------------------------------------------------|-------------------|-------------------|-------------------|--------------------|----------------|-------------------|
| Sample ID                                            | IR17-SB01-2-4-09C | IR17-SB02-2-7-09C | IR17-SB03-2-7-09C | IR17-SB03D-2-7-09C | IR17-SB04-     | IR17-SB05-2-7-09C |
| Sample Date                                          | 07/27/09          | 07/28/09          | 07/28/09          | 07/28/09           | 07/28/09       | 07/28/09          |
| Chemical Name                                        |                   |                   |                   |                    |                |                   |
| Anthracene                                           | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Atrazine                                             | 210 UJ            | 200 UJ            | 210 UJ            | 220 UJ             | 190 UJ         | 190 UJ            |
| Benzaldehyde                                         | 210 R             | 200 R             | 210 R             | 220 R              | 190 R          | 190 R             |
| Benzo(a)anthracene                                   | 42 U              | 40 U<br>40 U      | 43 U              | 44 U<br>44 U       | 37 U           | 38 U              |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene               | 42 U<br>42 U      | 40 U              | 43 U<br>43 U      | 44 U               | 37 U<br>37 U   | 38 U<br>38 U      |
| Benzo(g,h,i)perylene                                 | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Benzo(k)fluoranthene                                 | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| bis(2-Chloroethoxy)methane                           | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| bis(2-Chloroethyl)ether                              | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| bis(2-Ethylhexyl)phthalate                           | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Butylbenzylphthalate                                 | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Caprolactam<br>Carbazole                             | 210 U<br>210 U    | 200 U<br>200 U    | 210 U<br>210 U    | 220 U<br>220 U     | 190 U<br>190 U | 190 U<br>190 U    |
| Chrysene                                             | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Dibenz(a,h)anthracene                                | 42 U              | 40 U              | 43 U              | 44 U               | 37 U           | 38 U              |
| Dibenzofuran                                         | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Diethylphthalate                                     | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Dimethyl phthalate                                   | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Di-n-butylphthalate                                  | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Di-n-octylphthalate                                  | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Fluoranthene<br>Fluorene                             | 210 U<br>210 U    | 200 U<br>200 U    | 210 U<br>210 U    | 220 U<br>220 U     | 190 U<br>190 U | 190 U<br>190 U    |
| Hexachlorobenzene                                    | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Hexachlorobetizette Hexachlorobutadiene              | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Hexachlorocyclopentadiene                            | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Hexachloroethane                                     | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Indeno(1,2,3-cd)pyrene                               | 42 U              | 40 U              | 43 U              | 44 U               | 37 U           | 38 U              |
| Isophorone                                           | 42 U              | 40 U              | 43 U              | 44 U               | 37 U           | 38 U              |
| Naphthalene                                          | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| n-Nitroso-di-n-propylamine<br>n-Nitrosodiphenylamine | 42 U<br>210 U     | 40 U<br>200 U     | 43 U<br>210 U     | 44 U<br>220 U      | 37 U<br>190 U  | 38 U<br>190 U     |
| Nitrobenzene                                         | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Pentachlorophenol                                    | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Phenanthrene                                         | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Phenol                                               | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
| Pyrene                                               | 210 U             | 200 U             | 210 U             | 220 U              | 190 U          | 190 U             |
|                                                      |                   |                   |                   |                    |                |                   |
| Pesticide/Polychlorinated Biphenyls (µg/kg) 4,4'-DDD | 1.7 U             | 1.7 U             | 4711              | 4711               | 1.7 U          | 1.7 U             |
| 4,4'-DDE                                             | 1.7 U             | 1.7 U             | 1.7 U<br>1.7 U    | 1.7 U<br>1.7 U     | 1.7 U          | 0.41 J            |
| 4,4'-DDT                                             | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| Aldrin                                               | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| alpha-BHC                                            | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| alpha-Chlordane                                      | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| Aroclor-1016                                         | 21 U              | 20 U              | 21 U              | 22 U               | 19 U           | 19 U              |
| Aroclor-1221                                         | 21 U              | 20 U              | 21 U              | 22 U               | 19 U           | 19 U              |
| Aroclor-1232<br>Aroclor-1242                         | 21 U<br>21 U      | 20 U<br>20 U      | 21 U<br>21 U      | 22 U<br>22 U       | 19 U<br>19 U   | 19 U<br>19 U      |
| Aroclor-1248                                         | 21 U              | 20 U              | 21 U              | 22 U               | 19 U           | 19 U              |
| Aroclor-1254                                         | 21 U              | 20 U              | 21 U              | 22 U               | 19 U           | 19 U              |
| Aroclor-1260                                         | 21 U              | 20 U              | 21 U              | 22 U               | 19 U           | 19 U              |
| beta-BHC                                             | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| delta-BHC                                            | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| Dieldrin                                             | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| Endosulfan I<br>Endosulfan II                        | 1.7 U<br>1.7 U    | 1.7 U<br>1.7 U    | 1.7 U<br>1.7 U    | 1.7 U<br>1.7 U     | 1.7 U<br>1.7 U | 1.7 U<br>1.7 U    |
| Endosulfan II<br>Endosulfan sulfate                  | 1.7 U             | 1.7 U<br>1.7 U    | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| Endrin                                               | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| Endrin aldehyde                                      | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| Endrin ketone                                        | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| gamma-BHC (Lindane)                                  | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| gamma-Chlordane                                      | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| Heptachlor                                           | 1.7 U             | 1.7 U             | 1.7 U             | 1.7 U              | 1.7 U          | 1.7 U             |
| Heptachlor epoxide<br>Methoxychlor                   | 1.7 U<br>1.7 U    | 1.7 U<br>1.7 U    | 1.7 U<br>1.7 U    | 1.7 U<br>1.7 U     | 1.7 U<br>1.7 U | 1.7 U<br>1.7 U    |
| Toxaphene                                            | 33 U              | 33 U              | 33 U              | 33 U               | 33 U           | 33 U              |
| Total Metals (mg/kg)                                 | 33.0              |                   |                   | 00.0               | 00.0           | 00.0              |
| Aluminum                                             | 17,400            | 4,520             | 20,000            | 17,700             | 5,270          | 7,900             |
| Antimony                                             | 0.93 J            | 1.7 U             | 1.8 U             | 1.8 U              | 1.6 U          | 1.6 U             |
| Arsenic                                              | 7.2               | 1.3 J             | 13                | 14.6               | 0.95 J         | 2.5               |
| Barium                                               | 18.9              | 9.7               | 21.8              | 20                 | 6.6            | 19.5              |
| Beryllium                                            | 0.21              | 0.057 J           | 0.31              | 0.28               | 0.055 J        | 0.15 J            |
| Cadmium                                              | 0.54 U            | 0.51 U            | 0.53 U            | 0.55 U             | 0.47 U         | 0.48 U            |
| Calcium<br>Chromium                                  | 90 U<br>27.4      | 84.6 U<br>4.7     | 89.1 U<br>35.8    | 92 U<br>34.1       | 227<br>5.6     | 97.3<br>7.4       |
| Cobalt                                               | 0.59              | 4.7<br>0.28 J     | 35.8              | 34.1               | 0.26 J         | 7.4<br>0.65       |
| Copper                                               | 3.5               | 0.66 J            | 5                 | 4.2                | 0.86 J         | 1.5 J             |
|                                                      |                   |                   |                   |                    |                |                   |

# CTO-11 Camp Lejeune - Site 17 Validated Subsurface Soil Raw Analytical Results July 2009

| Station ID    | IR17-SB01         | IR17-SB02         | IR17              | -SB03              | IR17-SB04         | IR17-SB05         |
|---------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|
| Sample ID     | IR17-SB01-2-4-09C | IR17-SB02-2-7-09C | IR17-SB03-2-7-09C | IR17-SB03D-2-7-09C | IR17-SB04-2-7-09C | IR17-SB05-2-7-09C |
| Sample Date   | 07/27/09          | 07/28/09          | 07/28/09          | 07/28/09           | 07/28/09          | 07/28/09          |
| Chemical Name |                   |                   |                   |                    |                   |                   |
| Iron          | 16,400            | 2,240             | 19,600            | 28,400             | 2,500             | 6,230             |
| Lead          | 10.7              | 5.2               | 15.4              | 15.9               | 3.3               | 6.7               |
| Magnesium     | 791               | 179               | 1,020             | 836                | 184               | 284               |
| Manganese     | 10.8              | 8.7               | 12.1              | 13.3               | 5.4               | 11.4              |
| Mercury       | 0.039 U           | 0.036 U           | 0.04 U            | 0.041 U            | 0.033 U           | 0.049             |
| Nickel        | 2.1               | 1.3               | 2.7               | 2.5                | 1.2               | 1.9               |
| Potassium     | 943               | 145               | 1,070             | 833                | 155               | 225               |
| Selenium      | 1.8 U             | 1.7 U             | 1.2 J             | 1.4 J              | 1.6 U             | 1.6 U             |
| Silver        | 1.8 U             | 1.7 U             | 1.8 U             | 1.8 U              | 1.6 U             | 1.6 U             |
| Sodium        | 230               | 22.6 J            | 106 J             | 81.9 J             | 5.3 J             | 21 J              |
| Thallium      | 2.7 U             | 2.5 U             | 2.7 U             | 2.8 U              | 2.4 U             | 2.4 U             |
| Vanadium      | 37.6              | 7                 | 49.4              | 70.4               | 7.4               | 13.2              |
| Zinc          | 7.5               | 3.1 J             | 8.9               | 8.9                | 2.4 J             | 6.3               |
|               |                   |                   |                   |                    |                   |                   |
| Wet Chemistry |                   |                   |                   |                    |                   |                   |
| pH (ph)       | 3.8               | 4.6               | 4.4               | 4.3                | 4.7               | NA                |

## Notes: Shading indicates detections NA - Not analyzed

J. - Analyte present, value may or may not be accurate or precise
 R - Unreliable Result

R - Unreliable Result
U - The material was analyzed for, but not detected
UJ - Analyte not detected, quantitation limit may be
inaccurate
mg/kg - Milligrams per kilogram

ph - pH units

μg/kg - Micrograms per kilogram

### CTO-11 Camp Lejeune - Site 17 Validated Groundwater Raw Analytical Results July 2009

| Station ID                                         | IR17-TW01     | IR17          | '-TW02         |
|----------------------------------------------------|---------------|---------------|----------------|
| Sample ID                                          | IR17-TW01-09C | IR17-TW02-09C | IR17-TW02D-09C |
| Sample Date                                        | 07/29/09      | 07/29/09      | 07/29/09       |
| Chemical Name                                      |               |               |                |
| Volatile Organic Compounds (μg/l)                  |               |               |                |
| 1,1,1-Trichloroethane                              | 1 U           | 1 UJ          | 1 UJ           |
| 1,1,2,2-Tetrachloroethane                          | 2.4 U         | 1 U           | 1 U            |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113)   | 1 U           | 1 U           | 1 U            |
| 1,1,2-Trichloroethane                              | 1 U           | 1 U           | 1 U            |
| 1,1-Dichloroethane<br>1,1-Dichloroethene           | 1 U           | 1 U           | 1 U<br>1 U     |
| 1,2,4-Trichlorobenzene                             | 1 U           | 1 U           | 1 U            |
| 1,2-Dibromo-3-chloropropane                        | 2 R           | 2 U           | 2 U            |
| 1,2-Dibromoethane                                  | 1 U           | 1 U           | 1 U            |
| 1,2-Dichlorobenzene                                | 1 U           | 1 U           | 1 U            |
| 1,2-Dichloroethane<br>1,2-Dichloropropane          | 1 U           | 1 U<br>1 U    | 1 U            |
| 1,3-Dichlorobenzene                                | 1 U           | 1 U           | 1 U            |
| 1,4-Dichlorobenzene                                | 1 U           | 1 U           | 1 U            |
| 2-Butanone                                         | 5 U           | 5 U           | 5 U            |
| 2-Hexanone                                         | 5 U           | 5 UJ          | 5 UJ           |
| 4-Methyl-2-pentanone<br>Acetone                    | 5 U<br>5 U    | 5 U<br>5 UJ   | 5 U<br>5 UJ    |
| Acetone<br>Benzene                                 | 1 U           | 5 UJ<br>1 U   | 5 UJ           |
| Bromodichloromethane                               | 1 U           | 1 U           | 1 U            |
| Bromoform                                          | 1 U           | 1 U           | 1 U            |
| Bromomethane                                       | 1.1 U         | 1 U           | 1 U            |
| Carbon disulfide Carbon tetrachloride              | 1 U           | 1 U<br>1 U    | 1 U            |
| Carbon tetrachionde Chlorobenzene                  | 1 U           | 1 U           | 1 U            |
| Chloroethane                                       | 1 UJ          | 1 U           | 1 U            |
| Chloroform                                         | 4.4           | 1 U           | 1 U            |
| Chloromethane                                      | 1 UJ          | 1 UJ          | 1 UJ           |
| cis-1,2-Dichloroethene                             | 1 U           | 1 U           | 1 U            |
| cis-1,3-Dichloropropene<br>Cyclohexane             | 1 U           | 1 U           | 1 U            |
| Dibromochloromethane                               | 1 U           | 1 U           | 1 U            |
| Dichlorodifluoromethane (Freon-12)                 | 1 UJ          | 1 UJ          | 1 UJ           |
| Ethylbenzene                                       | 1 U           | 1 U           | 1 U            |
| Isopropylbenzene                                   | 1 U           | 1 UJ<br>1 U   | 1 UJ<br>1 U    |
| Methyl acetate Methylcyclohexane                   | 1 U           | 1 U           | 1 U            |
| Methylene chloride                                 | 1 U           | 1 U           | 1 U            |
| Methyl-tert-butyl ether (MTBE)                     | 1 U           | 1 UJ          | 1 UJ           |
| Styrene                                            | 1 U           | 1 U           | 1 U            |
| Tetrachloroethene<br>Toluene                       | 1.1 U<br>1 U  | 1 U           | 1 U            |
| trans-1,2-Dichloroethene                           | 1 U           | 1 U           | 1 U            |
| trans-1,3-Dichloropropene                          | 1 U           | 1 U           | 1 U            |
| Trichloroethene                                    | 5.1 U         | 1 U           | 1 U            |
| Trichlorofluoromethane(Freon-11) Vinyl chloride    | 1 UJ<br>1 U   | 1 UJ<br>1 U   | 1 UJ<br>1 U    |
| Xylene, total                                      | 1.2 U         | 1 U           | 1 U            |
| ,,                                                 | 1 0           |               |                |
| Semivolatile Organic Compounds (μg/l)              |               |               |                |
| 1,1-Biphenyl                                       | 10 U          | 10 U          | 10 U           |
| 2,2'-Oxybis(1-chloropropane) 2,4,5-Trichlorophenol | 10 U<br>10 U  | 10 U<br>10 U  | 10 U<br>10 U   |
| 2,4-Dichlorophenol                                 | 10 U          | 10 U          | 10 U           |
| 2,4-Dimethylphenol                                 | 10 U          | 10 U          | 10 U           |
| 2,4-Dinitrophenol                                  | 20 U          | 20 U          | 20 U           |
| 2,4-Dinitrotoluene                                 | 10 U          | 10 U          | 10 U           |
| 2,6-Dinitrotoluene 2-Chloronaphthalene             | 10 U<br>10 U  | 10 U<br>10 U  | 10 U           |
| 2-Chlorophenol                                     | 10 U          | 10 U          | 10 U           |
| 2-Methylnaphthalene                                | 10 U          | 10 U          | 10 U           |
| 2-Methylphenol                                     | 10 U          | 10 U          | 10 U           |
| 2-Nitroaniline                                     | 10 U          | 10 U          | 10 U           |
| 2-Nitrophenol<br>3,3'-Dichlorobenzidine            | 10 U<br>20 UJ | 10 U<br>20 UJ | 10 U<br>20 UJ  |
| 3-Nitroaniline                                     | 10 U          | 10 U          | 10 U           |
| 4,6-Dinitro-2-methylphenol                         | 20 U          | 20 U          | 20 U           |
| 4-Bromophenyl-phenylether                          | 10 U          | 10 U          | 10 U           |
| 4-Chloro-3-methylphenol                            | 10 U          | 10 U          | 10 U           |
| 4-Chloroaniline 4-Chlorophenyl-phenylether         | 10 U<br>10 U  | 10 U<br>10 U  | 10 U<br>10 U   |
| 4-Methylphenol                                     | 20 U          | 20 U          | 20 U           |
| 4-Nitroaniline                                     | 10 U          | 10 U          | 10 U           |
| 4-Nitrophenol                                      | 20 U          | 20 U          | 20 U           |
| Acenaphthulana                                     | 10 U          | 10 U          | 10 U           |
| Acenaphthylene<br>Acetophenone                     | 10 U<br>10 U  | 10 U<br>10 U  | 10 U<br>10 U   |
| , toctop for for for                               | 100           | 10 0          | 100            |

### CTO-11 Camp Lejeune - Site 17 Validated Groundwater Raw Analytical Results July 2009

| Station ID                                             | IR17-TW01        | IR17             | 7-TW02           |
|--------------------------------------------------------|------------------|------------------|------------------|
| Sample ID                                              | IR17-TW01-09C    |                  | IR17-TW02D-09C   |
| Sample Date                                            | 07/29/09         | 07/29/09         | 07/29/09         |
| Chemical Name                                          | i                |                  |                  |
| Anthracene                                             | 10 U             | 10 U             | 10 U             |
| Atrazine                                               | 20 U             | 20 U             | 20 U             |
| Benzaldehyde                                           | 10 R             | 10 R             | 10 R             |
| Benzo(a)anthracene<br>Benzo(a)pyrene                   | 10 U<br>10 U     | 10 U<br>10 U     | 10 U             |
| Benzo(b)fluoranthene                                   | 10 U             | 10 U             | 10 U             |
| Benzo(g,h,i)perylene                                   | 10 U             | 10 U             | 10 U             |
| Benzo(k)fluoranthene                                   | 10 U             | 10 U             | 10 U             |
| bis(2-Chloroethoxy)methane                             | 10 U             | 10 U             | 10 U             |
| bis(2-Chloroethyl)ether                                | 10 U             | 10 U             | 10 U             |
| bis(2-Ethylhexyl)phthalate<br>Butylbenzylphthalate     | 10 U<br>10 U     | 10 U<br>10 U     | 10 U             |
| Caprolactam                                            | 4.5 J            | 10 U             | 10 U             |
| Carbazole                                              | 10 U             | 10 U             | 10 U             |
| Chrysene                                               | 10 U             | 10 U             | 10 U             |
| Dibenz(a,h)anthracene                                  | 10 U             | 10 U             | 10 U             |
| Dibenzofuran                                           | 10 U             | 10 U             | 10 U             |
| Diethylphthalate<br>Dimethyl phthalate                 | 10 U<br>10 U     | 10 U<br>10 U     | 10 U<br>10 U     |
| Di-n-butylphthalate                                    | 20 U             | 20 U             | 20 U             |
| Di-n-octylphthalate                                    | 10 U             | 10 U             | 10 U             |
| Fluoranthene                                           | 10 U             | 10 U             | 10 U             |
| Fluorene                                               | 10 U             | 10 U             | 10 U             |
| Hexachlorobenzene                                      | 10 U             | 10 U             | 10 U             |
| Hexachlorobutadiene Hexachlorocyclopentadiene          | 10 U<br>10 U     | 10 U<br>10 U     | 10 U             |
| Hexachlorocyclopentadiene Hexachloroethane             | 10 U             | 10 U             | 10 U             |
| Indeno(1,2,3-cd)pyrene                                 | 10 U             | 10 U             | 10 U             |
| Isophorone                                             | 10 U             | 10 U             | 10 U             |
| Naphthalene                                            | 10 U             | 10 U             | 10 U             |
| n-Nitroso-di-n-propylamine                             | 10 U             | 10 U             | 10 U             |
| n-Nitrosodiphenylamine<br>Nitrobenzene                 | 10 U<br>10 U     | 10 U<br>10 U     | 10 U<br>10 U     |
| Pentachlorophenol                                      | 20 U             | 20 U             | 20 U             |
| Phenanthrene                                           | 10 U             | 10 U             | 10 U             |
| Phenol                                                 | 10 U             | 10 U             | 10 U             |
| Pyrene                                                 | 10 U             | 10 U             | 10 U             |
| Pesticide/Polychlorinated Biphenyls (µg/l)<br>4,4'-DDD | 0.05 U           | 0.05 U           | 0.05 U           |
| 4,4'-DDE                                               | 0.05 U           | 0.05 U           | 0.05 U           |
| 4,4'-DDT                                               | 0.05 U           | 0.05 U           | 0.05 U           |
| Aldrin                                                 | 0.05 U           | 0.05 U           | 0.05 U           |
| alpha-BHC<br>alpha-Chlordane                           | 0.05 U<br>0.05 U | 0.05 U<br>0.05 U | 0.05 U<br>0.05 U |
| Aroclor-1016                                           | 0.5 U            | 0.5 U            | 0.5 U            |
| Aroclor-1221                                           | 0.5 U            | 0.5 U            | 0.5 U            |
| Aroclor-1232                                           | 0.5 U            | 0.5 U            | 0.5 U            |
| Aroclor-1242                                           | 0.5 U            | 0.5 U            | 0.5 U            |
| Aroclor-1248<br>Aroclor-1254                           | 0.5 U<br>0.5 U   | 0.5 U<br>0.5 U   | 0.5 U<br>0.5 U   |
| Aroclor-1254<br>Aroclor-1260                           | 0.5 U            | 0.5 U            | 0.5 U            |
| beta-BHC                                               | 0.05 U           | 0.05 U           | 0.05 U           |
| delta-BHC                                              | 0.05 U           | 0.05 U           | 0.05 U           |
| Dieldrin                                               | 0.05 U           | 0.05 U           | 0.05 U           |
| Endosulfan I                                           | 0.05 U           | 0.05 U           | 0.05 U           |
| Endosulfan II<br>Endosulfan sulfate                    | 0.05 U<br>0.05 U | 0.05 U<br>0.05 U | 0.05 U<br>0.05 U |
| Endrin                                                 | 0.05 U           | 0.05 U           | 0.05 U           |
| Endrin aldehyde                                        | 0.05 U           | 0.05 U           | 0.05 U           |
| Endrin ketone                                          | 0.05 U           | 0.05 U           | 0.05 U           |
| gamma-BHC (Lindane)                                    | 0.05 U           | 0.05 U           | 0.05 U           |
| gamma-Chlordane                                        | 0.05 U           | 0.05 U           | 0.05 U           |
| Heptachlor<br>Heptachlor epoxide                       | 0.05 U<br>0.05 U | 0.05 U<br>0.05 U | 0.05 U<br>0.05 U |
| Methoxychlor                                           | 0.05 U           | 0.05 U           | 0.05 U           |
| Toxaphene                                              | 1 U              | 1 U              | 1 U              |
| Total Metals (μg/l)                                    |                  |                  |                  |
| Aluminum                                               | 1,680            | 621 J            | 1,260            |
| Antimony                                               | 20 U             | 20 U             | 20 U             |
| Arsenic<br>Barium                                      | 20 U<br>474      | 20 U<br>8 J      | 20 U<br>9.2 J    |
| Beryllium                                              | 2 U              | 0.12 J           | 9.2 J<br>0.16 J  |
| Cadmium                                                | 6 U              | 6 U              | 6 U              |
| Calcium                                                | 111,000          | 911 J            | 893 J            |
| Chromium                                               | 1.8 J            | 20 U             | 20 U             |
| Cobalt                                                 | 5 U              | 5 U              | 5 U              |
| Copper                                                 | 20 U             | 20 U             | 20 U             |

# CTO-11 Camp Lejeune - Site 17 Validated Groundwater Raw Analytical Results July 2009

| Station ID              | IR17-TW01     | IR17          | -TW02          |
|-------------------------|---------------|---------------|----------------|
| Sample ID               | IR17-TW01-09C | IR17-TW02-09C | IR17-TW02D-09C |
| Sample Date             | 07/29/09      | 07/29/09      | 07/29/09       |
| Chemical Name           |               |               |                |
| Iron                    | 2,590         | 814           | 1,170          |
| Lead                    | 3.2 J         | 20 U          | 3.2 J          |
| Magnesium               | 57,300        | 466           | 537            |
| Manganese               | 57.5          | 16.9          | 17.7           |
| Mercury                 | 0.25          | 0.2 U         | 0.2 U          |
| Nickel                  | 13.8          | 10 U          | 10 U           |
| Potassium               | 8,250         | 1,010         | 1,070          |
| Selenium                | 20 U          | 3.9 J         | 4.2 J          |
| Silver                  | 20 U          | 20 U          | 20 U           |
| Sodium                  | 499,000       | 7,220         | 7,470          |
| Thallium                | 30 U          | 30 U          | 30 U           |
| Vanadium                | 50 U          | 50 U          | 50 U           |
| Zinc                    | 10.2 J        | 5.7 J         | 4.9 J          |
|                         |               |               |                |
| Dissolved Metals (μg/l) |               |               |                |
| Aluminum, Dissolved     | 567 J         | 1,000 U       | 1,000 U        |
| Antimony, Dissolved     | 20 U          | 20 U          | 20 U           |
| Arsenic, Dissolved      | 20 U          | 20 U          | 20 U           |
| Barium, Dissolved       | 498           | 5.1 J         | 4.5 J          |
| Beryllium, Dissolved    | 2 U           | 0.1 J         | 2 U            |
| Cadmium, Dissolved      | 6 U           | 6 U           | 6 U            |
| Calcium, Dissolved      | 110,000       | 612 J         | 609 J          |
| Chromium, Dissolved     | 20 U          | 20 U          | 20 U           |
| Cobalt, Dissolved       | 5 U           | 5 U           | 5 U            |
| Copper, Dissolved       | 3.8 J         | 20 U          | 20 U           |
| Iron, Dissolved         | 2,760         | 309           | 296            |
| Lead, Dissolved         | 2.6 J         | 20 U          | 20 U           |
| Magnesium, Dissolved    | 59,200        | 263           | 266            |
| Manganese, Dissolved    | 64.6          | 13            | 11             |
| Mercury, Dissolved      | 0.2 U         | 0.2 U         | 0.2 U          |
| Nickel, Dissolved       | 15.9          | 10 U          | 10 U           |
| Potassium, Dissolved    | 8,580         | 1,060         | 1,040          |
| Selenium, Dissolved     | 20 U          | 20 U          | 4.2 J          |
| Silver, Dissolved       | 20 U          | 20 U          | 20 U           |
| Sodium, Dissolved       | 510,000       | 7,650         | 7,810          |
| Thallium, Dissolved     | 30 U          | 30 U          | 30 U           |
| Vanadium, Dissolved     | 50 U          | 50 U          | 50 U           |
| Zinc, Dissolved         | 14.7 J        | 7.9 J         | 5.2 J          |

- Notes:

  Shading indicates detections

  NA Not analyzed

  J Analyte present, value may or may not be accurate or precise

  R Unreliable Result

  U The material was analyzed for, but not detected

  UJ Analyte not detected, quantitation limit may be inaccurate

  µg/l Micrograms per liter

CTO-11 Camp Lejeune - Site 85 Validated Groundwater Detected Analytical Results July 2009

| Station ID                                                                | IR85-BAT        | IR85-SS06           | IR85-SS07           | IR85-SS08           | IRR                 | 5-SS09               | IR85-SS10           | IR85-SS11        | IR85-SS12           | IR85-SS13           | IR85.            | -SS14                | IR85-SS15           | IR85-SS16           | IR85-SS17           | IR85-SS18           |
|---------------------------------------------------------------------------|-----------------|---------------------|---------------------|---------------------|---------------------|----------------------|---------------------|------------------|---------------------|---------------------|------------------|----------------------|---------------------|---------------------|---------------------|---------------------|
| Sample ID                                                                 | IR85-BAT-071009 | IR85-SS06-00-01-09C | IR85-SS07-00-01-09C | IR85-SS08-00-01-09C | IR85-SS09-00-01-09C | IR85-SS09D-00-01-09C | IR85-SS10-00-01-09C |                  | IR85-SS12-00-01-09C | IR85-SS13-00-01-09C |                  | IR85-SS14D-00-01-09C | IR85-SS15-00-01-09C | IR85-SS16-00-01-09C | IR85-SS17-00-01-09C | IR85-SS18-00-01-09C |
| Sample Date                                                               | 07/10/09        | 07/09/09            | 07/09/09            | 07/09/09            | 07/10/09            | 07/10/09             | 07/10/09            | 07/10/09         | 07/10/09            | 07/10/09            | 07/10/09         | 07/10/09             | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            |
| Chemical Name                                                             |                 |                     |                     |                     |                     |                      |                     |                  |                     |                     |                  |                      |                     |                     |                     |                     |
| Volatile Organic Compounds (μg/kg)                                        |                 |                     |                     |                     |                     |                      |                     |                  |                     |                     |                  |                      |                     |                     |                     |                     |
| 1,1,1-Trichloroethane                                                     | NA              | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| 1,1,2,2-Tetrachloroethane                                                 | NA NA           | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113)<br>1,1,2-Trichloroethane | NA<br>NA        | 5 UJ<br>5 UJ        | 4.9 UJ<br>4.9 UJ    | 4.7 UJ<br>4.7 UJ    | 6.1 UJ<br>6.1 UJ    | 6.1 UJ<br>6.1 UJ     | 3.6 R<br>3.6 R      | 6.2 R<br>6.2 R   | 4.7 UJ<br>4.7 UJ    | 4.9 UJ<br>4.9 UJ    | 5.3 UJ<br>5.3 UJ | 5.4 UJ<br>5.4 UJ     | 4.3 UJ<br>4.3 UJ    | 6.2 UJ<br>6.2 UJ    | 9.5 UJ<br>9.5 UJ    | 5.4 R<br>5.4 R      |
| 1,1-Dichloroethane                                                        | NA              | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| 1,1-Dichloroethene                                                        | NA<br>NA        | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| 1,2,4-Trichlorobenzene<br>1,2-Dibromo-3-chloropropane                     | NA<br>NA        | 5 UJ<br>5 UJ        | 4.9 UJ<br>4.9 UJ    | 4.7 UJ<br>4.7 UJ    | 6.1 UJ<br>6.1 UJ    | 6.1 UJ<br>6.1 UJ     | 3.6 R<br>3.6 R      | 6.2 R<br>6.2 R   | 4.7 UJ<br>4.7 UJ    | 4.9 UJ<br>4.9 UJ    | 5.3 UJ<br>5.3 UJ | 5.4 UJ<br>5.4 UJ     | 4.3 UJ<br>4.3 UJ    | 6.2 UJ<br>6.2 UJ    | 9.5 UJ<br>9.5 UJ    | 5.4 R<br>5.4 R      |
| 1,2-Dibromoethane                                                         | NA              | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| 1,2-Dichlorobenzene                                                       | NA<br>NA        | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| 1,2-Dichloroethane<br>1,2-Dichloropropane                                 | NA<br>NA        | 5 UJ<br>5 UJ        | 4.9 UJ<br>4.9 UJ    | 4.7 UJ<br>4.7 UJ    | 6.1 UJ<br>6.1 UJ    | 6.1 UJ<br>6.1 UJ     | 3.6 R<br>3.6 R      | 6.2 R<br>6.2 R   | 4.7 UJ<br>4.7 UJ    | 4.9 UJ<br>4.9 UJ    | 5.3 UJ<br>5.3 UJ | 5.4 UJ<br>5.4 UJ     | 4.3 UJ<br>4.3 UJ    | 6.2 UJ<br>6.2 UJ    | 9.5 UJ<br>9.5 UJ    | 5.4 R<br>5.4 R      |
| 1,3-Dichlorobenzene                                                       | NA              | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| 1,4-Dichlorobenzene                                                       | NA<br>NA        | 5 UJ<br>7.8 J       | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ<br>6.6 J      | 3.6 R               | 6.2 R<br>12 R    | 4.7 UJ<br>7.3 J     | 4.9 UJ<br>6.9 J     | 5.3 UJ<br>14 J   | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| 2-Butanone<br>2-Hexanone                                                  | NA<br>NA        | 7.8 J<br>10 UJ      | 9.7 UJ<br>9.7 UJ    | 9.5 UJ<br>9.5 UJ    | 12 UJ<br>12 UJ      | 12 UJ                | 4.9 R<br>7.3 R      | 12 R             | 9.3 UJ              | 9.7 UJ              | 14 J<br>11 UJ    | 27 J<br>11 UJ        | 8.6 UJ<br>8.6 UJ    | 13 UJ<br>13 UJ      | 19 UJ<br>19 UJ      | 11 R<br>11 R        |
| 4-Methyl-2-pentanone                                                      | NA              | 10 UJ               | 9.7 UJ              | 9.5 UJ              | 12 UJ               | 12 UJ                | 7.3 R               | 12 R             | 9.3 UJ              | 9.7 UJ              | 11 UJ            | 11 UJ                | 8.6 UJ              | 13 UJ               | 19 UJ               | 11 R                |
| Acetone                                                                   | NA<br>NA        | 250 J               | 85 J                | 65 J                | 1,300 J             | 280 J                | 75 R                | 320 J            | 130 J               | 110 J               | 270 J            | 420 J                | 38 J                | 40 J                | 360 J               | 72 J                |
| Benzene Bromodichloromethane                                              | NA<br>NA        | 5 UJ<br>5 UJ        | 4.9 UJ<br>4.9 UJ    | 4.7 UJ<br>4.7 UJ    | 6.1 UJ<br>6.1 UJ    | 6.1 UJ<br>6.1 UJ     | 3.6 R<br>3.6 R      | 6.2 R<br>6.2 R   | 4.7 UJ<br>4.7 UJ    | 4.9 UJ<br>4.9 UJ    | 5.3 UJ<br>5.3 UJ | 5.4 UJ<br>5.4 UJ     | 4.3 UJ<br>4.3 UJ    | 6.2 UJ<br>6.2 UJ    | 9.5 UJ<br>9.5 UJ    | 5.4 R<br>5.4 R      |
| Bromoform                                                                 | NA              | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| Bromomethane                                                              | NA<br>NA        | 10 UJ               | 9.7 UJ              | 9.5 UJ              | 12 UJ               | 12 UJ                | 7.3 R               | 12 R             | 9.3 UJ              | 9.7 UJ              | 11 UJ            | 11 UJ                | 8.6 UJ              | 13 UJ               | 19 UJ               | 11 R                |
| Carbon disulfide  Carbon tetrachloride                                    | NA<br>NA        | 5 UJ<br>5 UJ        | 4.9 UJ<br>4.9 UJ    | 4.7 UJ<br>4.7 UJ    | 6.1 UJ<br>6.1 UJ    | 6.1 UJ<br>6.1 UJ     | 3.6 R<br>3.6 R      | 6.2 R<br>6.2 R   | 4.7 UJ<br>4.7 UJ    | 4.9 UJ<br>4.9 UJ    | 5.3 UJ<br>5.3 UJ | 5.4 UJ<br>5.4 UJ     | 4.3 UJ<br>4.3 UJ    | 6.2 UJ<br>6.2 UJ    | 9.5 UJ<br>9.5 UJ    | 5.4 R<br>5.4 R      |
| Chlorobenzene                                                             | NA              | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| Chloroethane                                                              | NA<br>NA        | 10 UJ               | 9.7 UJ              | 9.5 UJ              | 12 UJ               | 12 UJ                | 7.3 R               | 12 R             | 9.3 UJ              | 9.7 UJ              | 11 UJ            | 11 UJ                | 8.6 UJ              | 13 UJ               | 19 UJ               | 11 R                |
| Chloroform<br>Chloromethane                                               | NA<br>NA        | 5 UJ<br>10 UJ       | 4.9 UJ<br>9.7 UJ    | 4.7 UJ<br>9.5 UJ    | 6.1 UJ<br>12 UJ     | 6.1 UJ<br>12 UJ      | 3.6 R<br>7.3 R      | 6.2 R<br>12 R    | 4.7 UJ<br>9.3 UJ    | 4.9 UJ<br>9.7 UJ    | 5.3 UJ<br>11 UJ  | 5.4 UJ<br>11 UJ      | 4.3 UJ<br>8.6 UJ    | 6.2 UJ<br>13 UJ     | 9.5 UJ<br>19 UJ     | 5.4 R<br>11 R       |
| cis-1,2-Dichloroethene                                                    | NA              | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| cis-1,3-Dichloropropene                                                   | NA<br>NA        | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| Cyclohexane Dibromochloromethane                                          | NA<br>NA        | 5 UJ<br>5 UJ        | 4.9 UJ<br>4.9 UJ    | 4.7 UJ<br>4.7 UJ    | 6.1 UJ<br>6.1 UJ    | 6.1 UJ<br>6.1 UJ     | 3.6 R<br>3.6 R      | 6.2 R<br>6.2 R   | 4.7 UJ<br>4.7 UJ    | 4.9 UJ<br>4.9 UJ    | 5.3 UJ<br>5.3 UJ | 5.4 UJ<br>5.4 UJ     | 4.3 UJ<br>4.3 UJ    | 6.2 UJ<br>6.2 UJ    | 9.5 UJ<br>9.5 UJ    | 5.4 R<br>5.4 R      |
| Dichlorodifluoromethane (Freon-12)                                        | NA              | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| Ethylbenzene                                                              | NA<br>NA        | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| Isopropylbenzene<br>Methyl acetate                                        | NA<br>NA        | 5 UJ<br>12 J        | 4.9 UJ<br>3.8 J     | 4.7 UJ<br>8 J       | 6.1 UJ<br>84 J      | 6.1 UJ<br>18 J       | 3.6 R<br>15 R       | 6.2 R<br>6.2 R   | 4.7 UJ<br>20 J      | 4.9 UJ<br>12 J      | 5.3 UJ<br>12 J   | 5.4 UJ<br>26 J       | 4.3 UJ<br>5.7 J     | 6.2 UJ<br>11 J      | 9.5 UJ<br>200 J     | 5.4 R<br>5.4 R      |
| Methylcyclohexane                                                         | NA              | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| Methylene chloride                                                        | NA<br>NA        | 10 UJ<br>5 UJ       | 9.7 UJ<br>4.9 UJ    | 9.5 UJ<br>4.7 UJ    | 12 UJ<br>6.1 UJ     | 12 UJ<br>6.1 UJ      | 7.3 R<br>3.6 R      | 12 R<br>6.2 R    | 9.3 UJ<br>4.7 UJ    | 9.7 UJ<br>4.9 UJ    | 11 UJ<br>5.3 UJ  | 11 UJ<br>5.4 UJ      | 8.6 UJ<br>4.3 UJ    | 13 UJ<br>6.2 UJ     | 14 J<br>9.5 UJ      | 11 R<br>5.4 R       |
| Methyl-tert-butyl ether (MTBE) Styrene                                    | NA<br>NA        | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| Tetrachloroethene                                                         | NA              | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| Toluene<br>trans-1,2-Dichloroethene                                       | NA<br>NA        | 5 UJ<br>5 UJ        | 4.9 UJ<br>4.9 UJ    | 4.7 UJ<br>4.7 UJ    | 6.1 UJ<br>6.1 UJ    | 6.1 UJ<br>6.1 UJ     | 3.6 R<br>3.6 R      | 6.2 R<br>6.2 R   | 4.7 UJ<br>4.7 UJ    | 4.9 UJ<br>4.9 UJ    | 5.3 UJ<br>5.3 UJ | 5.4 UJ<br>5.4 UJ     | 4.3 UJ<br>4.3 UJ    | 6.2 UJ<br>6.2 UJ    | 9.5 UJ<br>9.5 UJ    | 5.4 R<br>5.4 R      |
| trans-1,3-Dichloropropene                                                 | NA<br>NA        | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| Trichloroethene                                                           | NA              | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
| Trichlorofluoromethane(Freon-11) Vinyl chloride                           | NA<br>NA        | 5 UJ<br>10 UJ       | 4.9 UJ<br>9.7 UJ    | 4.7 UJ<br>9.5 UJ    | 6.1 UJ<br>12 UJ     | 6.1 UJ<br>12 UJ      | 3.6 R<br>7.3 R      | 6.2 R<br>12 R    | 4.7 UJ<br>9.3 UJ    | 4.9 UJ<br>9.7 UJ    | 5.3 UJ<br>11 UJ  | 5.4 UJ<br>11 UJ      | 4.3 UJ<br>8.6 UJ    | 6.2 UJ<br>13 UJ     | 9.5 UJ<br>19 UJ     | 5.4 R<br>11 R       |
| Xylene, total                                                             | NA<br>NA        | 5 UJ                | 4.9 UJ              | 4.7 UJ              | 6.1 UJ              | 6.1 UJ               | 3.6 R               | 6.2 R            | 4.7 UJ              | 4.9 UJ              | 5.3 UJ           | 5.4 UJ               | 4.3 UJ              | 6.2 UJ              | 9.5 UJ              | 5.4 R               |
|                                                                           |                 |                     |                     |                     |                     |                      |                     |                  |                     |                     |                  |                      |                     |                     |                     |                     |
| Semivolatile Organic Compounds (µg/kg) 1,1-Biphenyl                       | NA              | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 2,2'-Oxybis(1-chloropropane)                                              | NA<br>NA        | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 2,4,5-Trichlorophenol                                                     | NA              | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 2,4-Dichlorophenol<br>2,4-Dimethylphenol                                  | NA<br>NA        | 190 U<br>190 U      | 180 U<br>180 U      | 190 U<br>190 U      | 180 U<br>180 U      | 180 U<br>180 U       | 180 U<br>180 U      | 180 UJ<br>180 UJ | 180 U<br>180 U      | 190 U<br>190 U      | 190 U<br>190 U   | 190 U<br>190 U       | 190 U<br>190 U      | 190 U<br>190 U      | 230 U<br>230 U      | 220 U<br>220 U      |
| 2,4-Dinitrophenol                                                         | NA<br>NA        | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 2,4-Dinitrotoluene                                                        | NA              | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 2,6-Dinitrotoluene                                                        | NA<br>NA        | 190 U               | 180 U               | 190 U<br>190 U      | 180 U               | 180 U                | 180 U<br>180 UJ     | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 2-Chloronaphthalene<br>2-Chlorophenol                                     | NA<br>NA        | 190 U<br>190 U      | 180 U<br>180 U      | 190 U               | 180 U<br>180 U      | 180 U<br>180 U       | 180 UJ<br>180 U     | 180 UJ<br>180 UJ | 180 U<br>180 U      | 190 U<br>190 U      | 190 U<br>190 U   | 190 U<br>190 U       | 190 U<br>190 U      | 190 U<br>190 U      | 230 U<br>230 U      | 220 U<br>220 U      |
| 2-Methylnaphthalene                                                       | NA              | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 2-Methylphenol<br>2-Nitroaniline                                          | NA<br>NA        | 190 U<br>190 U      | 180 U<br>180 U      | 190 U<br>190 U      | 180 U<br>180 U      | 180 U<br>180 U       | 180 U<br>180 U      | 180 UJ<br>180 UJ | 180 U<br>180 U      | 190 U<br>190 U      | 190 U<br>190 U   | 190 U<br>190 U       | 190 U<br>190 U      | 190 U<br>190 U      | 230 U<br>230 U      | 220 U<br>220 U      |
| 2-Nitroaniline<br>2-Nitrophenol                                           | NA<br>NA        | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 3,3'-Dichlorobenzidine                                                    | NA              | 190 UJ              | 180 UJ              | 190 UJ              | 180 UJ              | 180 UJ               | 180 UJ              | 180 UJ           | 180 UJ              | 190 UJ              | 190 UJ           | 190 UJ               | 190 UJ              | 190 UJ              | 230 UJ              | 220 UJ              |
| 3-Nitroaniline                                                            | NA<br>NA        | 190 U<br>190 U      | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether                      | NA<br>NA        | 190 U<br>190 U      | 180 U<br>180 U      | 190 U<br>190 U      | 180 U<br>180 U      | 180 U<br>180 U       | 180 U<br>180 U      | 180 UJ<br>180 UJ | 180 U<br>180 U      | 190 U<br>190 U      | 190 U<br>190 U   | 190 U<br>190 U       | 190 U<br>190 U      | 190 U<br>190 U      | 230 U<br>230 U      | 220 U<br>220 U      |
| 4-Chloro-3-methylphenol                                                   | NA              | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 4-Chloroaniline                                                           | NA<br>NA        | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 4-Chlorophenyl-phenylether 4-Methylphenol                                 | NA<br>NA        | 190 U<br>190 U      | 180 U<br>180 U      | 190 U<br>190 U      | 180 U<br>180 U      | 180 U<br>180 U       | 180 U<br>180 U      | 180 UJ<br>180 UJ | 180 U<br>180 U      | 190 U<br>190 U      | 190 U<br>190 U   | 190 U<br>190 U       | 190 U<br>190 U      | 190 U<br>190 U      | 230 U<br>230 U      | 220 U<br>220 U      |
| 4-Nitroaniline                                                            | NA              | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| 4-Nitrophenol                                                             | NA              | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
| Acenaphthene Acenaphthylene                                               | NA<br>NA        | 190 U<br>190 U      | 180 U<br>180 U      | 190 U<br>190 U      | 180 U<br>180 U      | 180 U<br>180 U       | 180 U<br>180 U      | 180 UJ<br>180 UJ | 180 U<br>180 U      | 190 U<br>190 U      | 190 U<br>190 U   | 190 U<br>190 U       | 190 U<br>190 U      | 190 U<br>190 U      | 230 U<br>230 U      | 220 U<br>220 U      |
| Acetophenone                                                              | NA<br>NA        | 190 U               | 180 U               | 190 U               | 180 U               | 180 U                | 180 U               | 180 UJ           | 180 U               | 190 U               | 190 U            | 190 U                | 190 U               | 190 U               | 230 U               | 220 U               |
|                                                                           |                 |                     |                     |                     |                     |                      |                     |                  |                     |                     |                  |                      |                     |                     |                     |                     |

CTO-11 Camp Lejeune - Site 85 Validated Groundwater Detected Analytical Results July 2009

| Station ID                                                                                                                                                                                                                                                                                                          | IR85-BAT                                 | IR85-SS06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IR85-SS07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IR85-SS08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IDea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-SS09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IR85-SS10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IR85-SS11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IR85-SS12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IR85-SS13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IDOE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IR85-SS15                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IR85-SS16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IR85-SS17                                                                                                                                                                                                                                                                                              | IR85-SS18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID                                                                                                                                                                                                                                                                                                           | IR85-BAT<br>IR85-BAT-071009              | IR85-SS06<br>IR85-SS06-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IR85-SS07<br>IR85-SS07-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IR85-SS08-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IR85-SS09-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IR85-SS09D-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IR85-SS10-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IR85-SS11<br>IR85-SS11-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IR85-SS12-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IR85-SS13-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IR85-SS14D-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IR85-SS16-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IR85-SS17-00-01-09C                                                                                                                                                                                                                                                                                    | IR85-SS18<br>IR85-SS18-00-01-09C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample Date                                                                                                                                                                                                                                                                                                         | 07/10/09                                 | 07/09/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/09/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/09/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 07/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07/10/09                                                                                                                                                                                                                                                                                               | 07/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Chemical Name                                                                                                                                                                                                                                                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Anthracene                                                                                                                                                                                                                                                                                                          | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Atrazine                                                                                                                                                                                                                                                                                                            | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Benzaldehyde                                                                                                                                                                                                                                                                                                        | NA<br>NA                                 | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 230 UJ                                                                                                                                                                                                                                                                                                 | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Benzo(a)anthracene Benzo(a)pyrene                                                                                                                                                                                                                                                                                   | NA<br>NA                                 | 37 U<br>37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36 U<br>36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38 U<br>38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36 U<br>36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36 U<br>36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36 U<br>36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36 UJ<br>36 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37 U<br>37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38 U<br>38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37 U<br>37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38 U<br>38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39 U<br>39 U                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38 U<br>38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47 U<br>47 U                                                                                                                                                                                                                                                                                           | 43 U<br>43 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                | NA NA                                    | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39 U                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47 U                                                                                                                                                                                                                                                                                                   | 43 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                          | NA<br>NA                                 | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U<br>230 U                                                                                                                                                                                                                                                                                         | 220 U<br>220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| bis(2-Chloroethyl)ether<br>bis(2-Ethylhexyl)phthalate                                                                                                                                                                                                                                                               | NA<br>NA                                 | 190 U<br>140 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 U<br>58 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 UJ<br>180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190 U<br>29 J                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Butylbenzylphthalate                                                                                                                                                                                                                                                                                                | NA<br>NA                                 | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Caprolactam                                                                                                                                                                                                                                                                                                         | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Carbazole                                                                                                                                                                                                                                                                                                           | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chrysene                                                                                                                                                                                                                                                                                                            | NA<br>NA                                 | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dibenz(a,h)anthracene Dibenzofuran                                                                                                                                                                                                                                                                                  | NA<br>NA                                 | 37 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36 UJ<br>180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47 U<br>230 U                                                                                                                                                                                                                                                                                          | 43 U<br>220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Diethylphthalate                                                                                                                                                                                                                                                                                                    | NA NA                                    | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                  | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Di-n-butylphthalate                                                                                                                                                                                                                                                                                                 | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Di-n-octylphthalate                                                                                                                                                                                                                                                                                                 | NA<br>NA                                 | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fluoranthene<br>Fluorene                                                                                                                                                                                                                                                                                            | NA<br>NA                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 UJ<br>180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                               | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 230 U<br>230 U                                                                                                                                                                                                                                                                                         | 220 U<br>220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                   | NA<br>NA                                 | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                 | NA NA                                    | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                           | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hexachloroethane                                                                                                                                                                                                                                                                                                    | NA<br>NA                                 | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Indeno(1,2,3-cd)pyrene<br>Isophorone                                                                                                                                                                                                                                                                                | NA<br>NA                                 | 37 U<br>37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36 U<br>36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38 U<br>38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36 U<br>36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36 U<br>36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36 U<br>36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36 UJ<br>36 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37 U<br>37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38 U<br>38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37 U<br>37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38 U<br>38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39 U<br>39 U                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38 U<br>38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47 U<br>47 U                                                                                                                                                                                                                                                                                           | 43 U<br>43 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Naphthalene                                                                                                                                                                                                                                                                                                         | NA NA                                    | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| n-Nitroso-di-n-propylamine                                                                                                                                                                                                                                                                                          | NA                                       | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39 U                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47 U                                                                                                                                                                                                                                                                                                   | 43 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| n-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                              | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nitrobenzene                                                                                                                                                                                                                                                                                                        | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pentachlorophenol Phenanthrene                                                                                                                                                                                                                                                                                      | NA<br>NA                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 UJ<br>180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                               | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 230 U<br>230 U                                                                                                                                                                                                                                                                                         | 220 U<br>220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Phenol                                                                                                                                                                                                                                                                                                              | NA<br>NA                                 | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pyrene                                                                                                                                                                                                                                                                                                              | NA                                       | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 230 U                                                                                                                                                                                                                                                                                                  | 220 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pesticide/Polychlorinated Biphenyls (µg/kg) 4,4'-DDD                                                                                                                                                                                                                                                                | NA                                       | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.93 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.39 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.97 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3 U                                                                                                                                                                                                                                                                                                  | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4,4'-DDE                                                                                                                                                                                                                                                                                                            | NA<br>NA                                 | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.99 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.64 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.71 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4 J                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5 U                                                                                                                                                                                                                                                                                                  | 3.1 J<br>29 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4,4'-DDT                                                                                                                                                                                                                                                                                                            | NA NA                                    | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.68 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.83 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.86 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.4 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 J                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 J                                                                                                                                                                                                                                                                                                    | 25 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Aldrin                                                                                                                                                                                                                                                                                                              | NA                                       | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3 UJ                                                                                                                                                                                                                                                                                                 | 2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| alpha-BHC                                                                                                                                                                                                                                                                                                           | NA                                       | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3 UJ                                                                                                                                                                                                                                                                                                 | 2.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| alpha-Chlordane Aroclor-1016                                                                                                                                                                                                                                                                                        | NA<br>NA                                 | 1.9 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.8 UJ<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.8 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.8 UJ<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9 UJ<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9 UJ<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9 UJ<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.9 UJ<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.9 UJ<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.3 UJ<br>23 U                                                                                                                                                                                                                                                                                         | 2.2 UJ<br>22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aroclor-1016<br>Aroclor-1221                                                                                                                                                                                                                                                                                        | NA<br>NA                                 | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        | 22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Aroclor-1232                                                                                                                                                                                                                                                                                                        | NA                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aroclor-1242                                                                                                                                                                                                                                                                                                        | 1                                        | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 U<br>23 U                                                                                                                                                                                                                                                                                           | 22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                     | NA                                       | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 U<br>23 U<br>23 U                                                                                                                                                                                                                                                                                   | 22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Aroclor-1248                                                                                                                                                                                                                                                                                                        | NA                                       | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23 U<br>23 U<br>23 U<br>23 U                                                                                                                                                                                                                                                                           | 22 U<br>22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Aroclor-1254                                                                                                                                                                                                                                                                                                        | NA<br>NA                                 | 19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 U<br>19 U<br>40 J                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 U<br>17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 U<br>23 U<br>23 U<br>23 U<br>23 U<br>50                                                                                                                                                                                                                                                             | 22 U<br>22 U<br>22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Aroclor-1254<br>Aroclor-1260                                                                                                                                                                                                                                                                                        | NA<br>NA<br>NA                           | 19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 U<br>18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19 U<br>19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U<br>17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U<br>18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 U<br>18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U<br>18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U<br>17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U<br>17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U<br>17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U<br>17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19 U<br>19 U<br>40 J<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 U<br>17 U<br>17 U<br>17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 U<br>23 U<br>23 U<br>23 U<br>23 U<br>50<br>23 U                                                                                                                                                                                                                                                     | 22 U<br>22 U<br>22 U<br>22 U<br>22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Aroclor-1254                                                                                                                                                                                                                                                                                                        | NA<br>NA                                 | 19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 U<br>19 U<br>19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U<br>18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 U<br>19 U<br>40 J                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 U<br>17 U<br>17 U<br>17 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 U<br>23 U<br>23 U<br>23 U<br>23 U<br>50                                                                                                                                                                                                                                                             | 22 U<br>22 U<br>22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Aroclor-1254<br>Aroclor-1260<br>beta-BHC<br>delta-BHC<br>Dieldrin                                                                                                                                                                                                                                                   | NA<br>NA<br>NA<br>NA<br>NA<br>NA         | 19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 U<br>17 U<br>17 U<br>17 U<br>18 UJ<br>1.8 UJ<br>1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 U<br>17 U<br>17 U<br>17 U<br>18 UJ<br>1.8 UJ<br>1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17 U<br>17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 U<br>17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 U<br>19 U<br>40 J<br>19 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U<br>17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23 U<br>23 U<br>23 U<br>23 U<br>23 U<br>50<br>23 U<br>2.3 UJ<br>2.3 UJ<br>2.9 UJ                                                                                                                                                                                                                       | 22 U<br>22 U<br>22 U<br>22 U<br>22 U<br>2.2 UJ<br>2.2 UJ<br>2.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I                                                                                                                                                                                                                                                  | NA<br>NA<br>NA<br>NA<br>NA<br>NA         | 19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 U<br>17 U<br>17 U<br>17 U<br>18 UJ<br>1.8 UJ<br>1.8 UJ<br>1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 U<br>17 U<br>17 U<br>17 U<br>18 UJ<br>1.8 UJ<br>1.8 UJ<br>1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 U<br>17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 U<br>17 U<br>17 U<br>17 U<br>19 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 U<br>19 U<br>40 J<br>19 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                         | 17 U<br>17 U<br>17 U<br>17 U<br>17 U<br>19 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                              | 23 U<br>23 U<br>23 U<br>23 U<br>50<br>23 U<br>2.3 UJ<br>2.3 UJ<br>1.9 J<br>2.3 UJ                                                                                                                                                                                                                      | 22 U<br>22 U<br>22 U<br>22 U<br>22 U<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II                                                                                                                                                                                                                                    | NA      | 19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 U<br>17 U<br>17 U<br>17 U<br>18 UJ<br>1.8 UJ<br>1.8 UJ<br>1.8 UJ<br>1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 U<br>18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 U<br>17 U<br>17 U<br>17 U<br>18 UJ<br>1.8 UJ<br>1.8 UJ<br>1.8 UJ<br>1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17 U<br>17 U<br>17 U<br>17 U<br>19 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                  | 17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 U<br>17 U<br>17 U<br>17 U<br>19 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 U<br>19 U<br>40 J<br>19 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                               | 17 U<br>17 U<br>17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                     | 23 U<br>23 U<br>23 U<br>23 U<br>50<br>23 U<br>23 U<br>23 UJ<br>23 UJ<br>1.9 J<br>2.3 UJ<br>2.3 UJ                                                                                                                                                                                                      | 22 U<br>22 U<br>22 U<br>22 U<br>22 U<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I                                                                                                                                                                                                                                                  | NA<br>NA<br>NA<br>NA<br>NA<br>NA         | 19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 U<br>17 U<br>17 U<br>17 U<br>18 UJ<br>1.8 UJ<br>1.8 UJ<br>1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 U<br>17 U<br>17 U<br>17 U<br>18 UJ<br>1.8 UJ<br>1.8 UJ<br>1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 U<br>17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 U<br>17 U<br>17 U<br>17 U<br>19 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 U<br>19 U<br>40 J<br>19 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                         | 17 U<br>17 U<br>17 U<br>17 U<br>17 U<br>19 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                              | 23 U<br>23 U<br>23 U<br>23 U<br>50<br>23 U<br>2.3 UJ<br>2.3 UJ<br>1.9 J<br>2.3 UJ                                                                                                                                                                                                                      | 22 U<br>22 U<br>22 U<br>22 U<br>22 U<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate                                                                                                                                                                                                                 | NA   | 19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 U<br>19 U<br>19 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 U<br>18 U<br>18 U<br>18 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 U 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ 1.9 UJ 1.9 UJ 1.9 UJ 1.9 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 U<br>17 U<br>17 U<br>17 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 U<br>19 U<br>40 J<br>19 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                                                                     | 17 U<br>17 U<br>17 U<br>17 U<br>17 U<br>19 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U<br>1.9 U                                                                                                                                                                                                                                                                                                                                                                                              | 23 U<br>23 U<br>23 U<br>23 U<br>23 U<br>50<br>23 U<br>2.3 UJ<br>2.3 UJ<br>2.3 UJ<br>2.3 UJ<br>2.3 UJ<br>2.3 UJ<br>2.3 UJ                                                                                                                                                                               | 22 U<br>22 U<br>22 U<br>22 U<br>22 U<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ<br>2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin                                                                                                                                                                                                          | NA N | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                         | 17 U 17 U 17 U 17 U 18 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                              | 19 U<br>19 U<br>40 J<br>19 U<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                             | 17 U 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                | 23 U 23 U 23 U 23 U 23 U 23 U 50 23 U 23 UJ                                                                                                                                                                  | 22 U 22 U 22 U 22 U 22 U 22 U 2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin delehyde Endrin ketone gamma-BHC (Lindane)                                                                                                                                                        | NA N | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                           | 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17 U 17 U 17 U 17 U 17 U 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                        | 19 U<br>19 U<br>40 J<br>19 U<br>1.9 UJ<br>1.9 UJ                                                                                                                                                                                                                                                                                                                   | 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                             | 23 U 50 23 U 2.3 UJ                                                                                     | 22 U 2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane                                                                                                                                               | NA N | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                           | 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17 U 17 U 17 U 17 U 17 U 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                 | 19 U 19 U 40 J 19 U 1.9 UJ                                                                                                                                                                                                                                                                                                                   | 17 U 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                | 23 U 50 23 U 2.3 UJ                                                         | 22 U 2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor                                                                                                                             | NA N | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                        | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                           | 19 U 19 U 40 J 19 U 1.9 UJ                                                                                                                                                                                                                                                                                                            | 17 U 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                      | 23 U 50 23 U 2.3 UJ                                                                              | 22 U 2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane                                                                                                                                        | NA N | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                           | 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17 U 17 U 17 U 17 U 17 U 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                 | 19 U 19 U 40 J 19 U 1.9 UJ                                                                                                                                                                                                                                                                                                                   | 17 U 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                | 23 U 50 23 U 2.3 UJ                                                         | 22 U 2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan Bendrin Endrin sulfate Endrin Endrin Aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide                                                 | NA N | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                 | 17 U 17 U 17 U 17 U 18 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                      | 19 U 19 U 40 J 19 U 1.9 UJ                                                                                                                                                                                                                                                                                              | 17 U 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                 | 23 U 50 23 U 2.3 UJ                                                                              | 22 U 2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor epoxide Methoxychlor Toxaphene                                                                                              | NA N | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                          | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                               | 19 U 19 U 40 J 19 U 1.9 UJ                                                                                                                                                                                                                                                                         | 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                   | 23 U 50 23 U 2.3 UJ | 22 U 2.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene  Total Metals (mg/kg)                                                             | NA N | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U 19 U 19 U 19 U 19 U 1.9 U | 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                     | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                       | 19 U 19 U 40 J 19 U 1.9 UJ                                                                                                                                                                                                                                                    | 17 U 17 U 17 U 17 U 17 U 17 U 18 W 1.9 W                                                                                                                                                                                                                                   | 23 U                                                                                                                                                                                                                                                                | 22 U 2.2 UJ 3.3 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor Toxaphene  Total Metals (mg/kg) Aluminum                                                                         | NA N | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U  | 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U  | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U  | 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                         | 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                     | 19 U 19 U 40 J 19 U 1.9 UJ                                                                                                                                                                                                                                      | 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                         | 23 U                                                                                                                                                                                                                                                                | 22 U 2.2 UJ 43 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene  Total Metals (mg/kg)                                                             | NA N | 19 U 19 U 19 U 19 U 19 U 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U 19 U 19 U 19 U 19 U 1.9 U | 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                     | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                                                                                                                                       | 19 U 19 U 40 J 19 U 1.9 UJ                                                                                                                                                                                                                                                    | 17 U 17 U 17 U 17 U 17 U 17 U 18 W 1.9 W                                                                                                                                                                                                                                   | 23 U                                                                                                                                                                                                                                                                | 22 U 22 U 22 U 22 U 22 U 22 U 2.2 UJ 2.3 UJ 2.4 UJ 2.5 UJ 2.5 UJ 2.7 UJ 2.8 UJ 2.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor Toxaphene  Total Metals (mg/kg) Aluminum Antimony Arsenic Barium                                                        | NA N | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U | 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U 3.8 U 3.480 J+ 1.6 U 0.85 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17 U 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U 1.5 U 1.5 U 0.93 J 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U  | 18 U 1.8 U 5.690 1.5 UJ 0.91 J 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 U 17 U 17 U 17 U 17 U 18 UJ 19 UJ 19 UJ 19 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                              | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                              | 19 U 19 U 40 J 19 U 40 J 19 U 1.9 UJ                                                                                                                                        | 17 U 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                        | 23 U                                                                                                                                                                                                                                                                | 22 U 2.2 UJ 2.3 UJ 2.3 UJ 2.4 UJ 2.5 UJ 2.6 UJ 2.7 J 2.7 UJ 2.8 UJ 2.9 |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor Toxaphene  Total Metals (mg/kg) Aluminum Antimony Arsenic Barium Berylium                               | NA N | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U 1.6 U 1.8 U 1.7 U 1.8 U | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U  | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18 U 1.8 U 1.1 U 1.8 U 1 | 18 U 1.8 U 1.5 U 1.5 U 1.5 U 1.6 0.036 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.8 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 U 17 U 17 U 17 U 17 U 19 UJ 1.9 UJ                                                                                                                                                                         | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ 1.19 UJ 1.20 UJ 1.30 UJ 1.30 UJ                                                                                                                                                                                        | 19 U 19 U 19 U 40 J 19 U 1.9 UJ 1.7 UJ 1.9 UJ | 17 U 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                  | 23 U                                                                                                                                                                                                                                                                | 22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene  Total Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium | NA N | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U | 18 U 1.8 U 1.6 U 1.6 U 0.78 J 8.6 0.16 U 0.47 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U  | 17 U 17 U 17 U 17 U 17 U 18 UJ 19 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U 1.5 U 1.5 U 1.7 U 1.8 U | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U  | 18 U 1.8 U 1.5 U 1.8 U 1.7 U 1.8 U 1 | 17 U 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                        | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                    | 19 U 19 U 40 J 19 U 19 U 19 U 1.9 UJ                                                                                | 17 U 19 UJ 1.9 UJ 1.0 UJ                                                                       | 23 U                                                                                                                                                                                                                                                                | 22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor epoxide Methoxychlor Toxaphene  Total Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium                 | NA N | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U  | 17 U 17 U 17 U 17 U 17 U 18 UJ 19 UJ 10 UJ 11 UJ | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U  | 18 U 1.8 U 1 | 17 U 17 U 17 U 17 U 17 U 18 UJ 19 UJ 10 UJ 11 UJ | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ | 17 U 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ | 19 U 19 U 40 J 19 U 19 U 19 U 1.9 UJ                                                           | 17 U 18 UJ 1.9 UJ | 23 U                                                                                                                                                                                                                                                                | 22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Aroclor-1254 Aroclor-1260 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor Heptachlor Toxaphene  Total Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium    | NA N | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U | 18 U 1.8 U 1.6 U 1.6 U 0.78 J 8.6 0.16 U 0.47 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 U 19 U 19 U 19 U 19 U 19 U 1.9 U  | 17 U 17 U 17 U 17 U 17 U 18 UJ 19 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U 1.5 U 1.5 U 1.7 U 1.8 U | 18 U 18 U 18 U 18 U 18 U 18 U 1.8 U  | 18 U 1.8 U 1.5 U 1.8 U 1.7 U 1.8 U 1 | 17 U 17 U 17 U 17 U 17 U 18 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                        | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 U 17 U 17 U 17 U 17 U 18 UJ 1.9 UJ                    | 19 U 19 U 40 J 19 U 19 U 19 U 1.9 UJ                                                                                | 17 U 19 UJ 1.9 UJ 1.0 UJ                                                                       | 23 U                                                                                                                                                                                                                                                                | 22 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# CTO-11 Camp Lejeune - Site 85 Validated Groundwater Detected Analytical Results July 2009

| Station ID    | IR85-BAT        | IR85-SS06           | IR85-SS07           | IR85-SS08           | IR85                | 5-SS09               | IR85-SS10           | IR85-SS11           | IR85-SS12           | IR85-SS13           | IR85                | 5-SS14               | IR85-SS15           | IR85-SS16           | IR85-SS17           | IR85-SS18           |
|---------------|-----------------|---------------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|---------------------|
| Sample ID     | IR85-BAT-071009 | IR85-SS06-00-01-09C | IR85-SS07-00-01-09C | IR85-SS08-00-01-09C | IR85-SS09-00-01-09C | IR85-SS09D-00-01-09C | IR85-SS10-00-01-09C | IR85-SS11-00-01-09C | IR85-SS12-00-01-09C | IR85-SS13-00-01-09C | IR85-SS14-00-01-09C | IR85-SS14D-00-01-09C | IR85-SS15-00-01-09C | IR85-SS16-00-01-09C | IR85-SS17-00-01-09C | IR85-SS18-00-01-09C |
| Sample Date   | 07/10/09        | 07/09/09            | 07/09/09            | 07/09/09            | 07/10/09            | 07/10/09             | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09             | 07/10/09            | 07/10/09            | 07/10/09            | 07/10/09            |
| Chemical Name |                 |                     |                     |                     |                     |                      |                     |                     |                     |                     |                     |                      |                     |                     |                     |                     |
| Iron          | 1,780           | 2,310               | 1,690               | 1,820               | 2,040               | 2,000                | 2,530               | 1,830               | 2,010               | 1,870               | 3,730               | 3,700                | 3,170               | 3,990               | 4,820               | 11,500              |
| Lead          | 1,640           | 4.8                 | 7.2                 | 7.8                 | 7.8                 | 6.5                  | 17.5                | 6.2                 | 17.4                | 7.2                 | 7.5                 | 7.3                  | 42.6                | 35.2                | 165                 | 614                 |
| Magnesium     | 98.1 J          | 173                 | 108                 | 110                 | 95.8                | 95.2                 | 173                 | 146                 | 112                 | 98.1                | 172                 | 178                  | 165                 | 143                 | 80.5 J              | 143                 |
| Manganese     | 2,740           | 11.6                | 9.6                 | 22.6                | 6.7                 | 7.7                  | 43.7                | 5.9                 | 20.4                | 12.6                | 9.1                 | 9.9                  | 294                 | 417                 | 10,700              | 1,120               |
| Mercury       | 222             | 0.044               | 0.033 U             | 0.038               | 0.032 U             | 0.037                | 0.31                | 0.034 U             | 0.055               | 0.039               | 0.059               | 0.06                 | 1.1                 | 0.27                | 5                   | 8.8                 |
| Nickel        | 5.9 J           | 1.2                 | 0.91                | 1.1                 | 0.93                | 0.81                 | 1.3                 | 2.5                 | 1.3                 | 1.4                 | 1.3                 | 1.2                  | 2.2                 | 1.8                 | 8.7 J               | 2.8 J               |
| Potassium     | 7,460 U         | 136                 | 73.1 J              | 81.7 U              | 78.3 U              | 72.1 J               | 115                 | 96.9                | 79.5 U              | 79.3 U              | 109                 | 117                  | 126                 | 109                 | 1,930 U             | 117 J               |
| Selenium      | 14.9 U          | 1.6 U               | 1.6 U               | 1.6 U               | 1.6 U               | 1.5 U                | 1.5 U               | 1.5 U               | 1.6 U               | 1.6 U               | 0.45 J              | 1.6 U                | 1.7 U               | 1.6 U               | 38.5 U              | 9.6 U               |
| Silver        | 14.9 U          | 1.6 U               | 0.083 J             | 1.6 U               | 1.6 U               | 1.5 U                | 1.5 U               | 1.5 U               | 0.15 J              | 0.21 J              | 1.6 U               | 1.6 U                | 0.11 J              | 0.29 J              | 38.5 U              | 9.6 U               |
| Sodium        | 1,870 U         | 3.2 J               | 3.7 J               | 204 U               | 5.7 J               | 7.5 J                | 3.4 J               | 4.3 J               | 3.9 J               | 198 U               | 6.8 J               | 6.4 J                | 207 U               | 206 U               | 4,820 U             | 1,200 U             |
| Thallium      | NA              | 2.5 U               | 2.4 U               | 2.4 U               | 2.3 U               | 2.3 U                | 2.3 U               | 2.3 U               | 2.4 U               | 2.4 U               | 2.4 U               | 2.5 U                | 2.5 U               | 0.44 J              | 18.7 J              | 14.4 U              |
| Vanadium      | 373 U           | 6.6                 | 5.7                 | 5.5                 | 6 J                 | 5.8                  | 7.7                 | 7.1                 | 5.9 J               | 5.3 J               | 9.8 J               | 10 J                 | 7.8 J               | 7.6 J               | 96.3 U              | 9 J                 |
| Zinc          | 45,000          | 33.4                | 5.2                 | 31.4                | 3.9 U               | 3.9 U                | 252                 | 4.2                 | 30.2                | 22.9                | 4 U                 | 4.1 U                | 758                 | 406                 | 5,600               | 2,100               |
|               |                 |                     |                     |                     |                     |                      |                     |                     |                     |                     |                     |                      |                     |                     |                     |                     |
| Wet Chemistry |                 |                     |                     |                     |                     |                      |                     |                     |                     |                     |                     |                      |                     |                     |                     |                     |
| pH (ph)       | NA              | 4.8                 | 4.5                 | 5.6                 | 4.4                 | 4.5                  | 5.6                 | 4.3                 | 4.8                 | 4.8                 | 4.4                 | 4.4                  | 5.9                 | 6.4                 | 6.4                 | 5.4                 |

- Notes:

  Shading indicates detections

  NA Not analyzed

  J Analyte present, value may or may not be accurate or precise

  J Analyte present, value may be biased low, actual value may be higher

  J+ Analyte present, value may be biased high, actual value may be lower

  R Unreliable Result

  U The material was analyzed for, but not detected

  UJ Analyte not detected, quantitation limit may be inaccurate

  mg/kg Milligrams per kilogram

  ph pH units

- ph pH units µg/kg Micrograms per kilogram

CTO-11 Camp Lejeune - Site 85 Validated Subsurface Soil Raw Analytical Results July 2009

|                                                          | 1                 | 1                 |                   |                   |                   |                   |                   | 1                 | 1                 |                  |                    |
|----------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|--------------------|
| Station ID                                               | IR85-SB06         | IR85-SB07         | IR85-SB08         | IR85-SB09         | IR85-SB10         | IR85-SB11         | IR85-SB12         | IR85-SB13         | IR85-SB14         | 1                | SB17               |
| Sample ID                                                | IR85-SB06-2-7-09C | IR85-SB07-2-4-09C | IR85-SB08-2-7-09C | IR85-SB09-2-7-09C | IR85-SB10-4-7-09C | IR85-SB11-2-7-09C | IR85-SB12-2-7-09C | IR85-SB13-2-7-09C | IR85-SB14-2-7-09C |                  | IR85-SB17D-6-7-09C |
| Sample Date                                              | 07/29/09          | 07/28/09          | 07/28/09          | 07/27/09          | 07/29/09          | 07/29/09          | 07/28/09          | 07/28/09          | 07/29/09          | 07/28/09         | 07/28/09           |
| Chemical Name                                            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                  |                    |
| Voletile Overenie Commounde (verlier)                    |                   |                   |                   |                   |                   |                   |                   |                   |                   |                  |                    |
| Volatile Organic Compounds (μg/kg) 1,1,1-Trichloroethane | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| 1,1,2,2-Tetrachloroethane                                | 1.6 UJ            | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 UJ            | 1.9 UJ            | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113)         | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| 1,1,2-Trichloroethane                                    | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| 1,1-Dichloroethane                                       | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| 1,1-Dichloroethene                                       | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| 1,2,4-Trichlorobenzene                                   | 2.1 J             | 1.4 R             | 2.6 J             | 1.9 UJ            | 2 J               | 2.7 J             | 1.7 U             | 1.6 UJ            | 2 J               | 1.8 UJ           | 5.9 R              |
| 1,2-Dibromo-3-chloropropane                              | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 2.4 J             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| 1,2-Dibromoethane                                        | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| 1,2-Dichlorobenzene<br>1,2-Dichloroethane                | 1.6 U<br>1.6 U    | 1.4 R<br>1.4 R    | 2.1 UJ<br>2.1 UJ  | 1.9 UJ<br>1.9 UJ  | 1.6 U<br>1.6 U    | 1.9 U<br>1.9 U    | 1.7 U<br>1.7 U    | 1.6 UJ<br>1.6 UJ  | 1.7 U<br>1.7 U    | 1.8 UJ<br>1.8 UJ | 5.9 R<br>5.9 R     |
| 1,2-Dichloropropane                                      | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| 1,3-Dichlorobenzene                                      | 1.6 U             | 1.4 R             | 1.4 J             | 1.9 UJ            | 1.6 UJ            | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| 1,4-Dichlorobenzene                                      | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| 2-Butanone                                               | 1.5 J             | 2.8 J             | 2.3 J             | 3.8 UJ            | 2.6 J             | 2.6 J             | 3.5 U             | 4.1 J             | 3.2 J             | 1.6 J            | 12 R               |
| 2-Hexanone                                               | 3.3 U             | 2.9 R             | 4.1 UJ            | 3.8 UJ            | 3.1 U             | 3.8 U             | 3.5 U             | 3.3 UJ            | 3.3 U             | 3.6 UJ           | 12 R               |
| 4-Methyl-2-pentanone                                     | 3.3 U             | 2.9 R             | 4.1 UJ            | 3.8 UJ            | 3.1 U             | 1.5 J             | 3.5 U             | 3.3 UJ            | 3.3 U             | 3.6 UJ           | 12 R               |
| Acetone                                                  | 30 J              | 76 J              | 39 J              | 3.8 UJ            | 69 J              | 33 J              | 3.5 U             | 100 J             | 75 J              | 90 J             | 20 J               |
| Benzene                                                  | 1.6 UJ            | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 UJ            | 1.9 UJ            | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Bromodichloromethane                                     | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Bromoform                                                | 1.6 U<br>3.3 R    | 1.4 R             | 2.1 UJ            | 1.9 UJ<br>3.8 UJ  | 1.6 U             | 1.9 U<br>3.8 R    | 1.7 U<br>3.5 UJ   | 1.6 UJ<br>3.3 R   | 1.7 U             | 1.8 UJ           | 5.9 R<br>12 R      |
| Bromomethane<br>Carbon disulfide                         | 3.3 K<br>1.6 UJ   | 2.9 R<br>1.4 R    | 4.1 R<br>2.1 UJ   | 3.8 UJ<br>1.9 UJ  | 3.1 R<br>1.6 UJ   | 3.8 K<br>1.9 UJ   | 3.5 UJ<br>1.7 U   | 3.3 K<br>1.6 UJ   | 3.3 R<br>1.7 U    | 3.6 R<br>1.8 UJ  | 12 R<br>5.9 R      |
| Carbon tetrachloride                                     | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Chlorobenzene                                            | 1.6 UJ            | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 UJ            | 1.9 UJ            | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Chloroethane                                             | 3.3 UJ            | 2.9 R             | 4.1 UJ            | 3.8 UJ            | 3.1 UJ            | 3.8 UJ            | 3.5 U             | 3.3 UJ            | 3.3 R             | 3.6 UJ           | 12 R               |
| Chloroform                                               | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1 J               | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Chloromethane                                            | 3.3 U             | 2.9 R             | 4.1 UJ            | 3.8 UJ            | 3.1 U             | 3.8 U             | 3.5 U             | 3.3 UJ            | 3.3 U             | 3.6 UJ           | 12 R               |
| cis-1,2-Dichloroethene                                   | 1.6 UJ            | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 UJ            | 1.9 UJ            | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| cis-1,3-Dichloropropene                                  | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Cyclohexane                                              | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Dibromochloromethane Dichlorodifluoromethane (Freon-12)  | 1.6 U<br>1.6 U    | 1.4 R<br>1.4 R    | 2.1 UJ<br>2.1 UJ  | 1.9 UJ<br>1.9 UJ  | 1.6 U<br>1.6 U    | 1.9 U<br>1.9 U    | 1.7 U<br>1.7 U    | 1.6 UJ<br>1.6 UJ  | 1.7 U<br>1.7 U    | 1.8 UJ<br>1.8 UJ | 5.9 R<br>5.9 R     |
| Ethylbenzene                                             | 1.6 UJ            | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 UJ            | 1.9 UJ            | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Isopropylbenzene                                         | 2.2 J             | 1.4 R             | 2.7 J             | 1.9 UJ            | 2 J               | 2.6 J             | 1.7 U             | 2.1 J             | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Methyl acetate                                           | 1.6 U             | 20 J              | 6.8 J             | 1.9 UJ            | 1.6 U             | 1.3 J             | 3.4               | 1.2 J             | 1.7 U             | 3 J              | 5.9 R              |
| Methylcyclohexane                                        | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Methylene chloride                                       | 1.7 J             | 1.9 J             | 2.3 J             | 1.4 J             | 3.1 U             | 0.88 J            | 1.7 J             | 1.4 J             | 3.3 U             | 0.62 J           | 12 R               |
| Methyl-tert-butyl ether (MTBE)                           | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Styrene                                                  | 2.2 J             | 1.4 R             | 2.8 J             | 1.9 UJ            | 2.1 J             | 2.7 J             | 1.7 U             | 2.3 J             | 3.3 U             | 2.5 J            | 5.9 R              |
| Tetrachloroethene                                        | 1.3 J             | 1.4 R             | 1.6 J             | 1.9 UJ            | 1.6 U             | 1.6 J             | 1.7 U             | 1.3 J             | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Toluene<br>trans-1,2-Dichloroethene                      | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U<br>1.7 U    | 1.6 UJ            | 1.7 U             | 0.64 J           | 5.9 R              |
| trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene    | 1.6 U<br>1.6 U    | 1.4 R<br>1.4 R    | 2.1 UJ<br>2.1 UJ  | 1.9 UJ<br>1.9 UJ  | 1.6 U<br>1.6 U    | 1.9 U<br>1.9 U    | 1.7 U<br>1.7 U    | 1.6 UJ<br>1.6 UJ  | 1.7 U<br>1.7 U    | 1.8 UJ<br>1.8 UJ | 5.9 R<br>5.9 R     |
| Trichloroethene                                          | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Trichlorofluoromethane(Freon-11)                         | 1.6 UJ            | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 UJ            | 1.9 UJ            | 1.7 U             | 1.6 UJ            | 1.7 U             | 1.8 UJ           | 5.9 R              |
| Vinyl chloride                                           | 3.3 R             | 2.9 R             | 4.1 R             | 3.8 UJ            | 3.1 R             | 3.8 R             | 3.5 UJ            | 3.3 R             | 3.3 U             | 3.6 R            | 12 R               |
| Xylene, total                                            | 1.6 U             | 1.4 R             | 2.1 UJ            | 1.9 UJ            | 1.6 U             | 1.9 U             | 1.7 UJ            | 1.6 UJ            | 3.3 U             | 1.8 UJ           | 5.9 R              |
|                                                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                  |                    |
| Semivolatile Organic Compounds (µg/kg)                   | 400 !!            | 400 !!            | 400.11            | 400.11            | 400.11            | 400.11            | 400.11            | 400 11            | 400 11            | 400 !!           | 000 11             |
| 1,1-Biphenyl                                             | 180 U<br>180 U    | 190 U<br>190 U    | 180 U<br>180 U    | 190 U<br>190 U   | 200 U<br>200 U     |
| 2,2'-Oxybis(1-chloropropane) 2,4,5-Trichlorophenol       | 180 U             | 190 U             | 180 U             | 190 U            | 200 U              |
| 2,4-Dichlorophenol                                       | 180 U             | 190 U             | 180 U             | 190 U            | 200 U              |
| 2,4-Dimethylphenol                                       | 180 U             | 190 U             | 180 U             | 190 U            | 200 U              |
| 2,4-Dinitrophenol                                        | 180 U             | 190 U             | 180 U             | 190 UJ            | 190 U             | 190 U             | 190 UJ            | 190 U             | 190 U             | 190 U            | 200 U              |
| 2,4-Dinitrotoluene                                       | 180 U             | 190 U             | 180 U             | 190 U            | 200 U              |
| 2,6-Dinitrotoluene                                       | 180 U             | 190 U             | 180 U             | 190 U            | 200 U              |
| 2-Chloronaphthalene                                      | 180 U             | 190 U             | 180 U             | 190 U            | 200 U              |
| 2-Chlorophenol                                           | 180 U             | 190 U             | 180 U             | 190 U            | 200 U              |
| 2-Methylnaphthalene                                      | 180 U             | 190 U             | 180 U             | 190 U            | 200 U              |
| 2-Methylphenol                                           | 180 U             | 190 U             | 180 U             | 190 U            | 200 U              |

# CTO-11 Camp Lejeune - Site 85 Validated Subsurface Soil Raw Analytical Results July 2009

|                                                      |                   |                   |                   |                   | July 2009         |                   |                   |                   |                   |                   |                    |
|------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| Station ID                                           | IR85-SB06         | IR85-SB07         | IR85-SB08         | IR85-SB09         | IR85-SB10         | IR85-SB11         | IR85-SB12         | IR85-SB13         | IR85-SB14         | IR85              | -SB17              |
| Sample ID                                            | IR85-SB06-2-7-09C | IR85-SB07-2-4-09C | IR85-SB08-2-7-09C | IR85-SB09-2-7-09C | IR85-SB10-4-7-09C | IR85-SB11-2-7-09C | IR85-SB12-2-7-09C | IR85-SB13-2-7-09C | IR85-SB14-2-7-09C | IR85-SB17-6-7-09C | IR85-SB17D-6-7-09C |
| Sample Date                                          | 07/29/09          | 07/28/09          | 07/28/09          | 07/27/09          | 07/29/09          | 07/29/09          | 07/28/09          | 07/28/09          | 07/29/09          | 07/28/09          | 07/28/09           |
| Chemical Name                                        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |
| 2-Nitroaniline                                       | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| 2-Nitrophenol                                        | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| 3,3'-Dichlorobenzidine                               | 180 U             | 190 U             | 180 U             | 190 UJ            | 190 U             | 190 U             | 190 UJ            | 190 U             | 190 UJ            | 190 U             | 200 U              |
| 3-Nitroaniline                                       | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| 4,6-Dinitro-2-methylphenol                           | 180 U             | 190 U             | 180 U             | 190 UJ            | 190 U             | 190 U             | 190 UJ            | 190 U             | 190 U             | 190 U             | 200 U              |
| 4-Bromophenyl-phenylether                            | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| 4-Chloro-3-methylphenol                              | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| 4-Chlorophopul phopulathor                           | 180 U<br>180 U    | 190 U<br>190 U    | 180 U<br>180 U    | 190 U<br>190 U    | 200 U<br>200 U     |
| 4-Chlorophenyl-phenylether<br>4-Methylphenol         | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| 4-Nitroaniline                                       | 180 UJ            | 190 UJ            | 180 UJ            | 190 UJ            | 200 UJ             |
| 4-Nitrophenol                                        | 180 U             | 190 U             | 180 U             | 190 UJ            | 190 U             | 190 U             | 190 UJ            | 190 U             | 190 U             | 190 U             | 200 U              |
| Acenaphthene                                         | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Acenaphthylene                                       | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Acetophenone                                         | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Anthracene                                           | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Atrazine                                             | 180 UJ            | 190 UJ            | 180 UJ            | 190 U             | 190 UJ            | 200 UJ             |
| Benzaldehyde                                         | 180 R             | 190 R             | 180 R             | 190 R             | 200 R              |
| Benzo(a)anthracene                                   | 37 U              | 37 U              | 36 U              | 38 U              | 37 U              | 37 U              | 38 U              | 37 U              | 37 U              | 38 U              | 39 U               |
| Benzo(a)pyrene                                       | 37 U              | 37 U              | 36 U              | 38 U              | 37 U              | 37 U              | 38 U              | 37 U              | 37 U              | 38 U              | 39 U               |
| Benzo(b)fluoranthene                                 | 37 U              | 37 U              | 36 U              | 38 U              | 37 U              | 37 U              | 38 U              | 37 U              | 37 U              | 38 U              | 39 U               |
| Benzo(g,h,i)perylene                                 | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Benzo(k)fluoranthene                                 | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| bis(2-Chloroethoxy)methane                           | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| bis(2-Chloroethyl)ether                              | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| bis(2-Ethylhexyl)phthalate                           | 180 U             | 190 U             | 180 U             | 190 U             | 58 J              | 190 U             | 200 U              |
| Butylbenzylphthalate                                 | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Caprolactam Carbazole                                | 180 U<br>180 U    | 190 U<br>190 U    | 180 U<br>180 U    | 190 U<br>190 UJ   | 190 U<br>190 U    | 200 U<br>200 U     |
| Chrysene                                             | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Dibenz(a,h)anthracene                                | 37 U              | 37 U              | 36 U              | 38 U              | 37 U              | 37 U              | 38 U              | 37 U              | 37 U              | 38 U              | 39 U               |
| Dibenzofuran                                         | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Diethylphthalate                                     | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Dimethyl phthalate                                   | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Di-n-butylphthalate                                  | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Di-n-octylphthalate                                  | 180 U             | 190 U             | 180 U             | 190 UJ            | 190 U             | 200 U              |
| Fluoranthene                                         | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Fluorene                                             | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Hexachlorobenzene                                    | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Hexachlorobutadiene                                  | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Hexachlorocyclopentadiene                            | 180 U             | 190 U             | 180 U             | 190 UJ            | 190 U             | 200 U              |
| Hexachloroethane                                     | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Indeno(1,2,3-cd)pyrene                               | 37 U              | 37 U              | 36 U              | 38 U              | 37 U              | 37 U              | 38 U              | 37 U              | 37 U              | 38 U              | 39 U               |
| Isophorone                                           | 37 U              | 37 U              | 36 U              | 38 U              | 37 U              | 37 U              | 38 U              | 37 U              | 37 U              | 38 U              | 39 U               |
| Naphthalene n-Nitroso-di-n-propylamine               | 180 U<br>37 U     | 190 U<br>37 U     | 180 U<br>36 U     | 190 U<br>38 U     | 190 U<br>37 U     | 190 U<br>37 U     | 190 U<br>38 U     | 190 U<br>37 U     | 190 U<br>37 UJ    | 190 U<br>38 U     | 200 U<br>39 U      |
| n-Nitroso-di-n-propylamine<br>n-Nitrosodiphenylamine | 180 U             | 190 U             | 180 U             | 190 U             | 37 U<br>190 U     | 190 U             | 38 U<br>190 U     | 190 U             | 190 U             | 190 U             | 200 U              |
| Nitrobenzene                                         | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Pentachlorophenol                                    | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Phenanthrene                                         | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Phenol                                               | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
| Pyrene                                               | 180 U             | 190 U             | 180 U             | 190 U             | 200 U              |
|                                                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |
| Pesticide/Polychlorinated Biphenyls (µg/kg)          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |
| 4,4'-DDD                                             | 1.8 U             | 1.3 J             | 1.8 U             | 1.9               | 1.9 U             | 1.9 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.9 U             | 2 U                |
| 4,4'-DDE                                             | 2                 | 31                | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.9 U             | 2 U                |
| 4,4'-DDT                                             | 1.3 J             | 10                | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.9 U             | 2 U                |
| Aldrin                                               | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.9 U             | 2 U                |
| alpha-BHC                                            | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.9 U             | 2 U                |
| alpha-Chlordane                                      | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.9 U             | 2 U                |
| Aroclor-1016                                         | 17 U              | 19 UJ             | 17 UJ             | 19 U              | 17 U              | 17 UJ             | 19 U              | 19 U              | 19 U              | 17 U              | 17 U               |
| Arcelor-1221                                         | 17 U              | 19 UJ             | 17 UJ             | 19 U              | 17 U              | 17 UJ             | 19 U              | 19 U              | 19 U              | 17 U              | 17 U               |
| Aroclor-1232                                         | 17 U              | 19 UJ             | 17 UJ             | 19 U              | 17 U              | 17 UJ             | 19 U              | 19 U              | 19 U              | 17 U              | 17 U               |
| Aroclor-1242                                         | 17 U              | 19 UJ             | 17 UJ             | 19 U              | 17 U              | 17 UJ             | 19 U              | 19 U              | 19 U              | 17 U              | 17 U               |

### CTO-11 Camp Lejeune - Site 85 Validated Subsurface Soil Raw Analytical Results July 2009

| Station ID                   | IR85-SB06         | IR85-SB07         | IR85-SB08         | IR85-SB09         | IR85-SB10         | IR85-SB11         | IR85-SB12  | IR85-SB13         | IR85-SB14         | IR85              | i-SB17     |
|------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|------------|
| Sample ID                    | IR85-SB06-2-7-09C | IR85-SB07-2-4-09C | IR85-SB08-2-7-09C | IR85-SB09-2-7-09C | IR85-SB10-4-7-09C | IR85-SB11-2-7-09C |            | IR85-SB13-2-7-09C | IR85-SB14-2-7-09C | IR85-SB17-6-7-09C |            |
| Sample Date                  | 07/29/09          | 07/28/09          | 07/28/09          | 07/27/09          | 07/29/09          | 07/29/09          | 07/28/09   | 07/28/09          | 07/29/09          | 07/28/09          | 07/28/09   |
| Chemical Name                | 01/25/05          | 01/20/03          | 01/20/03          | 01/21/03          | 01/25/05          | 01/25/05          | 01/20/03   | 01/20/03          | 01/23/03          | 01/20/03          | 01/20/03   |
| Aroclor-1248                 | 17 U              | 19 UJ             | 17 UJ             | 19 U              | 17 U              | 17 UJ             | 19 U       | 19 U              | 19 U              | 17 U              | 17 U       |
| Aroclor-1254                 | 17 U              | 19 UJ             | 17 UJ             | 19 U              | 17 U              | 17 UJ             | 19 U       | 19 U              | 19 U              | 17 U              | 17 U       |
| Aroclor-1254<br>Aroclor-1260 | 17 U              | 19 UJ             | 17 UJ             | 19 U              | 17 U              | 17 UJ             | 19 U       | 19 U              | 19 U              | 17 U              | 17 U       |
| beta-BHC                     | 17 U              | 19 UJ             | 17 UJ<br>1.8 U    | 1.7 U             | 1,9 U             | 17 UJ<br>1.9 U    | 1.7 U      | 1.9 U             | 1.9 U             | 1,9 U             | 2 U        |
| delta-BHC                    | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 U             | 1.9 U             | 1.9 U             | 2 U        |
| Dieldrin                     | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.1 J<br>1.9 U    | 1.9 U             | 1.9 U             | 2 U        |
| Endosulfan I                 | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 U             | 1.9 U             | 1.9 U             | 2 U        |
| Endosulfan II                | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 U             | 1.9 U             | 1.9 U             | 2 U        |
| Endosulfan sulfate           | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 U             | 1.9 U             | 1.9 U             | 2 U        |
| Endrin                       | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 U             | 1.9 U             | 1.9 U             | 2 U        |
| Endrin aldehyde              | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 U             | 1.9 U             | 1.9 U             | 2 U        |
| Endrin ketone                | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 U             | 1.9 U             | 1.9 U             | 2 U        |
| gamma-BHC (Lindane)          | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 U             | 1.9 U             | 1.9 U             | 2 U        |
| gamma-Chlordane              | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 J             | 1.9 U             | 1.9 U             | 2 U        |
| Heptachlor                   | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 U             | 1.9 U             | 1.9 U             | 2 U        |
| Heptachlor epoxide           | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 U             | 1.9 U             | 1.9 U             | 2 U        |
| Methoxychlor                 | 1.8 U             | 1.9 U             | 1.8 U             | 1.7 U             | 1.9 U             | 1.9 U             | 1.7 U      | 1.9 U             | 1.9 U             | 1.9 U             | 2 U        |
| Toxaphene                    | 37 U              | 37 U              | 36 U              | 33 U              | 37 U              | 37 U              | 33 U       | 37 U              | 37 U              | 38 U              | 39 U       |
|                              |                   |                   |                   |                   |                   |                   |            |                   |                   |                   |            |
| Total Metals (mg/kg)         |                   |                   |                   |                   |                   |                   |            |                   |                   |                   |            |
| Aluminum                     | 3,830             | 6,420             | 3,750             | 12,000            | 4,090             | 6,230             | 5,180      | 6,180             | 6,260             | 2,560             | 4,610      |
| Antimony                     | 1.6 U             | 1.6 UJ            | 1.6 U             | 1.6 U             | 1.6 UJ            | 1.6 UJ            | 1.6 U      | 1.6 UJ            | 1.6 UJ            | 1.6 U             | 1.7 UJ     |
| Arsenic                      | 1 J               | 2.3               | 0.92 J            | 1.7               | 0.68 J            | 1.2 J             | 1.2 J      | 1.1 J             | 1.4 J             | 0.67 J            | 1.7 J      |
| Barium                       | 5.8               | 11.2              | 6.6               | 16.2              | 4.9               | 8.9               | 7.4        | 9                 | 7.9               | 4 U               | 6.1        |
| Beryllium                    | 0.16 U            | 0.16 U            | 0.024 J           | 0.072 J           | 0.16 U            | 0.16 U            | 0.037 J    | 0.16 U            | 0.033 J           | 0.16 U            | 0.17 U     |
| Cadmium                      | 0.49 U            | 0.47 U            | 0.47 U            | 0.48 U            | 0.48 U            | 0.49 U            | 0.47 U     | 0.47 U            | 0.48 U            | 0.48 U            | 0.5 U      |
| Calcium                      | 81.2 U            | 79.1 U            | 79 U              | 84.8              | 80.1 U            | 80.8 U            | 79 U       | 78.2 U            | 16.6 J            | 80 U              | 83 U       |
| Chromium                     | 4.5               | 7.5               | 4.3               | 12.5              | 4.3               | 6.1               | 5.6        | 5.7               | 6.3 J             | 3.7               | 6.2        |
| Cobalt                       | 0.41 U            | 0.3 J             | 0.39 U            | 0.72              | 0.21 J            | 0.4 U             | 0.21 J     | 0.39 U            | 0.4 U             | 0.4 U             | 0.42 U     |
| Copper                       | 1.3 J             | 0.99 J            | 0.89 J            | 1.6               | 0.54 J            | 0.82 J            | 0.95 J     | 1 J               | 0.8 J             | 0.8 J             | 1.7        |
| Iron                         | 2,640             | 4,620             | 2,010             | 5,040             | 1,670             | 3,790             | 3,310      | 3,440             | 4,050 J+          | 1,750             | 2,940      |
| Lead                         | 5.2<br>131        | 4.8<br>219        | 3.3<br>125        | 7.7<br>424        | 2.8<br>149        | 3.6<br>201        | 4.3<br>158 | 4.5<br>208        | 3.7<br>202        | 3<br>84.5         | 4.9<br>165 |
| Magnesium                    | 9.6               | 6.6               | 125<br>31.2       | 19                | 149<br>4.5        | 201<br>4.5        | 158<br>5.2 | 5.9               | 4.5               | 84.5<br>3.1       | 165        |
| Manganese<br>Mercury         | 9.6<br>0.17       | 0.034 U           | 0.035             | 0.037 U           | 0.035 U           | 0.035 U           | 0.033 U    | 0.036 U           | 0.033 U           | 0.033 U           | 0.034 U    |
| Nickel                       | 0.17              | 1.5               | 0.035             | 2.4               | 0.035 U<br>0.76 J | 0.035 0           | 1.2        | 0.036 0           | 1.1               | 0.033 U<br>0.8 U  | 0.034 U    |
| Potassium                    | 104               | 164               | 109               | 306               | 123               | 139               | 131        | 137               | 145               | 95                | 165        |
| Selenium                     | 1.6 U             | 1.6 U             | 1.6 U             | 0.47 J            | 1.6 U             | 1.6 U             | 1.6 U      | 1.6 U             | 1.6 U             | 1.6 U             | 1.7 U      |
| Silver                       | 1.6 U             | 1.6 U      | 0.083 J           | 0.17 J            | 1.6 U             | 0.086 J    |
| Sodium                       | 8.3 J             | 10.8 J            | 8.6 J             | 23.1 J            | 4.6 J             | 8.3 J             | 4.1 J      | 6.2 J             | 199 U             | 3.1 J             | 5.1 J      |
| Thallium                     | 2.4 U             | 2.4 U      | 2.3 U             | 2.4 U             | 2.4 U             | 2.5 U      |
| Vanadium                     | 7.5 J             | 13.1 J            | 6.1 J             | 16.4              | 6.1 J             | 10.4 J            | 8.4        | 9.3 J             | 10.5              | 4.9 J             | 9 J        |
| Zinc                         | 23.7              | 4 U               | 51.2              | 6.6               | 4 U               | 4 U               | 6.5        | 10.6              | 4 U               | 27.8              | 52.9       |
| <u> </u>                     |                   | · · · ·           | J1.L              | 0.0               |                   | 1 0               | 0.0        | .0.0              |                   |                   |            |
| Wet Chemistry                |                   |                   |                   |                   |                   |                   |            |                   |                   |                   |            |
| pH (ph)                      | 4.3               | 4.6               | 4.7               | 4.6               | 4.4               | 4.5               | NA         | 4.6               | 4.2               | 4.5               | 4.5        |
| E V 7                        |                   |                   |                   |                   |                   |                   |            |                   |                   |                   |            |

## Notes: Shading indicates detections

NA - Not analyzed

- J Analyte present, value may or may not be accurate or yerise present, value may be biased high, actual value may be lower

  R - Unreliable Result

- U The material was analyzed for, but not detected UJ Analyte not detected, quantitation limit may be inaccurate mg/kg Milligrams per kilogram
- ph pH units
- μg/kg Micrograms per kilogram

CTO-11 Camp Lejeune - Site 85 Validated Groundwater Raw Analytical Results July 2009

| Station ID                                       | IR85-MW01     | IR85-MW02     | IR85-MW04  | IR85-MW05    | IR85-TW04    | IR85-TW05     | IR85         | -TW06          | IR85-TW07    | IR85-TW08     |
|--------------------------------------------------|---------------|---------------|------------|--------------|--------------|---------------|--------------|----------------|--------------|---------------|
| Sample ID                                        | IR85-MW01-09C | IR85-MW02-09C |            |              |              | IR85-TW05-09C |              | IR85-TW06D-09C | IR85-TW07    | IR85-TW08-09C |
| Sample Date                                      | 07/23/09      | 07/23/09      | 07/22/09   | 07/21/09     | 07/27/09     | 07/29/09      | 07/30/09     | 07/30/09       | 07/30/09     | 07/30/09      |
| Chemical Name                                    | 01/23/09      | 01/25/05      | 01/22/03   | 01/21/09     | 01/21/09     | 01/23/03      | 01/30/09     | 01/30/03       | 01/30/09     | 01/30/09      |
| Chemical Name                                    |               |               |            |              |              |               |              |                |              |               |
| Volatile Organic Compounds (µg/l)                |               |               |            |              |              |               |              |                |              |               |
| 1,1,1-Trichloroethane                            | 1 U           | 1 U           | 1 UJ       | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 UJ          |
| 1,1,2,2-Tetrachloroethane                        | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 2.4 U         | 2.4 U        | 2.4 U          | 2.4 U        | 1 U           |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| 1,1,2-Trichloroethane                            | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| 1,1-Dichloroethane                               | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| 1,1-Dichloroethene                               | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 UJ          |
| 1,2,4-Trichlorobenzene                           | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| 1,2-Dibromo-3-chloropropane                      | 2 U           | 2 U           | 2 R        | 2 UJ         | 2 U          | 2 U           | 2 R          | 2 R            | 2 R          | 2 U           |
| 1,2-Dibromoethane                                | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| 1,2-Dichlorobenzene<br>1,2-Dichloroethane        | 1 U<br>1 U    | 1 U<br>1 U    | 1 U<br>1 U | 1 UJ<br>1 UJ | 1 U<br>1 U   | 1 U<br>1 U    | 1 U<br>1 U   | 1 U<br>1 U     | 1 U<br>1 U   | 1 U<br>1 U    |
| 1,2-Dichloropernane 1,2-Dichloropropane          | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| 1,3-Dichlorobenzene                              | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| 1,4-Dichlorobenzene                              | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| 2-Butanone                                       | 5 U           | 5 U           | 5 U        | 5 UJ         | 5 U          | 5 U           | 5 U          | 5 U            | 5 U          | 5 U           |
| 2-Hexanone                                       | 5 U           | 5 U           | 5 U        | 5 UJ         | 5 U          | 5 U           | 5 U          | 5 U            | 5 U          | 5 UJ          |
| 4-Methyl-2-pentanone                             | 5 U           | 5 U           | 5 U        | 5 UJ         | 5 U          | 5 U           | 5 U          | 5 U            | 5 U          | 5 U           |
| Acetone                                          | 5 UJ          | 5 UJ          | 5 U        | 5 UJ         | 5 U          | 5 U           | 5 U          | 5 U            | 5 U          | 5 U           |
| Benzene                                          | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 UJ          |
| Bromodichloromethane                             | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| Bromoform                                        | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| Bromomethane                                     | 1 U           | 1 U           | 1 U        | 1 UJ         | 1.1 U        | 1.1 R         | 1.1 U        | 1.1 U          | 1.1 U        | 1 UJ          |
| Carbon disulfide Carbon tetrachloride            | 1 U<br>1 U    | 1 U<br>1 U    | 1 U<br>1 U | 1 UJ<br>1 UJ | 1 U<br>1 U   | 1 U<br>1 U    | 1 U<br>1 U   | 1 U<br>1 U     | 1 U<br>1 U   | 1 UJ<br>1 U   |
| Chlorobenzene                                    | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| Chloroethane                                     | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 R           | 1 UJ         | 1 UJ           | 1 UJ         | 1 U           |
| Chloroform                                       | 1 U           | 6.2           | 1 U        | 11 J         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 2.2 UJ        |
| Chloromethane                                    | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 UJ          | 1 UJ         | 1 UJ           | 1 UJ         | 1 UJ          |
| cis-1,2-Dichloroethene                           | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| cis-1,3-Dichloropropene                          | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| Cyclohexane                                      | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 UJ          |
| Dibromochloromethane                             | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| Dichlorodifluoromethane (Freon-12)               | 1 UJ          | 1 UJ          | 1 U        | 1 UJ         | 1 U          | 1 UJ          | 1 UJ         | 1 UJ           | 1 UJ         | 1 UJ          |
| Ethylbenzene                                     | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| Isopropylbenzene<br>Methyl acetate               | 1 U<br>1 U    | 1 U<br>1 U    | 1 U<br>1 U | 1 UJ<br>1 UJ | 1 U<br>1 U   | 1 U<br>1 U    | 1 U<br>1 U   | 1 U<br>1 U     | 1 U<br>1 U   | 1 UJ<br>1 U   |
| Methylcyclohexane                                | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 UJ          |
| Methylene chloride                               | 1 U           | 1 U           | 1 UJ       | 1 UJ         | 1 U          | 1 U           | 190          | 190            | 1 U          | 14 J          |
| Methyl-tert-butyl ether (MTBE)                   | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 UJ          |
| Styrene                                          | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| Tetrachloroethene                                | 1 U           | 1 U           | 1 U        | 1 UJ         | 1.1 U        | 1.1 U         | 1.1 U        | 1.1 U          | 1.1 U        | 1 U           |
| Toluene                                          | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 UJ          |
| trans-1,2-Dichloroethene                         | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| trans-1,3-Dichloropropene                        | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 U           | 1 U          | 1 U            | 1 U          | 1 U           |
| Trichloroethene                                  | 1 U           | 1 U           | 1 U        | 1 UJ         | 5.1 U        | 5.1 U         | 5.1 U        | 5.1 U          | 5.1 U        | 1 UJ          |
| Trichlorofluoromethane(Freon-11)                 | 1 U           | 1 U           | 1 U        | 1 UJ         | 1 U          | 1 UJ          | 1 UJ         | 1 UJ           | 1 UJ         | 1 UJ          |
| Vinyl chloride<br>Xylene, total                  | 1 U<br>1 U    | 1 U<br>1 U    | 1 U<br>1 U | 1 UJ<br>1 UJ | 1 U<br>1.2 U | 1 U<br>1.2 U  | 1 U<br>1.2 U | 1 U<br>1.2 U   | 1 U<br>1.2 U | 1 UJ<br>1 UJ  |
| ryiche, iulai                                    | 1 0           | i U           | 1 0        | 1 03         | 1.2 U        | 1.2 U         | 1.2 U        | 1.2 U          | 1.2 U        | 1 03          |
| Semivolatile Organic Compounds (µg/l)            |               | *             |            |              |              |               |              |                |              |               |
| 1,1-Biphenyl                                     | 10 U          | 10 U          | 10 U       | 10 U         | 11 U         | 10 U          | 10 U         | 10 U           | 10 U         | 10 U          |
| 2,2'-Oxybis(1-chloropropane)                     | 10 U          | 10 U          | 10 U       | 10 U         | 11 U         | 10 U          | 10 U         | 10 U           | 10 U         | 10 U          |
| 2,4,5-Trichlorophenol                            | 10 U          | 10 U          | 10 U       | 10 U         | 11 U         | 10 U          | 10 U         | 10 U           | 10 U         | 10 U          |
| 2,4-Dichlorophenol                               | 10 U          | 10 U          | 10 U       | 10 U         | 11 U         | 10 U          | 10 U         | 10 U           | 10 U         | 10 U          |
| 2,4-Dimethylphenol                               | 10 U          | 10 U          | 10 U       | 10 U         | 11 U         | 10 U          | 10 U         | 10 U           | 10 U         | 10 U          |
| 2,4-Dinitrophenol                                | 20 UJ         | 21 UJ         | 21 UJ      | 20 U         | 21 UJ        | 20 U          | 20 U         | 20 U           | 20 U         | 20 U          |
| 2,4-Dinitrotoluene                               | 10 U          | 10 U          | 10 U       | 10 U         | 11 U         | 10 U          | 10 U         | 10 U           | 10 U         | 10 U          |
| 2,6-Dinitrotoluene                               | 10 U          | 10 U          | 10 U       | 10 U         | 11 U         | 10 U          | 10 U         | 10 U           | 10 U         | 10 U          |
| 2-Chloronaphthalene                              | 10 U          | 10 U          | 10 U       | 10 U         | 11 U         | 10 U          | 10 U         | 10 U           | 10 U         | 10 U          |

CTO-11 Camp Lejeune - Site 85 Validated Groundwater Raw Analytical Results July 2009

| Station ID                                 | IR85-MW01          | IR85-MW02          | IR85-MW04          | IR85-MW05        | IR85-TW04        | IR85-TW05        | IR85-            | ·TW06            | IR85-TW07        | IR85-TW08        |
|--------------------------------------------|--------------------|--------------------|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Sample ID                                  |                    | IR85-MW02-09C      |                    |                  | IR85-TW04-09C    | IR85-TW05-09C    |                  | IR85-TW06D-09C   | IR85-TW07-09C    | IR85-TW08-09C    |
| Sample Date                                | 07/23/09           | 07/23/09           | 07/22/09           | 07/21/09         | 07/27/09         | 07/29/09         | 07/30/09         | 07/30/09         | 07/30/09         | 07/30/09         |
| Chemical Name                              | 01120103           | 01720/03           | 01722703           | 01/21/03         | 01/21/03         | 01123/03         | 01/00/03         | 01700703         | 01700703         | 01/30/03         |
| 2-Chlorophenol                             | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| 2-Methylnaphthalene                        | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| 2-Methylphenol                             | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| 2-Nitroaniline                             | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| 2-Nitrophenol                              | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| 3,3'-Dichlorobenzidine                     | 20 UJ              | 21 UJ              | 21 UJ              | 20 U             | 21 UJ            | 20 U             | 20 UJ            | 20 UJ            | 20 UJ            | 20 UJ            |
| 3-Nitroaniline                             | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| 4,6-Dinitro-2-methylphenol                 | 20 U               | 21 U               | 21 U               | 20 U             | 21 U             | 20 U             |
| 4-Bromophenyl-phenylether                  | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| 4-Chloro-3-methylphenol                    | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| 4-Chloroaniline                            | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| 4-Chlorophenyl-phenylether                 | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| 4-Methylphenol                             | 20 U               | 21 U               | 21 U               | 20 U             | 21 U             | 20 U             |
| 4-Nitroaniline                             | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| 4-Nitrophenol                              | 20 U               | 21 U               | 21 U               | 20 U             | 21 U             | 20 U             |
| Acenaphthene                               | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Acenaphthylene                             | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Acetophenone                               | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Anthracene                                 | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Atrazine                                   | 20 U               | 21 U               | 21 U               | 20 U             | 21 U             | 20 U             |
| Benzaldehyde                               | 10 UJ              | 10 UJ              | 10 UJ              | 10 UJ            | 11 R             | 10 R             |
| Benzo(a)anthracene                         | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Benzo(a)pyrene                             | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Benzo(b)fluoranthene                       | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Benzo(g,h,i)perylene                       | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Benzo(k)fluoranthene                       | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| bis(2-Chloroethoxy)methane                 | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| bis(2-Chloroethyl)ether                    | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| bis(2-Ethylhexyl)phthalate                 | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Butylbenzylphthalate                       | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Caprolactam                                | 10 U               | 10 U               | 10 U               | 10 U             | 11 UJ            | 10 U             |
| Carbazole                                  | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Chrysene                                   | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Dibenz(a,h)anthracene                      | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Dibenzofuran                               | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Diethylphthalate                           | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Dimethyl phthalate                         | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Di-n-butylphthalate                        | 20 U               | 21 U               | 21 U               | 20 U             | 21 U<br>11 U     | 20 U             | 20 U             | 20 U             | 20 U             | 20 U             |
| Di-n-octylphthalate<br>Fluoranthene        | 10 U<br>10 U       | 10 U<br>10 U       | 10 U<br>10 U       | 10 U<br>10 U     | 11 U             | 10 U<br>10 U     | 10 U<br>10 U     | 10 U<br>10 U     | 10 U<br>10 U     | 10 U             |
| Fluorene                                   | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U<br>10 U     |
| Hexachlorobenzene                          | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Hexachlorobutadiene                        | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Hexachlorocyclopentadiene                  | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Hexachloroethane                           | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Indeno(1,2,3-cd)pyrene                     | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Isophorone                                 | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Naphthalene                                | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| n-Nitroso-di-n-propylamine                 | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| n-Nitrosodiphenylamine                     | 10 U               | 10 U               | 10 U               | 10 U             | 11 UJ            | 10 U             |
| Nitrobenzene                               | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Pentachlorophenol                          | 20 U               | 21 U               | 21 U               | 20 U             | 21 U             | 20 U             |
| Phenanthrene                               | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Phenol                                     | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
| Pyrene                                     | 10 U               | 10 U               | 10 U               | 10 U             | 11 U             | 10 U             |
|                                            |                    |                    |                    |                  |                  |                  |                  |                  |                  |                  |
| Pesticide/Polychlorinated Biphenyls (μg/l) |                    |                    |                    |                  |                  |                  |                  |                  |                  |                  |
| 4,4'-DDD                                   | 0.051 U            | 0.052 U            | 0.078 U            | 0.05 U           | 0.05 U           | 0.05 U           | 0.079 J          | 0.05 U           | 0.05 U           | 0.05 U           |
| 4,4'-DDE                                   | 0.051 U            | 0.052 U            | 0.078 U            | 0.05 U           | 0.05 U           | 0.05 U           | 0.05 U           | 0.05 U           | 0.05 U           | 0.05 U           |
|                                            |                    |                    |                    |                  |                  |                  |                  |                  |                  |                  |
| 4,4'-DDT<br>Aldrin                         | 0.051 U<br>0.051 U | 0.052 U<br>0.052 U | 0.078 U<br>0.078 U | 0.05 U<br>0.05 U |

CTO-11 Camp Lejeune - Site 85 Validated Groundwater Raw Analytical Results July 2009

| Station ID                       | IDOC MANOA         | IDOE MANOO                 | IDOE MANOA         | IDOE MANOE                 | IDOS TWO                   | IDOE TWO                   | IDOS             | TMOC                    | IDOC TWO                   | IDOE TWO                   |
|----------------------------------|--------------------|----------------------------|--------------------|----------------------------|----------------------------|----------------------------|------------------|-------------------------|----------------------------|----------------------------|
| Sample ID                        | IR85-MW01          | IR85-MW02<br>IR85-MW02-09C | IR85-MW04          | IR85-MW05<br>IR85-MW05-09C | IR85-TW04<br>IR85-TW04-09C | IR85-TW05<br>IR85-TW05-09C |                  | -TW06<br>IR85-TW06D-09C | IR85-TW07<br>IR85-TW07-09C | IR85-TW08<br>IR85-TW08-09C |
|                                  | +                  |                            |                    |                            |                            |                            |                  |                         |                            |                            |
| Sample Date                      | 07/23/09           | 07/23/09                   | 07/22/09           | 07/21/09                   | 07/27/09                   | 07/29/09                   | 07/30/09         | 07/30/09                | 07/30/09                   | 07/30/09                   |
| Chemical Name                    |                    |                            |                    |                            |                            |                            |                  |                         |                            |                            |
| alpha-BHC                        | 0.051 U            | 0.052 U                    | 0.078 U            | 0.05 U                     | 0.05 U                     | 0.05 U                     | 0.05 U           | 0.05 U                  | 0.05 U                     | 0.05 U                     |
| alpha-Chlordane                  | 0.051 U            | 0.052 U                    | 0.078 U            | 0.05 U                     | 0.05 U                     | 0.05 U                     | 0.05 U           | 0.05 U                  | 0.05 U                     | 0.05 U                     |
| Aroclor-1016                     | 0.51 U             | 0.51 U                     | 0.78 U             | 0.5 U                      | 0.53 U                     | 0.5 U                      | 0.5 UJ           | 0.5 UJ                  | 0.5 U                      | 0.5 UJ                     |
| Aroclor-1221                     | 0.51 U             | 0.51 U                     | 0.78 U             | 0.5 U                      | 0.53 U                     | 0.5 U                      | 0.5 UJ           | 0.5 UJ                  | 0.5 U                      | 0.5 UJ                     |
| Aroclor-1232                     | 0.51 U             | 0.51 U                     | 0.78 U             | 0.5 U                      | 0.53 U                     | 0.5 U                      | 0.5 UJ           | 0.5 UJ                  | 0.5 U                      | 0.5 UJ                     |
| Aroclor-1242                     | 0.51 U             | 0.51 U                     | 0.78 U             | 0.5 U                      | 0.53 U                     | 0.5 U                      | 0.5 UJ           | 0.5 UJ                  | 0.5 U                      | 0.5 UJ                     |
| Aroclor-1248                     | 0.51 U             | 0.51 U                     | 0.78 U             | 0.5 U                      | 0.53 U                     | 0.5 U                      | 0.5 UJ           | 0.5 UJ                  | 0.5 U                      | 0.5 UJ                     |
| Aroclor-1254                     | 0.51 U             | 0.51 U                     | 0.78 U             | 0.5 U                      | 0.53 U                     | 0.5 U                      | 0.5 UJ           | 0.5 UJ                  | 0.5 U                      | 0.5 UJ                     |
| Aroclor-1260                     | 0.51 U             | 0.51 U                     | 0.78 U             | 0.5 U                      | 0.53 U                     | 0.5 U                      | 0.5 UJ           | 0.5 UJ                  | 0.5 U                      | 0.5 UJ                     |
| beta-BHC                         | 0.051 U            | 0.052 U                    | 0.078 U            | 0.05 U                     | 0.05 U                     | 0.05 U                     | 0.05 U           | 0.05 U                  | 0.05 U                     | 0.05 U                     |
| delta-BHC                        | 0.051 U            | 0.052 U                    | 0.078 U            | 0.05 U                     | 0.05 U                     | 0.05 U                     | 0.05 U           | 0.05 U                  | 0.05 U                     | 0.05 U                     |
| Dieldrin                         | 0.051 U            | 0.052 U                    | 0.078 U            | 0.05 U                     | 0.05 U                     | 0.05 U                     | 0.05 U           | 0.05 U                  | 0.05 U                     | 0.05 U                     |
| Endosulfan I                     | 0.051 U            | 0.052 U                    | 0.078 U            | 0.05 U                     | 0.05 U                     | 0.05 U                     | 0.05 U           | 0.05 U                  | 0.05 U                     | 0.05 U                     |
| Endosulfan II                    | 0.051 U            | 0.052 U                    | 0.078 U            | 0.05 U                     | 0.05 U                     | 0.05 U                     | 0.05 U           | 0.05 U                  | 0.05 U                     | 0.05 U                     |
| Endosulfan sulfate               | 0.051 U<br>0.051 U | 0.052 U<br>0.052 U         | 0.078 U<br>0.078 U | 0.05 U<br>0.05 U           | 0.05 U<br>0.05 U           | 0.05 U<br>0.05 U           | 0.05 U<br>0.05 U | 0.05 U<br>0.05 U        | 0.05 U<br>0.05 U           | 0.05 U<br>0.05 U           |
| Endrin                           |                    | 0.052 U<br>0.052 U         |                    | 0.05 U                     | 0.05 U                     |                            | 0.05 U           | 0.05 U                  | 0.05 U                     |                            |
| Endrin aldehyde<br>Endrin ketone | 0.051 U<br>0.051 U | 0.052 U<br>0.052 U         | 0.078 U<br>0.078 U | 0.05 U                     | 0.05 U<br>0.05 U           | 0.05 U<br>0.05 U           | 0.05 U           | 0.05 U<br>0.05 U        | 0.05 U                     | 0.05 U<br>0.05 U           |
| gamma-BHC (Lindane)              | 1                  | 0.052 U                    |                    |                            |                            |                            | 0.05 U           |                         |                            | 0.05 U                     |
| gamma-Chlordane                  | 0.051 U<br>0.051 U | 0.052 U                    | 0.078 U<br>0.078 U | 0.05 U<br>0.05 U           | 0.05 U<br>0.05 U           | 0.05 U<br>0.05 U           | 0.05 U           | 0.05 U<br>0.05 U        | 0.05 U<br>0.05 U           | 0.05 U                     |
| Heptachlor                       | 0.051 U            | 0.052 U                    | 0.078 U            | 0.05 U                     | 0.05 U                     | 0.05 U                     | 0.05 U           | 0.05 U                  | 0.05 U                     | 0.05 U                     |
| Heptachlor epoxide               | 0.051 U            | 0.052 U                    | 0.078 U            | 0.05 U                     | 0.05 U                     | 0.05 U                     | 0.05 U           | 0.05 U                  | 0.05 U                     | 0.05 U                     |
| Methoxychlor                     | 0.051 U            | 0.052 U                    | 0.078 U            | 0.05 U                     | 0.05 U                     | 0.05 U                     | 0.05 U           | 0.05 U                  | 0.05 U                     | 0.05 U                     |
| Toxaphene                        | 1 U                | 1 U                        | 1.6 U              | 1 U                        | 1 U                        | 1 U                        | 1 U              | 1 U                     | 1 U                        | 1 U                        |
| Тохарпене                        | 10                 | 10                         | 1.0 0              | 10                         | 1 0                        | 1 0                        | 1 0              | 10                      | 10                         | 1 0                        |
| Total Metals (μg/l)              | 1                  |                            |                    |                            |                            |                            |                  |                         |                            |                            |
| Aluminum                         | 124 J              | 873 J                      | 560 J              | 469 J                      | 182 J                      | 110 J                      | 15,100           | 9,130                   | 148 J                      | 921 J                      |
| Antimony                         | 20 U               | 40 U                       | 20 U               | 20 U                       | 20 U                       | 20 U                       | 20 U             | 20 U                    | 20 U                       | 20 U                       |
| Arsenic                          | 20 U               | 2 J                        | 20 U               | 20 U                       | 20 U                       | 20 U                       | 20 U             | 20 U                    | 20 U                       | 20 U                       |
| Barium                           | 50 U               | 56.9                       | 39.6 J             | 37 J                       | 24.2 J                     | 41.3 J                     | 50 U             | 50 U                    | 50 U                       | 50 U                       |
| Beryllium                        | 0.11 J             | 0.27 J                     | 0.17 J             | 0.11 J                     | 0.098 J                    | 2 U                        | 2 U              | 2 U                     | 2 U                        | 2 U                        |
| Cadmium                          | 6 U                | 6 U                        | 0.14 J             | 6 U                        | 6 U                        | 0.16 J                     | 6 U              | 6 U                     | 6 U                        | 0.28 J                     |
| Calcium                          | 569 J              | 1,330 J                    | 1,960              | 760 J                      | 579 J                      | 1,130                      | 3,190            | 3,140                   | 2,200                      | 1,280                      |
| Chromium                         | 20 U               | 20 U                       | 20 U               | 20 U                       | 20 U                       | 20 U                       | 18.9 J           | 11.7 J                  | 20 U                       | 1.8 J                      |
| Cobalt                           | 5 U                | 0.67 J                     | 0.78 J             | 5 U                        | 0.89 J                     | 1.2 J                      | 5 U              | 5 U                     | 0.64 J                     | 5 U                        |
| Copper                           | 20 U               | 40 U                       | 20 U               | 20 U                       | 2.4 J                      | 2.4 J                      | 6.8 J            | 6.2 J                   | 4.1 J                      | 5.6 J                      |
| Iron                             | 166                | 1,050                      | 425                | 106 J                      | 531                        | 6,380                      | 6,900            | 4,770                   | 1,110                      | 1,480                      |
| Lead                             | 20 U               | 40 U                       | 2.4 J              | 20 U                       | 20 U                       | 20 U                       | 15.9 J           | 12.7 J                  | 20 U                       | 3.7 J                      |
| Magnesium                        | 1,350              | 2,310                      | 445                | 2,480                      | 836                        | 2,510                      | 2,060            | 1,540                   | 1,160                      | 379                        |
| Manganese                        | 8                  | 22                         | 5.8                | 4.2 J                      | 9.6                        | 72.5                       | 70.8             | 66.4                    | 29                         | 36.5                       |
| Mercury                          | 0.2 U              | 0.085 J                    | 0.2 U              | 0.2 U                      | 0.036 J                    | 0.2 U                      | 0.2 U            | 0.2 U                   | 0.2 U                      | 0.2 U                      |
| Nickel                           | 1.2 J              | 3 J                        | 1.5 J              | 10 U                       | 10 U                       | 19.7                       | 7.9 J            | 6.6 J                   | 9.5 J                      | 2.2 J                      |
| Potassium                        | 498 J              | 2,180                      | 496 J              | 650 J                      | 726 J                      | 813 J                      | 1,210            | 1,010                   | 624 J                      | 656 J                      |
| Selenium                         | 20 U               | 20 U                       | 20 U               | 20 U                       | 20 U                       | 4.3 J                      | 20 U             | 20 U                    | 20 U                       | 20 U                       |
| Silver                           | 20 U               | 20 U                       | 20 U               | 20 U                       | 1.5 J                      | 20 U                       | 20 U             | 20 U                    | 20 U                       | 20 U                       |
| Sodium                           | 6,620              | 14,900                     | 4,910              | 5,140                      | 3,070                      | 4,510                      | 26,800           | 25,700                  | 2,840                      | 13,200                     |
| Thallium                         | 30 U               | 30 U                       | 30 U               | 30 U                       | 30 U                       | 30 U                       | 30 U             | 30 U                    | 30 U                       | 30 U                       |
| Vanadium                         | 50 U               | 100 U                      | 50 U               | 50 U                       | 50 U                       | 50 U                       | 50 U             | 50 U                    | 50 U                       | 50 U                       |
| Zinc                             | 4.4 J              | 16.6 J                     | 12.6 J             | 50 U                       | 50 U                       | 30.9 J                     | 48 J             | 41.1 J                  | 13.7 J                     | 110                        |
|                                  |                    |                            |                    |                            |                            |                            |                  |                         |                            |                            |
| Dissolved Metals (µg/l)          |                    |                            |                    |                            |                            |                            |                  |                         |                            |                            |
| Aluminum, Dissolved              | NA                 | NA                         | NA                 | NA                         | 41.2 J                     | 92.7 J                     | 1,000 U          | 1,000 U                 | 106 J                      | 1,000 U                    |
| Antimony, Dissolved              | NA                 | NA                         | NA                 | NA                         | 20 U                       | 20 U                       | 20 U             | 20 U                    | 20 U                       | 20 U                       |
| Arsenic, Dissolved               | NA                 | NA                         | NA                 | NA                         | 20 U                       | 20 U                       | 20 U             | 20 U                    | 20 U                       | 20 U                       |
| Barium, Dissolved                | NA                 | NA                         | NA                 | NA                         | 23.3 J                     | 41.5 J                     | 50 U             | 50 U                    | 50 U                       | 50 U                       |
| Beryllium, Dissolved             | NA                 | NA                         | NA                 | NA                         | 2 U                        | 0.13 J                     | 2 U              | 2 U                     | 2 U                        | 2 U                        |
| Cadmium, Dissolved               | NA                 | NA                         | NA                 | NA                         | 6 U                        | 6 U                        | 6 U              | 6 U                     | 6 U                        | 6 U                        |
| Calcium, Dissolved               | NA                 | NA                         | NA                 | NA                         | 586 J                      | 1,140                      | 1,000 U          | 1,000 U                 | 2,130                      | 1,000 U                    |
| Chromium, Dissolved              | NA                 | NA                         | NA                 | NA                         | 20 U                       | 20 U                       | 20 U             | 20 U                    | 1.4 J                      | 20 U                       |
| Cobalt, Dissolved                | NA                 | NA                         | NA                 | NA                         | 0.82 J                     | 1.1 J                      | 5 U              | 5 U                     | 0.76 J                     | 5 U                        |
| Copper, Dissolved                | NA                 | NA                         | NA                 | NA                         | 20 U                       | 2.6 J                      | 20 U             | 2.2 J                   | 5.2 J                      | 20 U                       |

### CTO-11

### Camp Lejeune - Site 85 Validated Groundwater Raw Analytical Results July 2009

| Station ID           | IR85-MW01     | IR85-MW02     | IR85-MW04     | IR85-MW05     | IR85-TW04     | IR85-TW05     | IDOE          | -TW06          | IR85-TW07     | IR85-TW08     |
|----------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|
|                      |               |               |               |               |               |               |               |                |               |               |
| Sample ID            | IR85-MW01-09C | IR85-MW02-09C | IR85-MW04-09C | IR85-MW05-09C | IR85-TW04-09C | IR85-TW05-09C | IR85-TW06-09C | IR85-TW06D-09C | IR85-TW07-09C | IR85-TW08-09C |
| Sample Date          | 07/23/09      | 07/23/09      | 07/22/09      | 07/21/09      | 07/27/09      | 07/29/09      | 07/30/09      | 07/30/09       | 07/30/09      | 07/30/09      |
| Chemical Name        |               |               |               |               |               |               |               |                |               |               |
| Iron, Dissolved      | NA            | NA            | NA            | NA            | 433           | 6,090         | 150 U         | 150 U          | 1,050         | 144 J         |
| Lead, Dissolved      | NA            | NA            | NA            | NA            | 20 U          | 20 U          | 20 U          | 20 U           | 20 U          | 20 U          |
| Magnesium, Dissolved | NA            | NA            | NA            | NA            | 817           | 2,460         | 250 U         | 250 U          | 1,150         | 130 J         |
| Manganese, Dissolved | NA            | NA            | NA            | NA            | 9.9           | 70.1          | 1.5 J         | 1.3 J          | 28.8          | 15.3          |
| Mercury, Dissolved   | NA            | NA            | NA            | NA            | 0.2 U         | 0.2 U         | 0.2 U         | 0.2 U          | 0.04 J        | 0.2 U         |
| Nickel, Dissolved    | NA            | NA            | NA            | NA            | 10 U          | 19.5          | 10 U          | 10 U           | 9.6 J         | 1.3 J         |
| Potassium, Dissolved | NA            | NA            | NA            | NA            | 688 J         | 852 J         | 506 J         | 492 J          | 559 J         | 624 J         |
| Selenium, Dissolved  | NA            | NA            | NA            | NA            | 20 U          | 4.3 J         | 20 U          | 20 U           | 20 U          | 20 U          |
| Silver, Dissolved    | NA            | NA            | NA            | NA            | 20 U          | 20 U          | 20 U          | 20 U           | 20 U          | 20 U          |
| Sodium, Dissolved    | NA            | NA            | NA            | NA            | 2,920         | 4,660         | 27,300        | 26,500         | 2,800         | 13,600        |
| Thallium, Dissolved  | NA            | NA            | NA            | NA            | 30 U          | 30 U          | 30 U          | 30 U           | 30 U          | 30 U          |
| Vanadium, Dissolved  | NA            | NA            | NA            | NA            | 50 U          | 50 U          | 50 U          | 50 U           | 50 U          | 50 U          |
| Zinc, Dissolved      | NA            | NA            | NA            | NA            | 6.8 J         | 31.5 J        | 50 U          | 50 U           | 13.5 J        | 49.5 J        |

## Notes: Shading indicates detections

- NA Not analyzed
- J Analyte present, value may or may not be accurate or precise R - Unreliable Result
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate µg/l Micrograms per liter



#### Table 2.1

### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Construction Area MCB Camp Lejeune, North Carolina

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil

| Exposure<br>Point | CAS<br>Number                 | Chemical | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Ü                        | Concentration [2] Used for Screening | 0                         | Screening [4]<br>Toxicity Value |         |                  |          | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|-------------------------------|----------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|--------------------------|--------------------------------------|---------------------------|---------------------------------|---------|------------------|----------|-----------------------------------------------------|
| CJCA              | 7440-36-0                     | 1        | 1.8E-01 J-                                | 4.9E-01 J-                                |       | CJCA-SS163D-09C                         | 15/214                 | 1.5 - 17.8               |                                      | 4.5E-01                   | 3.1E+00 N                       |         |                  | NO       | BSL                                                 |
|                   | <b>7440-38-2</b><br>7440-50-8 | Copper   | <b>2.2E-01 J-</b><br>2.6E-01 J-           | 2.6E+01                                   | MG/KG | CJCA-SS136-09C<br>CJCA-SS033-09C        | 202/214                | 0.79 - 8.9               | 2.6E+01                              | <b>6.3E-01</b><br>4.8E+00 | 3.9E-01 C*<br>3.1E+02 N         | 7.0E+02 | NCPSRG<br>NCPSRG | NO<br>NO | ASL<br>BSL                                          |
|                   | 7439-92-1<br>7440-66-6        |          | 9.6E-01<br>1.1E+00 J                      | 1.2E+02<br>1.2E+02                        |       | CJCA-SS033-09C<br>CJCA-SS041-09C        | 214/214<br>159/214     | 0.79 - 8.9<br>1.6 - 17.8 | -                                    | 1.2E+01<br>1.1E+01        | 4.0E+02 NL<br>2.3E+03 N         |         | NCPSRG<br>NCPSRG | NO<br>NO | BSL<br>BSL                                          |

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values are two times the arithmetic mean basewide background surface soil concentrations. Background values are from Final Base Background Soil Study Report, Marine Corps Base Camp Lejeune, North Carolina, Baker Environmental, April 25, 2001.

[4] Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites. http://epa-prgs.ornl.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) residential soil RSLs.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)

Essential Nutrient (NUT)
Below Screening Level (BSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

NCPSRG = North Carolina Preliminary Soil Remediation Goal, January, 2010

J = Estimated Value

J- = Analyte present. Value may be biased low, actual value may be higher.

C = Carcinogenic

C\* = N screening level < 100x C screening level, therefore

N screening value/10 used as screening level

C\*\* = N screening level < 10x C screening level, therefore

N screening value/10 used as screening level

MG/KG = Milligrams per kilogram

N = Noncarcinogenic

N/A = Not available/not applicable

NL = Noncarcinogenic lead residential soil RSL not adjusted by dividing by 10.

### TABLE 2.1a

Risk Ratio Screening for Surface Soil, Maximum Detected Concentration Camp Johnson Construction Area MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Detected | Sample Location of<br>Maximum Detected<br>Concentration | Residential Soil | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ |
|----------------------------------------------------|------------------------|----------|---------------------------------------------------------|------------------|--------------------------|--------------------------------------------|-------------------------------------------|--------------|
| Metals (mg/kg)                                     |                        |          |                                                         |                  |                          |                                            |                                           |              |
| Arsenic                                            | 202 / 214              | 6.9E+00  | CJCA-SS136-09C                                          | 3.9E-01          | 1E-06                    | NA                                         | 2E-05                                     | NA           |
| Cumulative Corresponding Hazard Index <sup>c</sup> | ·                      |          |                                                         |                  |                          | NA                                         |                                           |              |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |          |                                                         |                  |                          |                                            | 2E-05                                     |              |

#### Notes:

- <sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level.
- <sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.
- <sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.
- <sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern HI = Hazard Index mg/kg = milligrams per kilogram NA = Not available/not applicable

#### Table 2.2

### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Construction Area MCB Camp Lejeune, North Carolina

Scenario Timeframe: Future

Medium: Surface and Subsurface Soil

Exposure Medium: Surface and Subsurface Soil

| Exposure<br>Point | CAS<br>Number              | Chemical | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units          | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Ŭ                               | Concentration [2] Used for Screening |                           | Screening [4]<br>Toxicity Value |                    |                  |           | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|----------------------------|----------|-------------------------------------------|-------------------------------------------|----------------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|---------------------------|---------------------------------|--------------------|------------------|-----------|-----------------------------------------------------|
| CJCA              | 7440-36-0                  | Antimony | 1.8E-01 J-                                | 4.9E-01 J-                                | MG/KG          | CJCA-SS163D-09C                         | 16/292                 | 1.5 - 17.8                      | 4.9E-01                              | 3.6E-01                   | 3.10E+00 N                      | N/A                |                  | NO        | BSL                                                 |
|                   | <b>7440-38-2</b> 7440-50-8 |          | <b>1.7E-01 J</b><br>2.6E-01 J-            | <b>4.7E+01 J-</b><br>2.6E+01              | MG/KG<br>MG/KG | CJCA-SB71-6-7-09C<br>CJCA-SB09D-2-4-09C | <b>271/292</b> 277/292 | <b>1.5 - 17.8</b><br>1.5 - 17.8 | <b>4.7E+01</b><br>2.6E+01            | <b>6.3E-01</b><br>2.6E+00 | 3.90E-01 C*<br>3.10E+02 N       | 5.8E+00<br>7.0E+02 | NCPSRG<br>NCPSRG | YES<br>NO | <b>ASL</b><br>BSL                                   |
|                   | 7439-92-1<br>7440-66-6     |          | 9.6E-01<br>1.1E+00 J                      | 1.2E+02<br>1.2E+02                        | MG/KG<br>MG/KG |                                         | 292/292<br>209/292     | 1.5 - 17.8<br>1.6 - 17.8        | 1.2E+02<br>1.2E+02                   | 8.5E+00<br>6.6E+00        | 4.00E+02 NL<br>2.30E+03 N       | 2.7E+02<br>1.2E+03 | NCPSRG<br>NCPSRG | NO<br>NO  | BSL<br>BSL                                          |

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening.
- [3] Background values are lower of two times the arithmetic mean basewide background surface soil or subsurface soil concentrations.

Background values are from Final Base Background Soil Study Report, Marine Corps Base Camp Lejeune, North Carolina, Baker Environmental, April 25, 2001.

- [4] Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites. http://epa-prgs.ornl.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) residential soil RSLs.
- [5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)
Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)
Below Screening Level (BSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

NCPSRG = North Carolina Preliminary Soil Remediation Goal, January, 2010

J = Estimated Value

J- = Analyte present. Value may be biased low, actual value may be higher.

C = Carcinogenic

 $C^* = N$  screening level < 100x C screening level, therefore

N screening value/10 used as screening level

 $C^{**}$  = N screening level < 10x C screening level, therefore

N screening value/10 used as screening level

MG/KG = milligrams per kilogram

N = Noncarcinogenic

N/A = Not available/not applicable

NL = Noncarcinogenic lead residential soil RSL not adjusted by dividing by 10.

### TABLE 2.2a

Risk Ratio Screening for Surface and Subsurface Soil, Maximum Detected Concentration Camp Johnson Construction Area MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Detected   | Sample Location of<br>Maximum Detected<br>Concentration | Residential Soil | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ |
|----------------------------------------------------|------------------------|------------|---------------------------------------------------------|------------------|--------------------------|--------------------------------------------|-------------------------------------------|--------------|
| Metals (mg/kg)                                     |                        |            |                                                         |                  |                          |                                            |                                           |              |
| Arsenic                                            | 271 / 292              | 4.7E+01 J- | CJCA-SS136-09C                                          | 3.9E-01          | 1E-06                    | NA                                         | 1E-04                                     | NA           |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        | <u> </u>   |                                                         |                  |                          | NA                                         |                                           |              |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |            |                                                         |                  |                          |                                            | 1E-04                                     |              |

#### Notes:

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index

J- = Analyte present. Value may be biased low, actual value may be higher

mg/kg = milligrams per kilogram

NA = Not available/not applicable.

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

### TABLE 2.2b

Risk Ratio Screening for Surface and Subsurface Soil, 95% UCL Concentration Camp Johnson Construction Area MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | 95% UCL   | 95% UCL<br>Rationale | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ |
|----------------------------------------------------|------------------------|-----------|----------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|--------------|
| Metals (mg/kg)                                     |                        |           |                      |                         |                          |                                            |                                           |              |
| Arsenic                                            | 271 / 292              | 3.9E+00 4 | 95% KM-c             | 3.9E-01                 | 1E-06                    | NA                                         | 1E-05                                     | NA           |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |           |                      |                         |                          | NA                                         |                                           |              |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |           |                      |                         |                          |                                            | 1E-05                                     |              |

#### Notes:

- <sup>a</sup> Corresponding Hazard Index equals 95% UCL concentration divided by the RSL divided by the acceptable risk level.
- <sup>b</sup> Corresponding Cancer Risk equals 95% UCL concentration divided by the RSL divided by the acceptable risk level
- <sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.
- <sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern mg/kg = milligrams per kilogram HI = Hazard Index

NA = Not available/not applicable.

ProUCL, Version 4.00.05 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. May 2010. ProUCL, Version 4.0. Prepared by Lockheed Martin Environmental Services). Options: 95% Kaplan-Meier (Chebyshev) UCL (95% KM-c)

Upper Confidence Limit (UCL) Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Test indicates data are gamma distributed.
- (4) Distribution tests are inconclusive
- (5) Max value used because 95% UCL greater than max.

#### Table 2.3

### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Construction Area MCB Camp Lejeune, North Carolina

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

| Exposure<br>Point | CAS<br>Number          | Chemical | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units        | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening |                           | Screening [4]<br>Toxicity Value |                           |                                 |            | Rationale for [5]<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|------------------------|----------|-------------------------------------------|-------------------------------------------|--------------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------------|------------|--------------------------------------------------------------|
| CJCA              | 7440-36-0<br>7440-38-2 |          | ND<br>2.2E+00 J                           |                                           | UG/L<br>UG/L | CJCA-TW27-09C                           | 0/37<br><b>12/37</b>   | 20 - 100<br><b>20 - 20</b>      | 1.0E+02<br><b>9.4E+00</b>            | 3.3E+00<br><b>5.8E+00</b> | 1.5E+00 N<br><b>4.5E-02 C</b>   |                           | MCL<br>MCL, 15A NCAC 2L         | YES<br>YES | DLASL<br><b>ASL</b>                                          |
|                   | 7440-50-8              | Copper   | 2.7E+00 J                                 | 1.0E+01 J                                 | UG/L         | CJCA-TW17-09C                           | 12/37                  | 20 - 100                        | 1.0E+01                              | 2.8E+00                   | 1.5E+02 N                       | 1.3E+03<br>1.0E+03        | MCL<br>15A NCAC 2L              | NO         | BSL                                                          |
|                   | 7439-92-1<br>7440-66-6 |          | <b>2.0E+00 J</b><br>4.3E+00 J             |                                           | UG/L<br>UG/L | CJCA-TW01-09C<br>CJCA-TW17-09C          | <b>12/37</b><br>36/37  | <b>20 - 100</b><br>50 - 250     | <b>1.9E+01</b><br>1.6E+02            | <b>2.8E+00</b><br>4.2E+01 | <b>N/A</b><br>1.1E+03 N         | <b>1.5E+01</b><br>1.0E+03 | MCL, 15A NCAC 2L<br>15A NCAC 2L | YES<br>NO  | ASL<br>BSL                                                   |

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening. If the chemical was not detected, the maximum detection limit is used for screening.

[3] Background values are two times the arithmetic mean basewide background shallow groundwater concentrations. Background values are from

Final Base Background Soil Study Report, Marine Corps Base Camp Lejeune, North Carolina, Baker Environmental, April 25, 2001.

[4] Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels for Chemical Contaminants at Superfund Sites. http://epa-prgs.ornl.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) tap water RSLs.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Detection Limit Above Screening Level (DLASL), not quantitatively evaluated in HHRA

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)
Below Screening Level (BSL)

Detection Limit Below Screening Level (DLBSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

MCL = Maximum Contaminant Level from EPA's National Primary Drinking Water Standards

15A NCAC 2L = North Carolina Classifications and Groundwater Quality Standards,

January 2010.

J = Estimated Value

C\* = N screening level < 100x C screening level, therefore

N screening value/10 used as screening level

C\*\* = N screening level < 10x C screening level, therefore

N screening value/10 used as screening level

N = Noncarcinogenic

N/A = Not available

ND = Not detected

UG/L = Micrograms per liter

Generated by: Roni Warren/WDC Checked by: Geanine Howard-Peebles/DAY

Updated by: D. Stannard/WDC Checked by: R. Warren

### TABLE 2.3a

Risk Ratio Screening for Groundwater, Maximum Detected Concentration Camp Johnson Construction Area MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | I)etected | Sample Location of<br>Maximum Detected<br>Concentration | Tap Water RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ |
|----------------------------------------------------|------------------------|-----------|---------------------------------------------------------|---------------|--------------------------|--------------------------------------------|-------------------------------------------|--------------|
| Metals (ug/L)                                      |                        |           |                                                         |               |                          |                                            |                                           |              |
| Arsenic                                            | 12 / 37                | 9.4E+00 J | CJCA-TW27-09C                                           | 4.5E-02       | 1E-06                    | NA                                         | 2E-04                                     | NA           |
| Lead                                               | 12 / 37                | 1.9E+01 J | CJCA-TW01-09C                                           | NA            |                          | NA                                         | NA                                        | ·            |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |           |                                                         |               |                          | NA                                         |                                           |              |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |           |                                                         |               |                          |                                            | 2E-04                                     |              |

### Notes:

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index

J = Estimated Value

ug/L = micrograms per liter

NA = Not available/not applicable

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

 $<sup>^{\</sup>rm d} \ {\rm Cumulative} \ {\rm Corresponding} \ {\rm Cancer} \ {\rm Risk} \ {\rm equals} \ {\rm sum} \ {\rm of} \ {\rm Corresponding} \ {\rm Cancer} \ {\rm Risks} \ {\rm for} \ {\rm each} \ {\rm constituent}.$ 

### TABLE 2.3b

Risk Ratio Screening for Groundwater, 95% UCL Concentration Camp Johnson Construction Area MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | 95%     | UCL      | 95% UCL<br>Rationale | Tap Water RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ |
|----------------------------------------------------|------------------------|---------|----------|----------------------|---------------|--------------------------|--------------------------------------------|-------------------------------------------|--------------|
| Metals (ug/L)                                      |                        |         |          |                      |               |                          |                                            |                                           |              |
| Arsenic                                            | 12 / 37                | 5.0E+00 | 95% KM-t | 1, 3                 | 4.5E-02       | 1E-06                    | NA                                         | 1E-04                                     | NA           |
| Lead                                               | 12 / 37                | 8.9E+00 | Mean     | 6                    | NA            |                          | NA                                         | NA                                        |              |
| Cumulative Corresponding Hazard Index <sup>c</sup> | ·                      |         | <u> </u> |                      |               | ·                        | NA                                         |                                           |              |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |         |          |                      |               |                          |                                            | 1E-04                                     |              |

#### Notes:

<sup>a</sup> Corresponding Hazard Index equals 95% UCL concentration divided by the RSL divided by the acceptable risk level.

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05,

otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index

NA = Not available/not applicable

ug/L = micrograms per liter

ProUCL, Version 4.00.05 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. May 2010. ProUCL, Version 4.0. Prepared by Lockheed Martin Environmental Services).

Options: 95% Kaplan-Meier (t) UCL (95% KM-t); Arithmetic Mean (Mean)

Upper Confidence Limit (UCL) Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Test indicates data are gamma distributed.
- (4) Distribution tests are inconclusive
- (5) Max value used because 95% UCL greater than max.
- (6) Lead evaluated using arithmetic mean concentration in lead models, therefore, arithmetic mean concentration presented here.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals 95% UCL concentration divided by the RSL divided by the acceptable risk level

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

Scenario Timeframe: Current/Future Medium: Surface Soil

Exposure Medium: Surface Soil

| Exposure<br>Point | CAS<br>Number      | Chemical                                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units          | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits  | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|--------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------|-----------------------------------------|------------------------|----------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   |                    |                                                  |                                           |                                           |                |                                         |                        |                                  |                                      |                         |                                 |                                |                                 |              |                                                     |
| Site 15           | 71-55-6            | 1,1,1-Trichloroethane                            | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 6.4E+02 NS                      | 1.2E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-34-5            | 1,1,2,2-Tetrachloroethane                        | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 5.6E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 76-13-1            | 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 9.1E+02 NS                      | 9.2E+03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-00-5            | 1,1,2-Trichloroethane                            | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 1.1E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 75-34-3            | 1,1-Dichloroethane                               | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 3.3E+00 C                       | 3.0E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-35-4            | 1,1-Dichloroethene                               | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 2.4E+01 N                       | 4.6E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 120-82-1           | 1,2,4-Trichlorobenzene                           | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 6.2E+00 C**                     | 2.2E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 96-12-8            | 1,2-Dibromo-3-chloropropane                      | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 5.4E-03 C                       | 2.5E-04                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 106-93-4           | 1,2-Dibromoethane                                | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 3.4E-02 C                       | 9.7E-05                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 95-50-1            | 1,2-Dichlorobenzene                              | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 1.9E+02 N                       | 2.4E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 107-06-2           | 1,2-Dichloroethane                               | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 4.3E-01 C                       | 2.0E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 78-87-5            | 1,2-Dichloropropane                              | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 8.9E-01 C*                      | 3.3E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 541-73-1           | 1,3-Dichlorobenzene                              | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 2.4E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-46-7           | 1,4-Dichlorobenzene                              | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 2.4E+00 C                       | 7.0E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 78-93-3            | 2-Butanone                                       | 4.4E-03 J                                 | 4.0E-02 J                                 | MG/KG          | IR15-SS08-00-01-09C                     | 7/12                   | 0.0085 - 0.018                   | 4.0E-02                              | N/A                     | 2.8E+03 N                       | 1.6E+01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 591-78-6           | 2-Hexanone                                       | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0085 - 0.018                   | 1.8E-02                              | N/A                     | 2.1E+01 N                       | 1.2E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 108-10-1           | 4-Methyl-2-pentanone                             | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0085 - 0.018                   | 1.8E-02                              | N/A                     | 5.3E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 67-64-1            | Acetone                                          | 5.3E-03 J                                 | 1.7E+00 J                                 | MG/KG          | IR15-SS08-00-01-09C                     | 12/13                  | 0.0085 - 0.036                   | 1.7E+00                              | N/A                     | 6.1E+03 N                       | 2.4E+01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 71-43-2            | Benzene                                          | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 1.1E+00 C*                      | 7.3E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-27-4            | Bromodichloromethane                             | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 2.7E-01 C                       | 2.9E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-25-2            | Bromoform                                        | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 6.1E+01 C*                      | 1.9E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 74-83-9            | Bromomethane                                     | ND                                        | ND                                        | MG/KG          |                                         | 0/10                   | 0.0054 - 0.012                   | 1.2E-02                              | N/A                     | 7.3E-01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 75-15-0            | Carbon disulfide                                 | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 8.2E+01 N                       | 3.8E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 56-23-5            | Carbon tetrachloride                             | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 6.1E-01 C                       | 2.0E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 108-90-7           | Chlorobenzene                                    | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 2.9E+01 N                       | 4.5E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-00-3            | Chloroethane                                     | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0054 - 0.014                   | 1.4E-02                              | N/A                     | 1.5E+03 N                       | 1.6E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 67-66-3            | Chloroform                                       | 5.2E-03 J                                 | 5.2E-03 J                                 | MG/KG          | IR15-SS01-00-01-09C                     | 1/12                   | 0.0042 - 0.0091                  | 5.2E-03                              | N/A                     | 2.9E-01 C                       | 3.4E-01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 74-87-3            | Chloromethane                                    | ND                                        | ND                                        | MG/KG          | 11(10 0001 00 01 000                    | 0/12                   | 0.0054 - 0.014                   | 1.4E-02                              | N/A                     | 1.2E+01 N                       | 1.5E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 156-59-2           | cis-1,2-Dichloroethene                           | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0034 - 0.014                   | 9.1E-03                              | N/A                     | 7.8E+01 N                       | 3.6E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 10061-01-5         | cis-1,3-Dichloropropene                          | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 110-82-7           | Cyclohexane                                      | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 1.7E+00 C                       | 2.3E-03<br>N/A                 | 1401 0110                       | NO           | DLBSL                                               |
|                   | 124-48-1           | Dibromochloromethane                             | ND<br>ND                                  | ND<br>ND                                  | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 6.8E-01 C                       | 1.9E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   |                    |                                                  |                                           |                                           | MG/KG          |                                         | 0/12                   |                                  |                                      |                         |                                 |                                | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-71-8            | Dichlorodifluoromethane (Freon-12)               | ND                                        | ND                                        |                |                                         |                        | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 1.8E+01 N                       | 2.9E+01                        |                                 |              |                                                     |
|                   | 100-41-4           | Ethylbenzene                                     | ND                                        | ND                                        | MG/KG          |                                         | 0/12                   | 0.0042 - 0.0091                  | 9.1E-03                              | N/A                     | 5.4E+00 C                       | 8.1E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 98-82-8<br>79-20-9 | Isopropylbenzene<br>Methyl acetate               | ND<br>4.5E-03 J                           | ND<br>2.1E+00                             | MG/KG<br>MG/KG | IR15-SS08-00-01-09C                     | 0/12<br>5/13           | 0.0042 - 0.0091<br>0.0042 - 0.72 | 9.1E-03<br>2.1E+00                   | N/A<br>N/A              | 2.1E+02 N<br>7.8E+03 N          | 1.3E+00<br>N/A                 | NCPSRG                          | NO<br>NO     | DLBSL<br>BSL                                        |

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil

| Exposure<br>Point | CAS<br>Number | Chemical                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion<br>or Selection | [5] |
|-------------------|---------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|----------------------------------------------------------|-----|
|                   | 108-87-2      | Methylcyclohexane                | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0042 - 0.0091                 | 9.1E-03                              | N/A                     | 5.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 75-09-2       | Methylene chloride               | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0054 - 0.014                  | 1.4E-02                              | N/A                     | 1.1E+01 C                       | 2.3E-02                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 1634-04-4     | Methyl-tert-butyl ether (MTBE)   | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0042 - 0.0091                 | 9.1E-03                              | N/A                     | 4.3E+01 C                       | 8.5E-02                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 100-42-5      | Styrene                          | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0042 - 0.0091                 | 9.1E-03                              | N/A                     | 6.3E+02 N                       | 9.2E-01                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 127-18-4      | Tetrachloroethene                | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0042 - 0.0091                 | 9.1E-03                              | N/A                     | 5.5E-01 C                       | 5.0E-03                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 108-88-3      | Toluene                          | 1.0E-02 J                                 | 1.0E-02 J                                 | MG/KG | IR15-SS08-00-01-09C                     | 1/12                   | 0.0042 - 0.0091                 | 1.0E-02                              | N/A                     | 5.0E+02 N                       | 5.5E+00                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 156-60-5      | trans-1,2-Dichloroethene         | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0042 - 0.0091                 | 9.1E-03                              | N/A                     | 1.5E+01 N                       | 5.1E-01                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 10061-02-6    | trans-1,3-Dichloropropene        | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0042 - 0.0091                 | 9.1E-03                              | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 79-01-6       | Trichloroethene                  | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0042 - 0.0091                 | 9.1E-03                              | N/A                     | 2.8E+00 C                       | 1.8E-02                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 75-69-4       | Trichlorofluoromethane(Freon-11) | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0042 - 0.0091                 | 9.1E-03                              | N/A                     | 7.9E+01 N                       | 2.4E+01                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 75-01-4       | Vinyl chloride                   | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0054 - 0.014                  | 1.4E-02                              | N/A                     | 6.0E-02 C                       | 1.9E-04                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 1330-20-7     | Xylene, total                    | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0042 - 0.0091                 | 9.1E-03                              | N/A                     | 6.3E+01 N                       | 6.0E+00                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 92-52-4       | 1,1-Biphenyl                     | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 2.1E+02 NS                      | 4.3E+01                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 108-60-1      | 2,2'-Oxybis(1-chloropropane)     | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 4.6E+00 C                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 95-95-4       | 2,4,5-Trichlorophenol            | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 88-06-2       | 2,4,6-Trichlorophenol            | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.36 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+00 C**                     | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 120-83-2      | 2,4-Dichlorophenol               | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 105-67-9      | 2,4-Dimethylphenol               | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.2E+02 N                       | 1.4E+00                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 51-28-5       | 2,4-Dinitrophenol                | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 1.2E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 121-14-2      | 2,4-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.6E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 606-20-2      | 2,6-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+00 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 91-58-7       | 2-Chloronaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.8E+02 NS                      | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 95-57-8       | 2-Chlorophenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.9E+01 N                       | 4.1E-03                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 91-57-6       | 2-Methylnaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.1E+01 N                       | 1.6E+00                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   |               | 2-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 88-74-4       | 2-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 88-75-5       | 2-Nitrophenol                    | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.9E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   |               | 3- and 4-Methylphenol            | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.73 - 0.8                      | 8.0E-01                              | N/A                     | 3.1E+01 N                       | 4.0E-01                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 91-94-1       | 3,3'-Dichlorobenzidine           | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 1.1E+00 C                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 99-09-2       | 3-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 534-52-1      | 4,6-Dinitro-2-methylphenol       | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 6.1E-01 N                       | N/A                            |                                 | YES          | DLASL                                                    |     |
|                   | 101-55-3      | 4-Bromophenyl-phenylether        | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                      |     |
|                   | 59-50-7       | 4-Chloro-3-methylphenol          | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 106-47-8      | 4-Chloroaniline                  | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 2.4E+00 C                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 7005-72-3     | 4-Chlorophenyl-phenylether       | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 106-44-5      | 4-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.17 - 0.21                     | 2.1E-01                              | N/A                     | 3.1E+01 N                       | 4.0E-01                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 100-01-6      | 4-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 2.4E+01 C*                      | N/A                            |                                 | NO           | DLBSL                                                    |     |

Scenario Timeframe: Current/Future Medium: Surface Soil

Exposure Medium: Surface Soil

Minimum [1] Rationale for Exposure CAS Chemical Maximum [1] Units Location Detection Range of Concentration [2] Background [3] Screening [4] Potential Potential COPC Point Concentration Concentration of Maximum Detection Used for Value Toxicity Value ARAR/TBC ARAR/TBC Flag Contaminant Frequency Qualifier Qualifier Concentration Limits Screening Deletion or Selection 100-02-7 4-Nitrophenol ND ND MG/KG 0/15 0.17 - 1 1.0E+00 N/A 4.8E+00 C\* N/A NO DLBSL 83-32-9 Acenaphthene ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 3.4E+02 N 8.4E+00 NCPSRG NO DLBSL 208-96-8 Acenaphthylene ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 3.4E+02 N 1.1E+01 NCPSRG NO DLBSL MG/KG 7.8E+02 N DLBSL 98-86-2 Acetophenone ND ND 0/15 0.17 - 0.44.0E-01 N/A N/A NO 120-12-7 Anthracene ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 1.7E+03 N 6.6E+02 NCPSRG NO DLBSL 1912-24-9 Atrazine ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 2.1E+00 C 2.5E-02 NCPSRG NO DLBSL 100-52-7 Benzaldehyde ND ND MG/KG 0/15 0.17 - 1 1.0E+00 N/A 7.8E+02 N N/A NO DLBSL 56-55-3 ND ND MG/KG 0.035 - 0.4 4.0E-01 1.8E-01 YES DLASL Benzo(a)anthracene 0/15 N/A 1.5E-01 C NCPSRG 50-32-8 ND NΠ MG/KG 0/15 0.035 - 0.4 4 0F-01 N/A 1.5E-02 C 5.9E-02 NCPSRG YES DI ASI Benzo(a)pyrene 205-99-2 Benzo(b)fluoranthene ND ND MG/KG 0/15 0.035 - 0.4 4.0E-01 N/A 1.5E-01 C 6.0E-01 NCPSRG YES DLASL 191-24-2 Benzo(g,h,i)perylene 9.5E-02 J 9.5E-02 J MG/KG IR15-SS03D-00-01-09C 1/15 0.17 - 0.4 9.5E-02 N/A 1.7E+02 N 3.6E+02 NCPSRG NO BSL 207-08-9 Benzo(k)fluoranthene ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 1.5E+00 C 5.9E+00 NCPSRG NO DLBSL 0.17 - 0.4 DLBSL 111-91-1 MG/KG bis(2-Chloroethoxy)methane ND ND 0/15 4 0F-01 N/A 1.8E+01 N N/A NO 111-44-4 bis(2-Chloroethyl)ether ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 2.1E-01 C 1.4E-04 NCPSRG YES DLASL 117-81-7 bis(2-Ethylhexyl)phthalate 8.8E-02 J 1.8E-01 J MG/KG IR15-SS01-00-01-09C 3/15 0.17 - 0.4 1.8E-01 N/A 3.5E+01 C 7.2E+00 NCPSRG NO BSL 85-68-7 Butylbenzylphthalate 1.9E-01 J 1.9E-01 J MG/KG IR15-SS01-00-01-09C 1/15 0.17 - 0.4 1 9F-01 N/A 2 6F+02 C 1.5F+02 NCPSRG NO BSL DLBSL 105-60-2 Caprolactam ND ND MG/KG 0/14 0.17 - 1 1.0E+00 N/A 3.1E+03 N 1.8E+01 NCPSRG NO 86-74-8 Carbazole ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A N/A N/A NO NTX 218-01-9 1.5E-02 J 2.2E-02 J MG/KG SWMU46-SM01-0-1 0.17 - 0.4 2.2E-02 NCPSRG YES CPAH Chrysene 2/15 N/A 1.5E+01 C 1.8E+01 53-70-3 Dibenz(a.h)anthracene 6.4E-02 J 6.4E-02 J MG/KG IR15-SS03D-00-01-09C 1/15 0.035 - 0.4 6.4E-02 N/A 1.5E-02 C 1.9E-01 NCPSRG YES ASL 132-64-9 MG/KG 0.17 - 0.4 4.0E-01 NCPSRG NO DLBSL Dibenzofuran ND ND 0/15 N/A 7.8E+00 N 4.7E+00 MG/KG 84-66-2 Diethylphthalate ND ND 0/15 0.17 - 0.4 4.0E-01 N/A 4.9E+03 N 3.7E+01 NCPSRG NO DLBSL 131-11-3 ND ND MG/KG 0.17 - 0.4 4.0E-01 N/A NO NTX Dimethyl phthalate 0/15 84-74-2 Di-n-butylphthalate 5.0E-02 J 1.5E-01 J MG/KG IR15-SS10-00-01-09C 6/15 0.17 - 0.4 1.5E-01 N/A 6.1E+02 N 1.9E+01 NCPSRG NO BSL 117-84-0 Di-n-octylphthalate ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 3.5E+01 C\* 3.8E+01 NCPSRG NO DLBSL 206-44-0 MG/KG 0/15 0.17 - 0.4 NCPSRG DLBSL Fluoranthene ND ND 4.0E-01 N/A 2.3E+02 N 3.3E+02 NO 86-73-7 Fluorene ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 2.3E+02 N 5.6E+01 NCPSRG NO DLBSL 118-74-1 Hexachlorobenzene ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 3.0E-01 C 2.6E-03 NCPSRG YES DLASL 87-68-3 ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 6.1E+00 C\* NCPSRG NO DLBSL Hexachlorobutadiene N/A 8.7E-03 77-47-4 ND ND MG/KG 0/15 0.17 - 1 1.0E+00 3.7E+01 N NO DLBSL Hexachlorocyclopentadiene N/A N/A 67-72-1 -lexachloroethane ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 6.1E+00 C\* N/A NO DLBSL 193-39-5 Indeno(1,2,3-cd)pyrene 5.2E-02 J 5.2E-02 J MG/KG IR15-SS03D-00-01-09C 1/15 0.035 - 0.4 5.2E-02 N/A 1.5E-01 C 2.0E+00 NCPSRG YES CPAH 78-59-1 ND ND MG/KG 0/15 0.035 - 0.4 4.0E-01 N/A 5.1E+02 C\* 2.0E-01 NCPSRG NO DLBSL Isophorone DLBSL 91-20-3 ND MG/KG 0/15 0 17 - 0 4 4 0F-01 N/A 3.6E+00\_C\* 2 1F-01 NCPSRG NO Nanhthalene ND 621-64-7 n-Nitroso-di-n-propylamine ND ND MG/KG 0/15 0.035 - 0.4 4.0E-01 N/A 6.9E-02 C N/A YES DLASL 86-30-6 n-Nitrosodiphenylamine ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 9.9E+01 C N/A NO DLBSL 98-95-3 Nitrobenzene ND ND MG/KG 0/15 0.17 - 0.4 4.0E-01 N/A 4.8E+00 C\* N/A NO DLBSL

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil

| Exposure<br>Point | CAS<br>Number | Chemical            | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration      | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion<br>or Selection | [5] |
|-------------------|---------------|---------------------|-------------------------------------------|-------------------------------------------|-------|----------------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|----------------------------------------------------------|-----|
|                   | 87-86-5       | Pentachlorophenol   | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 3.0E+00 C                       | 3.1E-02                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 85-01-8       | Phenanthrene        | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.7E+03 N                       | 5.7E+01                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 108-95-2      | Phenol              | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.8E+03 N                       | 2.3E-01                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 129-00-0      | Pyrene              | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.7E+02 N                       | 2.2E+02                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 72-54-8       | 4,4'-DDD            | 1.3E-03 JP                                | 7.5E-03 J                                 | MG/KG | IR15-SS01-00-01-09C                          | 4/15                   | 0.0017 - 0.0021                 | 7.5E-03                              | N/A                     | 2.0E+00 C                       | 2.4E-01                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 72-55-9       | 4,4'-DDE            | 5.6E-04 J                                 | 2.5E-02 J                                 | MG/KG | IR15-SS01-00-01-09C                          | 10/15                  | 0.0017 - 0.0021                 | 2.5E-02                              | N/A                     | 1.4E+00 C                       | N/A                            |                                 | NO           | BSL                                                      |     |
|                   | 50-29-3       | 4,4'-DDT            | 3.9E-04 J                                 | 2.4E-02 J                                 | MG/KG | IR15-SS10-00-01-09C                          | 9/15                   | 0.0017 - 0.0021                 | 2.4E-02                              | N/A                     | 1.7E+00 C*                      | 3.4E-01                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 309-00-2      | Aldrin              | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 2.9E-02 C*                      | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 319-84-6      | alpha-BHC           | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 7.7E-02 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 5103-71-9     | alpha-Chlordane     | 1.0E-03 J                                 | 7.4E-03 J                                 | MG/KG | IR15-SS01-00-01-09C                          | 3/15                   | 0.0017 - 0.0021                 | 7.4E-03                              | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 12674-11-2    | Aroclor-1016        | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 3.9E-01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 11104-28-2    | Aroclor-1221        | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 11141-16-5    | Aroclor-1232        | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 53469-21-9    | Aroclor-1242        | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 12672-29-6    | Aroclor-1248        | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 11097-69-1    | Aroclor-1254        | 3.6E-01 J                                 | 3.6E-01 J                                 | MG/KG | IR15-SS01-00-01-09C                          | 1/15                   | 0.017 - 0.021                   | 3.6E-01                              | N/A                     | 1.1E-01 C**                     | N/A                            |                                 | YES          | ASL                                                      |     |
|                   | 11096-82-5    | Aroclor-1260        | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                                    |     |
|                   | 319-85-7      | beta-BHC            | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 319-86-8      | delta-BHC           | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 60-57-1       | Dieldrin            | 9.1E-04 J                                 | 1.7E-03 J                                 | MG/KG | IR15-SS09-00-01-09C                          | 2/15                   | 0.0017 - 0.0021                 | 1.7E-03                              | N/A                     | 3.0E-02 C                       | 8.1E-04                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 959-98-8      | Endosulfan I        | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 33213-65-9    | Endosulfan II       | 1.1E-03 JP                                | 1.1E-03 JP                                | MG/KG | SWMU46-SM01-0-1                              | 1/15                   | 0.0017 - 0.0021                 | 1.1E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 1031-07-8     | Endosulfan sulfate  | 1.6E-02 P                                 | 3.8E-02 D                                 | MG/KG | SWMU46-SM03-0-1                              | 4/15                   | 0.0017 - 0.0037                 | 3.8E-02                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 72-20-8       | Endrin              | 1.7E-03 JP                                | 1.7E-03 JP                                | MG/KG | SWMU46-SM01-0-1                              | 1/15                   | 0.0017 - 0.0021                 | 1.7E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 7421-93-4     | Endrin aldehyde     | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 53494-70-5    | Endrin ketone       | 3.8E-03 P                                 | 1.8E-02 P                                 | MG/KG | SWMU46-SM05-0-1                              | 4/15                   | 0.0017 - 0.0021                 | 1.8E-02                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 58-89-9       | gamma-BHC (Lindane) | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 5.2E-01 C*                      | 1.8E-03                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 5103-74-2     | gamma-Chlordane     | 5.8E-04 J                                 | 8.6E-03 J                                 | MG/KG | IR15-SS01-00-01-09C                          | 3/15                   | 0.0017 - 0.0021                 | 8.6E-03                              | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 76-44-8       | Heptachlor          | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 1.1E-01 C                       | 6.6E-03                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 1024-57-3     | Heptachlor epoxide  | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 5.3E-02 C*                      | 8.2E-04                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 72-43-5       | Methoxychlor        | 4.6E-03 J                                 | 4.6E-03 J                                 | MG/KG | SWMU46-SM01-0-1                              | 1/15                   | 0.0017 - 0.008                  | 4.6E-03                              | N/A                     | 3.1E+01 N                       | 2.2E+01                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 8001-35-2     | Toxaphene           | ND                                        | ND                                        | MG/KG |                                              | 0/15                   | 0.035 - 0.1                     | 1.0E-01                              | N/A                     | 4.4E-01 C                       | 4.6E-02                        | NCPSRG                          | NO           | DLBSL                                                    |     |
|                   | 7429-90-5     | Aluminum            | 1.2E+03 J+                                | 1.3E+04                                   | MG/KG | IR15-SS03-00-01-09C                          | 10/10                  | 75.3 - 90.9                     | 1.3E+04                              | 5.5E+03                 | 7.7E+03 N                       | N/A                            |                                 | YES          | ASL                                                      |     |
|                   | 7440-36-0     | Antimony            | 2.7E-01 J                                 | 6.4E-01 J-                                | MG/KG | IR15-SS01-00-01-09C                          | 4/10                   | 1.5 - 1.8                       | 6.4E-01                              | 4.5E-01                 | 3.1E+00 N                       | N/A                            |                                 | NO           | BSL                                                      |     |
|                   | 7440-38-2     | Arsenic             | 2.4E-01 J                                 | 4.7E+00                                   | MG/KG | IR15-SS03D-00-01-09C                         | 16/16                  | 0.27 - 1.8                      | 4.7E+00                              | 6.3E-01                 | 3.9E-01 C*                      | 5.8E+00                        | NCPSRG                          | YES          | ASL                                                      |     |
|                   | 7440-39-3     | Barium              | 9.1E-01                                   | 3.4E+01                                   | MG/KG | IR15-SS01-00-01-09C<br>IR15-SS03D-00-01-09C: | 16/16                  | 1.4 - 4.5                       | 3.4E+01                              | 1.5E+01                 | 1.5E+03 N                       | 5.8E+02                        | NCPSRG                          | NO           | BSL                                                      |     |
|                   | 7440-41-7     | Beryllium           | 3.9E-02 J                                 | 1.4E-01 J                                 | MG/KG | IR15-SS03-00-01-09C                          | 5/10                   | 0.15 - 0.18                     | 1.4E-01                              | 1.0E-01                 | 1.6E+01 N                       | N/A                            |                                 | NO           | BSL                                                      |     |

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil

| Exposure<br>Point | CAS<br>Number | Chemical  | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration      | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening |         | 0 1 7      | Potential<br>ARAR/TBC<br>Value |        | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|-----------|-------------------------------------------|-------------------------------------------|-------|----------------------------------------------|------------------------|---------------------------------|--------------------------------------|---------|------------|--------------------------------|--------|--------------|-----------------------------------------------------|
|                   | 7440-43-9     | Cadmium   | 1.4E-02 J                                 | 6.1E-01                                   | MG/KG | IR15-SS01-00-01-09C                          | 8/16                   | 0.011 - 0.55                    | 6.1E-01                              | 3.3E-02 | 7.0E+00 N  | 3.0E+00                        | NCPSRG | NO           | BSL                                                 |
|                   | 7440-70-2     | Calcium   | 9.4E+01                                   | 3.7E+04                                   | MG/KG | IR15-SS01-00-01-09C                          | 10/10                  | 75.3 - 90.9                     | 3.7E+04                              | 6.4E+03 | N/A        | N/A                            |        | NO           | NUT                                                 |
|                   | 7440-47-3     | Chromium  | 1.4E+00 J                                 | 1.7E+01                                   | MG/KG | IR15-SS03D-00-01-09C<br>IR15-SS01-00-01-09C: | 16/16                  | 0.27 - 1.8                      | 1.7E+01                              | 6.1E+00 | 2.9E-01 C  | 3.8E+00                        | NCPSRG | YES          | ASL                                                 |
|                   | 7440-48-4     | Cobalt    | 6.7E-02 J                                 | 5.7E-01                                   | MG/KG | IR15-SS01-00-01-09C :                        | 8/10                   | 0.38 - 0.45                     | 5.7E-01                              | 2.9E-01 | 2.3E+00 N  | N/A                            |        | NO           | BSL                                                 |
|                   | 7440-50-8     | Copper    | 5.4E-01 J                                 | 4.2E+01                                   | MG/KG | IR15-SS01-00-01-09C                          | 10/10                  | 1.5 - 1.8                       | 4.2E+01                              | 4.8E+00 | 3.1E+02 N  | 7.0E+02                        | NCPSRG | NO           | BSL                                                 |
|                   | 7439-89-6     | Iron      | 5.6E+02                                   | 1.0E+04                                   | MG/KG | IR15-SS03D-00-01-09C                         | 10/10                  | 11.3 - 13.6                     | 1.0E+04                              | 3.2E+03 | 5.5E+03 N  | 1.5E+02                        | NCPSRG | YES          | ASL                                                 |
|                   | 7439-92-1     | Lead      | 3.0E+00                                   | 7.0E+01                                   | MG/KG | IR15-SS01-00-01-09C                          | 16/16                  | 0.27 - 1.8                      | 7.0E+01                              | 1.2E+01 | 4.0E+02 NL | 2.7E+02                        | NCPSRG | NO           | BSL                                                 |
|                   | 7439-95-4     | Magnesium | 4.7E+01                                   | 8.0E+02                                   | MG/KG | IR15-SS03D-00-01-09C                         | 10/10                  | 18.8 - 22.7                     | 8.0E+02                              | 2.4E+02 | N/A        | N/A                            |        | NO           | NUT                                                 |
|                   | 7439-96-5     | Manganese | 4.6E+00                                   | 2.2E+01                                   | MG/KG | IR15-SS01-00-01-09C                          | 10/10                  | 0.38 - 0.45                     | 2.2E+01                              | 1.4E+01 | 1.8E+02 N  | 6.5E+01                        | NCPSRG | NO           | BSL                                                 |
|                   | 7439-97-6     | Mercury   | 1.9E-02 J                                 | 5.1E-01                                   | MG/KG | IR15-SS01-00-01-09C                          | 6/15                   | 0.033 - 0.1                     | 5.1E-01                              | 8.1E-02 | 2.3E+00 N  | 1.0E+00                        | NCPSRG | NO           | BSL                                                 |
|                   | 7440-02-0     | Nickel    | 4.8E-01 J                                 | 2.7E+00                                   | MG/KG | IR15-SS01-00-01-09C                          | 10/10                  | 0.75 - 0.91                     | 2.7E+00                              | 1.2E+00 | 1.6E+02 N  | 1.3E+02                        | NCPSRG | NO           | BSL                                                 |
|                   | 7440-09-7     | Potassium | 1.1E+02                                   | 5.0E+02                                   | MG/KG | IR15-SS03-00-01-09C                          | 7/10                   | 75.3 - 90.9                     | 5.0E+02                              | 1.2E+02 | N/A        | N/A                            |        | NO           | NUT                                                 |
|                   | 7782-49-2     | Selenium  | 2.0E-01 J                                 | 5.2E-01                                   | MG/KG | SWMU46-SM08-0-1                              | 7/16                   | 0.27 - 1.8                      | 5.2E-01                              | 5.6E-01 | 3.9E+01 N  | 2.1E+00                        | NCPSRG | NO           | BSL, BBK                                            |
|                   | 7440-22-4     | Silver    | 5.5E-02 J                                 | 1.7E-01 J                                 | MG/KG | IR15-SS05-00-01-09C                          | 3/16                   | 0.27 - 1.8                      | 1.7E-01                              | 1.4E-01 | 3.9E+01 N  | 3.4E+00                        | NCPSRG | NO           | BSL                                                 |
|                   | 7440-23-5     | Sodium    | 6.7E+00 J                                 | 6.9E+01 J                                 | MG/KG | IR15-SS03D-00-01-09C                         | 5/10                   | 188 - 227                       | 6.9E+01                              | 8.1E+01 | N/A        | N/A                            |        | NO           | NUT, BBK                                            |
|                   | 7440-28-0     | Thallium  | ND                                        | ND                                        | MG/KG |                                              | 0/10                   | 2.3 - 2.7                       | 2.7E+00                              | 3.6E-01 | N/A        | N/A                            |        | NO           | NTX                                                 |
|                   | 7440-62-2     | Vanadium  | 2.2E+00 J                                 | _                                         |       | IR15-SS03D-00-01-09C                         | 10/10                  | 3.8 - 4.5                       | 2.2E+01                              | 8.9E+00 | 3.9E+01 N  | N/A                            |        | NO           | BSL                                                 |
|                   | 7440-66-6     | Zinc      | 6.0E+00                                   | 1.7E+02                                   | MG/KG | IR15-SS01-00-01-09C                          | 7/10                   | 3.8 - 4.5                       | 1.7E+02                              | 1.1E+01 | 2.4E+03 N  | 1.2E+03                        | NCPSRG | NO           | BSL                                                 |

#### Table 2.4

#### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Site 15

MCB Camp Lejeune, North Carolina

Scenario Timeframe: Current/Future

Medium: Surface Soil
Exposure Medium: Surface Soil

| Exposure | CAS    | Chemical | Minimum [1]   | Maximum [1]   | Units | Location      | Detection | Range of  | Concentration [2] | Background [3] | Screening [4]  | Potential | Potential | COPC | Rationale for |
|----------|--------|----------|---------------|---------------|-------|---------------|-----------|-----------|-------------------|----------------|----------------|-----------|-----------|------|---------------|
| Point    | Number |          | Concentration | Concentration |       | of Maximum    | Frequency | Detection | Used for          | Value          | Toxicity Value | ARAR/TBC  | ARAR/TBC  | Flag | Contaminant   |
|          |        |          | Qualifier     | Qualifier     |       | Concentration |           | Limits    | Screening         |                | -              | Value     | Source    | _    | Deletion      |
|          |        |          |               |               |       |               |           |           | _                 |                |                |           |           |      | or Selection  |

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening. If the chemical was not detected, the maximum detection limit is used for screening.
- [3] Background values are two times the arithmetic mean basewide background surface soil concentrations.

Background values are from Final Base Background Soil Study Report, Marine Corps Base Camp Lejeune, North Carolina ,

Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites.

http://epa-prgs.oml.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) residential soil RSLs.

RSL value for 1,4-Dichlorobenzene used as a surrogate for 1,3-Dichlorobenzene

RSL value for n-Hexane used as surrogate for Methylcyclohexane.

RSL value for p-cresol used as surrogate for 3- and 4-methylphenol.

RSL value for methoxychlor used as surrogate for 4-chlorophenyl-phenylether.

RSL value for 2-Nitroaniline used as surrogate for 3-Nitroaniline.

RSL value for nitrobenzene used as surrogate for 4-nitrophenol.

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for technical chlordane used as surrogate for alpha-chlordane.

RSL value for technical-HCH used as surrogate for delta-BHC.

RSL value for technical chlordane used as surrogate for gamma-chlordane.

RSL value for 1,3-dichloropropene used as a surrogate for cis-1,3-dichloropropene and trans-1,3-dichloropropene.

RSL value for endosulfan used as surrogate for endosulfan I, endosulfan II, and endosulfan sulfate.

RSL value for endrin used as surrogate for endrin aldehyde and endrin ketone.

RSL value for 2-chlorophenol used as surrogate for 4-chloro-3-methylphenol and 2-nitrophenol.

RSL value for Mercury (inorganic salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Detection Limit Above Screening Level (DLASL), not quantitatively evaluated in HHRA

Was detected, and other carcinogenic PAHs that were detected were identified as COPCs (cPAH)

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)

Below Screening Level (BSL)

Detection Limit Below Screening Level (DLBSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

NCPSRG = North Carolina Preliminary Soil Remediation Goal, January, 2010

D = Compound identified in an analysis at a secondary dilution factor

J = Estimated Value

J- = Analyte present. Value may be biased low, actual value may be higher.

P = Difference between the concentration on the two columns is greater than 20%

C = Carcinogenic

C\* = N screening level < 100x C screening level, therefore

N screening value/10 used as screening level

C\*\* = N screening level < 10x C screening level, therefore

N screening value/10 used as screening level

MG/KG = Milligrams per kilogram

N = Noncarcinogenic

N/A = Not available/not applicable

ND = Non-detect

NL = Noncarcinongenic lead residential soil RSL not adjusted by dividing by 10.

NS = Concentration exceeds Csat (soil saturation concentration),

Csat used as screening level.

### TABLE 2.4a

Risk Ratio Screening for Surface Soil, Maximum Detected Concentration Camp Johnson Site 15 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Maximum Detected Concentration (Qualifier) | Sample Location of<br>Maximum Detected<br>Concentration | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ                |
|----------------------------------------------------|------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|-----------------------------|
| Semi-volatile Organic Compounds (mg/kg)            |                        |                                            |                                                         |                         |                          |                                            |                                           |                             |
| Chrysene                                           | 2 / 15                 | 2.2E-02 J                                  | SWMU46-SM01-0-1                                         | 1.5E+01                 | 1E-06                    | NA                                         | 1E-09                                     | NA                          |
| Dibenz(a,h)anthracene                              | 1 / 15                 | 6.4E-02 J                                  | IR15-SS03D-00-01-09C                                    | 1.5E-02                 | 1E-06                    | NA                                         | 4E-06                                     | NA                          |
| Indeno(1,2,3-cd)pyrene                             | 1 / 15                 | 5.2E-02 J                                  | IR15-SS03D-00-01-09C                                    | 1.5E-01                 | 1E-06                    | NA                                         | 3E-07                                     | NA                          |
| Polychlorinated Biphenyls (mg/kg)                  |                        |                                            |                                                         |                         |                          |                                            |                                           |                             |
| Aroclor-1254                                       | 1 / 15                 | 3.6E-01 J                                  | IR15-SS01-00-01-09C                                     | 1.1E-01                 | 1E-06                    | NA                                         | 3E-06                                     | NA                          |
| Metals (mg/kg)                                     |                        |                                            |                                                         |                         |                          |                                            |                                           |                             |
| Aluminum                                           | 10 / 10                | 1.3E+04                                    | IR15-SS03-00-01-09C                                     | 7.7E+04                 | 1                        | 0.2                                        | NA                                        | Neurological, Developmental |
| Arsenic                                            | 16 / 16                | 4.7E+00                                    | IR15-SS03D-00-01-09C                                    | 3.9E-01                 | 1E-06                    | NA                                         | 1E-05                                     | NA                          |
| Chromium                                           | 16 / 16                | 1.7E+01                                    | IR15-SS03D-00-01-09C                                    | 2.9E-01                 | 1E-06                    | NA                                         | 6E-05                                     | NA                          |
| Iron                                               | 10 / 10                | 1.0E+04                                    | IR15-SS03D-00-01-09C                                    | 5.5E+04                 | 1                        | 0.2                                        | NA                                        | Gastrointestinal            |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |                                            |                                                         |                         |                          | 0.3                                        |                                           |                             |
| Cumulative Corresponding Cancer Risk <sup>d</sup>  |                        |                                            |                                                         |                         |                          |                                            | 8E-05                                     |                             |
|                                                    |                        |                                            |                                                         |                         |                          | Total                                      | Developmental HI =                        | 0.2                         |
|                                                    |                        |                                            |                                                         |                         |                          | Total                                      | Gastrointestinal HI =                     | 0.2                         |
| Notes:                                             |                        |                                            |                                                         |                         |                          | To                                         | otal Neurological HI =                    | 0.2                         |

### Notes:

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern HI = Hazard Index

J = Estimated Value

mg/kg = milligrams per kilogram

NA = Not available/not applicable

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

d Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

### TABLE 2.4b

Risk Ratio Screening for Surface Soil, 95% UCL Concentration Camp Johnson Site 15 MCB Camp Lejeune, North Carolina

|                                                    | Detection<br>Frequency | 95% UCL      | 95% UCL<br>Rationale | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ |
|----------------------------------------------------|------------------------|--------------|----------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|--------------|
| Analyte                                            |                        |              |                      |                         |                          |                                            |                                           |              |
| Semi-volatile Organic Compounds (mg/kg)            |                        |              |                      |                         |                          |                                            |                                           |              |
| Chrysene                                           | 2 / 15                 | 2.2E-02 7    | Max                  | 1.5E+01                 | 1E-06                    | NA                                         | 1E-09                                     | NA           |
| Dibenz(a,h)anthracene                              | 1 / 15                 | 6.4E-02 6    | Max                  | 1.5E-02                 | 1E-06                    | NA                                         | 4E-06                                     | NA           |
| Indeno(1,2,3-cd)pyrene                             | 1 / 15                 | 5.2E-02 6    | Max                  | 1.5E-01                 | 1E-06                    | NA                                         | 3E-07                                     | NA           |
| Polychlorinated Biphenyls (mg/kg)                  |                        |              |                      |                         |                          |                                            |                                           |              |
| Aroclor-1254                                       | 1 / 15                 | 3.6E-01 6    | Max                  | 1.1E-01                 | 1E-06                    | NA                                         | 3E-06                                     | NA           |
| Metals (mg/kg)                                     |                        |              |                      |                         |                          |                                            |                                           |              |
| Arsenic                                            | 16 / 16                | 2.1E+00 1, 3 | 95% App-G            | 3.9E-01                 | 1E-06                    | NA                                         | 5E-06                                     | NA           |
| Chromium                                           | 16 / 16                | 7.7E+00 1, 3 | 95% App-G            | 2.9E-01                 | 1E-06                    | NA                                         | 3E-05                                     | NA           |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        | ·            |                      |                         |                          | NA                                         |                                           |              |
| Cumulative Corresponding Cancer Risk <sup>d</sup>  |                        |              |                      |                         |                          |                                            | 4E-05                                     |              |

#### Notes:

- <sup>a</sup> Corresponding Hazard Index equals 95% UCL concentration divided by the RSL divided by the acceptable risk level.
- <sup>b</sup> Corresponding Cancer Risk equals 95% UCL concentration divided by the RSL divided by the acceptable risk level
- <sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.
- <sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern mg/kg = milligrams per kilogram HI = Hazard Index NA = Not available/not applicable

ProUCL, Version 4.00.05 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. May 2010. ProUCL, Version 4.0. Prepared by Lockheed Martin Environmental Services). Options: 95% Approximate Gamma UCL (95% App-G); Maximum detected concentration (Max)

Upper Confidence Limit (UCL) Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Test indicates data are gamma distributed.
- (4) Distribution tests are inconclusive
- (5) Max value used because 95% UCL greater than max.
- (6) Only detected in one sample, detected concentration used.
- (7) Only detected in 2 samples, and not a significant contributor to risk at maximum detected concentration

Scenario Timeframe: Future Medium: Surface and Subsurface Soil

Exposure Medium: Surface and Subsurface Soil

| Exposure<br>Point | CAS<br>Number      | Chemical                                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units          | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits    | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|--------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------|-----------------------------------------|------------------------|------------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
| 07-45             | 74.55.0            | A A A Trickless of the second                    | ND                                        | ND                                        | 140,440        |                                         | 0/00                   | 0.0040 0.0004                      | 0.45.00                              | N/A                     | 0.4F : 00. NO                   | 1.05.00                        | Nobobo                          | NO           | DI DOI                                              |
| Site 15           | 71-55-6<br>79-34-5 | 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane  | ND<br>ND                                  | ND<br>ND                                  | MG/KG<br>MG/KG |                                         | 0/20<br>0/20           | 0.0016 - 0.0091<br>0.0016 - 0.0091 | 9.1E-03<br>9.1E-03                   | N/A<br>N/A              | 6.4E+02 NS<br>5.6E-01 C         | 1.2E+00<br>1.2E-03             | NCPSRG<br>NCPSRG                | NO<br>NO     | DLBSL<br>DLBSL                                      |
|                   | 79-34-5<br>76-13-1 | 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | ND<br>ND                                  | ND<br>ND                                  | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03<br>9.1E-03                   | N/A<br>N/A              | 9.1E+02 NS                      | 9.2E+03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-00-5            | 1.1.2-Trichloroethane                            | ND<br>ND                                  | ND<br>ND                                  | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 1.1E+00 C                       | 9.2E+03<br>N/A                 | NCFSRG                          | NO           | DLBSL                                               |
|                   | 79-00-5<br>75-34-3 | 1.1-Dichloroethane                               | ND<br>ND                                  | ND<br>ND                                  | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03<br>9.1E-03                   | N/A<br>N/A              | 3.3E+00 C                       | 3.0E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-34-3<br>75-35-4 | 1.1-Dichloroethane                               | ND<br>ND                                  | ND<br>ND                                  | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 2.4E+01 N                       | 4.6E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 120-82-1           | 1.2.4-Trichlorobenzene                           | 1.9E-03 J                                 | 2.5E-03 J                                 | MG/KG          | IR15-SB07-2-4-09C                       | 4/21                   | 0.0016 - 0.0091                    | 9.1E-03<br>2.5E-03                   | N/A<br>N/A              | 6.2E+00 C**                     | 4.6E-02<br>2.2E+00             | NCPSRG                          | NO           | BSL                                                 |
|                   | 96-12-8            | 1,2-Dibromo-3-chloropropane                      | ND                                        | 2.5E-03 J<br>ND                           | MG/KG          | IK 13-3B07-2-4-09C                      | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 5.4E-03 C                       | 2.5E-04                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 106-93-4           | 1.2-Dibromoethane                                | ND<br>ND                                  | ND                                        | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 3.4E-02 C                       | 9.7E-05                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 95-50-1            | 1.2-Diorioetriarie 1.2-Dichlorobenzene           | ND<br>ND                                  | ND<br>ND                                  | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 1.9E+02 N                       | 2.4E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 107-06-2           | 1,2-Dichloroethane                               | ND<br>ND                                  | ND                                        | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 4.3E-01 C                       | 2.4E-01<br>2.0E-03             | NCPSRG                          | NO           | DLBSL                                               |
|                   | 78-87-5            | 1,2-Dichloropropane                              | ND<br>ND                                  | ND<br>ND                                  | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 9.0E-01 C*                      | 3.3E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 541-73-1           | 1,3-Dichlorobenzene                              | 1.3E-03 J                                 | 1.6E-03 J                                 | MG/KG          | IR15-SB07-2-4-09C                       | 3/21                   | 0.0016 - 0.0091                    | 1.6E-03                              | N/A                     | 2.4E+00 C                       | 0.3E-03<br>N/A                 | NCPSRG                          | NO           | BSL                                                 |
|                   | 106-46-7           | 1.4-Dichlorobenzene                              | 1.4E-03 J                                 | 1.6E-03 J                                 | MG/KG          | IR15-SB07-2-4-09C                       | 2/21                   | 0.0016 - 0.0091                    | 1.6E-03                              | N/A                     | 2.4E+00 C                       | 7.0E-02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 78-93-3            | 2-Butanone                                       | 4.4E-03 J                                 | 4.0E-02 J                                 | MG/KG          | IR15-SS08-00-01-09C                     | 10/21                  | 0.0016 - 0.0091                    | 4.0E-03                              | N/A                     | 2.4E+00 C<br>2.8E+03 N          | 1.6E+01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 591-78-6           | 2-Hexanone                                       | 6.0E-04 J                                 | 4.1E-03 J                                 | MG/KG          | IR15-SB07-2-4-09C                       | 2/21                   | 0.0031 - 0.018                     | 4.1E-03                              | N/A                     | 2.1E+01 N                       | 1.2E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 108-10-1           | 4-Methyl-2-pentanone                             | 1.7E-03 J                                 | 1.7E-03 J                                 | MG/KG          | IR15-SB09-2-7-09C                       | 1/21                   | 0.0031 - 0.018                     | 1.7E-03                              | N/A                     | 5.3E+02 N                       | N/A                            | NOI SING                        | NO           | BSL                                                 |
|                   | 67-64-1            | Acetone                                          | 4.6E-03                                   | 1.7E+00 J                                 | MG/KG          | IR15-SS08-00-01-09C                     | 21/23                  | 0.0031 - 0.036                     | 1.7E+00                              | N/A                     | 6.1E+03 N                       | 2.4E+01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 71-43-2            | Benzene                                          | 4.2E-04 J                                 | 9.7E-04 J                                 | MG/KG          | IR15-SB04-2-7-09C                       | 2/21                   | 0.0031 - 0.030                     | 9.7E-04                              | N/A                     | 1.1E+00 C*                      | 7.3E-02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 75-27-4            | Bromodichloromethane                             | ND                                        | ND                                        | MG/KG          | 11(10 0004 2 7 000                      | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 2.7E-01 C                       | 2.9E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-25-2            | Bromoform                                        | ND                                        | ND                                        | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 6.1E+01 C*                      | 1.9E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 74-83-9            | Bromomethane                                     | ND                                        | ND                                        | MG/KG          |                                         | 0/17                   | 0.0032 - 0.012                     | 1.2E-02                              | N/A                     | 7.3E-01 N                       | N/A                            | 1101 0110                       | NO           | DLBSL                                               |
|                   | 75-15-0            | Carbon disulfide                                 | 1.4E-03 J                                 | 1.4E-03 J                                 | MG/KG          | IR15-SB02D-2-7-09C                      | 1/20                   | 0.0016 - 0.0091                    | 1.4E-03                              | N/A                     | 8.2E+01 N                       | 3.8E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 56-23-5            | Carbon tetrachloride                             | ND                                        | ND                                        | MG/KG          | 05025 2 7 000                           | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 6.1E-01 C                       | 2.0E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 108-90-7           | Chlorobenzene                                    | 2.6E-03 J                                 | 2.6E-03 J                                 | MG/KG          | IR15-SB09-2-7-09C                       | 1/21                   | 0.0016 - 0.0091                    | 2.6E-03                              | N/A                     | 2.9E+01 N                       | 4.5E-01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 75-00-3            | Chloroethane                                     | ND                                        | ND                                        | MG/KG          |                                         | 0/19                   | 0.0032 - 0.014                     | 1.4E-02                              | N/A                     | 1.5E+03 N                       | 1.6E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 67-66-3            | Chloroform                                       | 5.2E-03 J                                 | 5.2E-03 J                                 | MG/KG          | IR15-SS01-00-01-09C                     | 1/20                   | 0.0016 - 0.0091                    | 5.2E-03                              | N/A                     | 2.9E-01 C                       | 3.4E-01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 74-87-3            | Chloromethane                                    | ND                                        | ND                                        | MG/KG          |                                         | 0/20                   | 0.0031 - 0.014                     | 1.4E-02                              | N/A                     | 1.2E+01 N                       | 1.5E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 156-59-2           | cis-1,2-Dichloroethene                           | ND                                        | ND                                        | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 7.8E+01 N                       | 3.6E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 10061-01-5         | cis-1,3-Dichloropropene                          | ND                                        | ND                                        | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 110-82-7           | Cyclohexane                                      | ND                                        | ND                                        | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 1.2E+02 NS                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 124-48-1           | Dibromochloromethane                             | ND                                        | ND                                        | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 6.8E-01 C                       | 1.9E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-71-8            | Dichlorodifluoromethane (Freon-12)               | ND                                        | ND                                        | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 1.8E+01 N                       | 2.9E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 100-41-4           | Ethylbenzene                                     | ND                                        | ND                                        | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 5.4E+00 C                       | 8.1E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 98-82-8            | Isopropylbenzene                                 | ND                                        | ND                                        | MG/KG          |                                         | 0/20                   | 0.0016 - 0.0091                    | 9.1E-03                              | N/A                     | 2.1E+02 N                       | 1.3E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-20-9            | Methyl acetate                                   | 3.5E-03 J                                 | 2.1E+00                                   | MG/KG          | IR15-SS08-00-01-09C                     | 7/21                   | 0.0016 - 0.72                      | 2.1E+00                              | N/A                     | 7.8E+03 N                       | N/A                            |                                 | NO           | BSL                                                 |

Scenario Timeframe: Future Medium: Surface and Subsurface Soil

| Exposure<br>Point | CAS<br>Number | Chemical                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 108-87-2      | Methylcyclohexane                | ND                                        | ND                                        | MG/KG |                                         | 0/20                   | 0.0016 - 0.0091                 | 9.1E-03                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 75-09-2       | Methylene chloride               | 2.9E-03 J                                 | 8.9E-03 J                                 | MG/KG | IR15-SB05-2-7-09C                       | 4/20                   | 0.0031 - 0.014                  | 8.9E-03                              | N/A                     | 1.1E+01 C                       | 2.3E-02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 1634-04-4     | Methyl-tert-butyl ether (MTBE)   | ND                                        | ND                                        | MG/KG |                                         | 0/20                   | 0.0016 - 0.0091                 | 9.1E-03                              | N/A                     | 4.3E+01 C                       | 8.5E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 100-42-5      | Styrene                          | 2.6E-03 J                                 | 2.9E-03 J                                 | MG/KG | IR15-SB07-2-4-09C                       | 2/21                   | 0.0016 - 0.0091                 | 2.9E-03                              | N/A                     | 6.3E+02 N                       | 9.2E-01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 127-18-4      | Tetrachloroethene                | 1.5E-03 J                                 | 1.5E-03 J                                 | MG/KG | IR15-SB09-2-7-09C                       | 1/21                   | 0.0016 - 0.0091                 | 1.5E-03                              | N/A                     | 5.5E-01 C                       | 5.0E-03                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 108-88-3      | Toluene                          | 4.2E-04 J                                 | 1.0E-02 J                                 | MG/KG | IR15-SS08-00-01-09C                     | 4/21                   | 0.0016 - 0.0091                 | 1.0E-02                              | N/A                     | 5.0E+02 N                       | 5.5E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 156-60-5      | trans-1,2-Dichloroethene         | ND                                        | ND                                        | MG/KG |                                         | 0/20                   | 0.0016 - 0.0091                 | 9.1E-03                              | N/A                     | 1.5E+01 N                       | 5.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 10061-02-6    | trans-1,3-Dichloropropene        | ND                                        | ND                                        | MG/KG |                                         | 0/20                   | 0.0016 - 0.0091                 | 9.1E-03                              | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-01-6       | Trichloroethene                  | ND                                        | ND                                        | MG/KG |                                         | 0/20                   | 0.0016 - 0.0091                 | 9.1E-03                              | N/A                     | 2.8E+00 C                       | 1.8E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-69-4       | Trichlorofluoromethane(Freon-11) | ND                                        | ND                                        | MG/KG |                                         | 0/20                   | 0.0016 - 0.0091                 | 9.1E-03                              | N/A                     | 7.9E+01 N                       | 2.4E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-01-4       | Vinyl chloride                   | ND                                        | ND                                        | MG/KG |                                         | 0/20                   | 0.0031 - 0.014                  | 1.4E-02                              | N/A                     | 6.0E-02 C                       | 1.9E-04                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1330-20-7     | Xylene, total                    | ND                                        | ND                                        | MG/KG |                                         | 0/20                   | 0.0016 - 0.0091                 | 9.1E-03                              | N/A                     | 6.3E+01 N                       | 6.0E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 92-52-4       | 1,1-Biphenyl                     | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 2.1E+02 NS                      | 4.3E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 108-60-1      | 2,2'-Oxybis(1-chloropropane)     | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 4.6E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 95-95-4       | 2,4,5-Trichlorophenol            | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 88-06-2       | 2,4,6-Trichlorophenol            | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.36 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+00 C**                     | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 120-83-2      | 2,4-Dichlorophenol               | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 105-67-9      | 2,4-Dimethylphenol               | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.2E+02 N                       | 1.4E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 51-28-5       | 2,4-Dinitrophenol                | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 1.2E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 121-14-2      | 2,4-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.6E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 606-20-2      | 2,6-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+00 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 91-58-7       | 2-Chloronaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.8E+02 NS                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 95-57-8       | 2-Chlorophenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.9E+01 N                       | 4.1E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 91-57-6       | 2-Methylnaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.1E+01 N                       | 1.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 95-48-7       | 2-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 88-74-4       | 2-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 88-75-5       | 2-Nitrophenol                    | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.9E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | m&pCRESOL     | 3- and 4-Methylphenol            | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.73 - 0.8                      | 8.0E-01                              | N/A                     | 3.1E+01 N                       | 4.0E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 91-94-1       | 3,3'-Dichlorobenzidine           | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 1.1E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 99-09-2       | 3-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 534-52-1      | 4,6-Dinitro-2-methylphenol       | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 6.1E-01 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 101-55-3      | 4-Bromophenyl-phenylether        | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 59-50-7       | 4-Chloro-3-methylphenol          | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-47-8      | 4-Chloroaniline                  | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 2.4E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 7005-72-3     | 4-Chlorophenyl-phenylether       | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-44-5      | 4-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/20                   | 0.17 - 0.21                     | 2.1E-01                              | N/A                     | 3.1E+01 N                       | 4.0E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 100-01-6      | 4-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 2.4E+01 C*                      | N/A                            |                                 | NO           | DLBSL                                               |

Scenario Timeframe: Future Medium: Surface and Subsurface Soil

| Exposure<br>Point | CAS<br>Number | Chemical                   | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential ARAR/TBC Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|----------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------|--------------|-----------------------------------------------------|
|                   | 100-02-7      | 4-Nitrophenol              | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 4.8E+00 C*                      | N/A                            |                           | NO           | DLBSL                                               |
|                   | 83-32-9       | Acenaphthene               | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.4E+02 N                       | 8.4E+00                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 208-96-8      | Acenaphthylene             | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.4E+02 N                       | 1.1E+01                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 98-86-2       | Acetophenone               | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 7.8E+02 N                       | N/A                            |                           | NO           | DLBSL                                               |
|                   | 120-12-7      | Anthracene                 | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.7E+03 N                       | 6.6E+02                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 1912-24-9     | Atrazine                   | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 2.1E+00 C                       | 2.5E-02                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 100-52-7      | Benzaldehyde               | ND                                        | ND                                        | MG/KG |                                         | 0/16                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 7.8E+02 N                       | N/A                            |                           | NO           | DLBSL                                               |
|                   | 56-55-3       | Benzo(a)anthracene         | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.035 - 0.4                     | 4.0E-01                              | N/A                     | 1.5E-01 C                       | 1.8E-01                        | NCPSRG                    | YES          | DLASL                                               |
|                   | 50-32-8       | Benzo(a)pyrene             | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.035 - 0.4                     | 4.0E-01                              | N/A                     | 1.5E-02 C                       | 5.9E-02                        | NCPSRG                    | YES          | DLASL                                               |
|                   | 205-99-2      | Benzo(b)fluoranthene       | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.035 - 0.4                     | 4.0E-01                              | N/A                     | 1.5E-01 C                       | 6.0E-01                        | NCPSRG                    | YES          | DLASL                                               |
|                   | 191-24-2      | Benzo(g,h,i)perylene       | 9.5E-02 J                                 | 9.5E-02 J                                 | MG/KG | IR15-SS03D-00-01-09C                    | 1/25                   | 0.17 - 0.4                      | 9.5E-02                              | N/A                     | 1.7E+02 N                       | 3.6E+02                        | NCPSRG                    | NO           | BSL                                                 |
|                   | 207-08-9      | Benzo(k)fluoranthene       | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.5E+00 C                       | 5.9E+00                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 111-91-1      | bis(2-Chloroethoxy)methane | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.8E+01 N                       | N/A                            |                           | NO           | DLBSL                                               |
|                   | 111-44-4      | bis(2-Chloroethyl)ether    | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 2.1E-01 C                       | 1.4E-04                        | NCPSRG                    | YES          | DLASL                                               |
|                   | 117-81-7      | bis(2-Ethylhexyl)phthalate | 3.1E-02 J                                 | 1.8E-01 J                                 | MG/KG | IR15-SS01-00-01-09C                     | 6/25                   | 0.17 - 0.4                      | 1.8E-01                              | N/A                     | 3.5E+01 C*                      | 7.2E+00                        | NCPSRG                    | NO           | BSL                                                 |
|                   | 85-68-7       | Butylbenzylphthalate       | 1.9E-01 J                                 | 1.9E-01 J                                 | MG/KG | IR15-SS01-00-01-09C                     | 1/25                   | 0.17 - 0.4                      | 1.9E-01                              | N/A                     | 2.6E+02 C*                      | 1.5E+02                        | NCPSRG                    | NO           | BSL                                                 |
|                   | 105-60-2      | Caprolactam                | ND                                        | ND                                        | MG/KG |                                         | 0/24                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 3.1E+03 N                       | 1.8E+01                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 86-74-8       | Carbazole                  | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | N/A                             | N/A                            |                           | NO           | NTX                                                 |
|                   | 218-01-9      | Chrysene                   | 1.5E-02 J                                 | 2.2E-02 J                                 | MG/KG | SWMU46-SM01-0-1                         | 2/25                   | 0.17 - 0.4                      | 2.2E-02                              | N/A                     | 1.5E+01 C                       | 1.8E+01                        | NCPSRG                    | YES          | СРАН                                                |
|                   | 53-70-3       | Dibenz(a,h)anthracene      | 6.4E-02 J                                 | 6.4E-02 J                                 | MG/KG | IR15-SS03D-00-01-09C                    | 1/25                   | 0.035 - 0.4                     | 6.4E-02                              | N/A                     | 1.5E-02 C                       | 1.9E-01                        | NCPSRG                    | YES          | ASL                                                 |
|                   | 132-64-9      | Dibenzofuran               | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 7.8E+00 N                       | 4.7E+00                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 84-66-2       | Diethylphthalate           | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 4.9E+03 N                       | 3.7E+01                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 131-11-3      | Dimethyl phthalate         | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | N/A                             | N/A                            |                           | NO           | NTX                                                 |
|                   | 84-74-2       | Di-n-butylphthalate        | 5.0E-02 J                                 | 1.5E-01 J                                 | MG/KG | IR15-SS10-00-01-09C                     | 6/25                   | 0.17 - 0.4                      | 1.5E-01                              | N/A                     | 6.1E+02 N                       | 1.9E+01                        | NCPSRG                    | NO           | BSL                                                 |
|                   | 117-84-0      | Di-n-octylphthalate        | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.5E+01 C*                      | 3.8E+01                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 206-44-0      | Fluoranthene               | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 2.3E+02 N                       | 3.3E+02                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 86-73-7       | Fluorene                   | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 2.3E+02 N                       | 5.6E+01                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 118-74-1      | Hexachlorobenzene          | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.0E-01 C                       | 2.6E-03                        | NCPSRG                    | YES          | DLASL                                               |
|                   | 87-68-3       | Hexachlorobutadiene        | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+00 C**                     | 8.7E-03                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 77-47-4       | Hexachlorocyclopentadiene  | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 3.7E+01 N                       | N/A                            |                           | NO           | DLBSL                                               |
|                   | 67-72-1       | Hexachloroethane           | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 6.1E+00 C**                     | N/A                            |                           | NO           | DLBSL                                               |
|                   | 193-39-5      | Indeno(1,2,3-cd)pyrene     | 5.2E-02 J                                 | 5.2E-02 J                                 | MG/KG | IR15-SS03D-00-01-09C                    | 1/25                   | 0.035 - 0.4                     | 5.2E-02                              | N/A                     | 1.5E-01 C                       | 2.0E+00                        | NCPSRG                    | YES          | CPAH                                                |
|                   | 78-59-1       | Isophorone                 | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.035 - 0.4                     | 4.0E-01                              | N/A                     | 5.1E+02 C*                      | 2.0E-01                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 91-20-3       | Naphthalene                | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 3.6E+00 C*                      | 2.1E-01                        | NCPSRG                    | NO           | DLBSL                                               |
|                   | 621-64-7      | n-Nitroso-di-n-propylamine | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.035 - 0.4                     | 4.0E-01                              | N/A                     | 6.9E-02 C                       | N/A                            |                           | YES          | DLASL                                               |
|                   | 86-30-6       | n-Nitrosodiphenylamine     | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 9.9E+01 C                       | N/A                            |                           | NO           | DLBSL                                               |
|                   | 98-95-3       | Nitrobenzene               | ND                                        | ND                                        | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 4.8E+00 C*                      | N/A                            |                           | NO           | DLBSL                                               |

Scenario Timeframe: Future Medium: Surface and Subsurface Soil

| Exposure<br>Point | CAS<br>Number | Chemical            | Minimum [1] Concentration Qualifier | Maximum [1] Concentration Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion |
|-------------------|---------------|---------------------|-------------------------------------|-------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|----------------------------------------|
|                   |               |                     |                                     |                                     |       |                                         |                        |                                 |                                      |                         |                                 |                                |                                 |              | or Selection                           |
|                   | 87-86-5       | Pentachlorophenol   | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.17 - 1                        | 1.0E+00                              | N/A                     | 3.0E+00 C                       | 3.1E-02                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 85-01-8       | Phenanthrene        | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 4.0E-01                              | N/A                     | 1.7E+03 N                       | 5.7E+01                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 108-95-2      | Phenol              | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 1.8E-01                              | N/A                     | 1.8E+03 N                       | 2.3E-01                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 129-00-0      | Pyrene              | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.17 - 0.4                      | 1.8E-01                              | N/A                     | 1.7E+02 N                       | 2.2E+02                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 72-54-8       | 4,4'-DDD            | 5.8E-04 J                           | 4.6E-02                             | MG/KG | IR15-SB10-2-4-09C                       | 9/25                   | 0.0017 - 0.009                  | 1.8E-01                              | N/A                     | 2.0E+00 C                       | 2.4E-01                        | NCPSRG                          | NO           | BSL                                    |
|                   | 72-55-9       | 4,4'-DDE            | 5.6E-04 J                           | 9.5E-02                             | MG/KG | IR15-SB10-2-4-09C                       | 17/25                  | 0.0017 - 0.009                  | 1.8E-01                              | N/A                     | 1.4E+00 C                       | N/A                            |                                 | NO           | BSL                                    |
|                   | 50-29-3       | 4,4'-DDT            | 3.9E-04 J                           | 1.8E-01                             | MG/KG | IR15-SB10-2-4-09C                       | 14/25                  | 0.0017 - 0.018                  | 1.8E-01                              | N/A                     | 1.7E+00 C*                      | 3.4E-01                        | NCPSRG                          | NO           | BSL                                    |
|                   | 309-00-2      | Aldrin              | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 2.9E-02 C*                      | N/A                            |                                 | NO           | DLBSL                                  |
|                   | 319-84-6      | alpha-BHC           | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 7.7E-02 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 5103-71-9     | alpha-Chlordane     | 1.0E-03 J                           | 9.9E-03 J                           | MG/KG | IR15-SB10-2-4-09C                       | 5/25                   | 0.0017 - 0.0021                 | 9.9E-03                              | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO           | BSL                                    |
|                   | 12674-11-2    | Aroclor-1016        | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 3.9E-01 N                       | N/A                            |                                 | NO           | DLBSL                                  |
|                   | 11104-28-2    | Aroclor-1221        | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO           | DLBSL                                  |
|                   | 11141-16-5    | Aroclor-1232        | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO           | DLBSL                                  |
|                   | 53469-21-9    | Aroclor-1242        | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                  |
|                   | 12672-29-6    | Aroclor-1248        | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                  |
|                   | 11097-69-1    | Aroclor-1254        | 3.6E-01 J                           | 3.6E-01 J                           | MG/KG | IR15-SS01-00-01-09C                     | 1/25                   | 0.017 - 0.021                   | 3.6E-01                              | N/A                     | 1.1E-01 C**                     | N/A                            |                                 | YES          | ASL                                    |
|                   | 11096-82-5    | Aroclor-1260        | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.017 - 0.021                   | 2.1E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                  |
|                   | 319-85-7      | beta-BHC            | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 319-86-8      | delta-BHC           | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 60-57-1       | Dieldrin            | 9.1E-04 J                           | 2.3E-03                             | MG/KG | IR15-SB05-2-7-09C                       | 3/25                   | 0.0017 - 0.0021                 | 2.3E-03                              | N/A                     | 3.0E-02 C                       | 8.1E-04                        | NCPSRG                          | NO           | BSL                                    |
|                   | 959-98-8      | Endosulfan I        | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 33213-65-9    | Endosulfan II       | 1.1E-03 JP                          | 1.1E-03 JP                          | MG/KG | SWMU46-SM01-0-1                         | 1/25                   | 0.0017 - 0.0021                 | 1.1E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | BSL                                    |
|                   | 1031-07-8     | Endosulfan sulfate  | 1.6E-02 P                           | 3.8E-02 D                           | MG/KG | SWMU46-SM03-0-1                         | 4/25                   | 0.0017 - 0.0037                 | 3.8E-02                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | BSL                                    |
|                   | 72-20-8       | Endrin              | 1.7E-03 JP                          | 1.7E-03 JP                          | MG/KG | SWMU46-SM01-0-1                         | 1/25                   | 0.0017 - 0.0021                 | 1.7E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | BSL                                    |
|                   | 7421-93-4     | Endrin aldehyde     | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 53494-70-5    | Endrin ketone       | 3.8E-03 P                           | 1.8E-02 P                           | MG/KG | SWMU46-SM05-0-1                         | 4/25                   | 0.0017 - 0.0021                 | 1.8E-02                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | BSL                                    |
|                   | 58-89-9       | gamma-BHC (Lindane) | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 5.2E-01 C*                      | 1.8E-03                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 5103-74-2     | gamma-Chlordane     | 5.8E-04 J                           | 8.6E-03 J                           | MG/KG | IR15-SS01-00-01-09C                     | 5/25                   | 0.0017 - 0.0021                 | 8.6E-03                              | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO           | BSL                                    |
|                   | 76-44-8       | Heptachlor          | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 1.1E-01 C                       | 6.6E-03                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 1024-57-3     | Heptachlor epoxide  | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.0017 - 0.0021                 | 2.1E-03                              | N/A                     | 5.3E-02 C*                      | 8.2E-04                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 72-43-5       | Methoxychlor        | 4.6E-03 J                           | 4.6E-03 J                           | MG/KG | SWMU46-SM01-0-1                         | 1/25                   | 0.0017 - 0.008                  | 4.6E-03                              | N/A                     | 3.1E+01 N                       | 2.2E+01                        | NCPSRG                          | NO           | BSL                                    |
|                   | 8001-35-2     | Toxaphene           | ND                                  | ND                                  | MG/KG |                                         | 0/25                   | 0.035 - 0.1                     | 1.0E-01                              | N/A                     | 4.4E-01 C                       | 4.6E-02                        | NCPSRG                          | NO           | DLBSL                                  |
|                   | 7429-90-5     | Aluminum            | 4.6E+02                             | 1.3E+04                             | MG/KG | IR15-SS03-00-01-09C                     | 20/20                  | 75.3 - 430                      | 1.3E+04                              | 5.5E+03                 | 7.7E+03 N                       | N/A                            |                                 | YES          | ASL                                    |
|                   | 7440-36-0     | Antimony            | 2.1E-01 J-                          | 8.2E-01 J-                          | MG/KG | IR15-SB01-4-6-09C                       | 6/20                   | 1.5 - 8.6                       | 8.2E-01                              | 3.6E-01                 | 3.1E+00 N                       | N/A                            |                                 | NO           | BSL                                    |
|                   | 7440-38-2     | Arsenic             | 2.4E-01 J                           | 1.7E+01                             | MG/KG | IR15-SB09-2-7-09C                       | 25/26                  | 0.27 - 8.6                      | 1.7E+01                              | 6.3E-01                 | 3.9E-01 C*                      | 5.8E+00                        | NCPSRG                          | YES          | ASL                                    |
|                   | 7440-39-3     | Barium              | 2.9E+00 J                           | 3.4E+01                             | MG/KG | IR15-SS01-00-01-09C                     | 24/26                  | 1.4 - 21.5                      | 3.4E+01                              | 1.5E+01                 | 1.5E+03 N                       | 5.8E+02                        | NCPSRG                          | NO           | BSL                                    |
|                   | 7440-41-7     | Beryllium           | 3.9E-02 J                           | 1.4E-01 J                           | MG/KG | IR15-SS03-00-01-09C                     | 9/20                   | 0.15 - 0.86                     | 1.4E-01                              | 1.0E-01                 | 1.6E+01 N                       | N/A                            |                                 | NO           | BSL                                    |

Scenario Timeframe: Future Medium: Surface and Subsurface Soil

| Exposure<br>Point | CAS<br>Number | Chemical  | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|-----------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 7440-43-9     | Cadmium   | 1.4E-02 J                                 | 8.2E-01 J                                 | MG/KG | IR15-SB09-2-7-09C                       | 11/26                  | 0.11 - 2.6                      | 8.2E-01                                    | 2.3E-02                 | 7.0E+00 N                       | 3.0E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 7440-70-2     | Calcium   | 9.4E+01                                   | 3.7E+04                                   | MG/KG | IR15-SS01-00-01-09C                     | 18/20                  | 75.3 - 430                      | 3.7E+04                                    | 4.4E+02                 | N/A                             | N/A                            |                                 | NO           | NUT                                                 |
|                   | 7440-47-3     | Chromium  | 1.1E+00 J                                 | 5.2E+01 J                                 | MG/KG | IR15-SB09-2-7-09C                       | 26/26                  | 0.27 - 8.6                      | 5.2E+01                                    | 6.1E+00                 | 2.9E-01 C                       | 3.8E+00                        | NCPSRG                          | YES          | ASL                                                 |
|                   | 7440-48-4     | Cobalt    | 6.6E-02 J                                 | 9.3E+00                                   | MG/KG | IR15-SB09-2-7-09C                       | 17/20                  | 0.38 - 4.5                      | 9.3E+00                                    | 2.9E-01                 | 2.3E+00 N                       | N/A                            |                                 | YES          | ASL                                                 |
|                   | 7440-50-8     | Copper    | 2.7E-01 J                                 | 4.2E+01                                   | MG/KG | IR15-SS01-00-01-09C                     | 19/20                  | 1.5 - 8.6                       | 4.2E+01                                    | 2.6E+00                 | 3.1E+02 N                       | 7.0E+02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 7439-89-6     | Iron      | 1.5E+02 J+                                | 1.8E+05 J+                                | MG/KG | IR15-SB09-2-7-09C                       | 20/20                  | 11.3 - 64.5                     | 1.8E+05                                    | 3.2E+03                 | 5.5E+03 N                       | 1.5E+02                        | NCPSRG                          | YES          | ASL                                                 |
|                   | 7439-92-1     | Lead      | 1.3E+00 J                                 | 4.8E+02                                   | MG/KG | IR15-SB01-4-6-09C                       | 26/26                  | 0.27 - 8.6                      | 4.8E+02                                    | 8.5E+00                 | 4.0E+02 NL                      | 2.7E+02                        | NCPSRG                          | YES          | ASL                                                 |
|                   | 7439-95-4     | Magnesium | 1.7E+01 J                                 | 8.0E+02                                   | MG/KG | IR15-SS03D-00-01-09C                    | 20/20                  | 18.8 - 108                      | 8.0E+02                                    | 2.4E+02                 | N/A                             | N/A                            |                                 | NO           | NUT                                                 |
|                   | 7439-96-5     | Manganese | 1.5E+00                                   | 6.3E+02                                   | MG/KG | IR15-SB09-2-7-09C                       | 20/20                  | 0.38 - 2.2                      | 6.3E+02                                    | 9.3E+00                 | 1.8E+02 N                       | 6.5E+01                        | NCPSRG                          | YES          | ASL                                                 |
|                   | 7439-97-6     | Mercury   | 2.7E-03 J                                 | 5.1E-01                                   | MG/KG | IR15-SS01-00-01-09C                     | 12/25                  | 0.033 - 0.1                     | 5.1E-01                                    | 7.1E-02                 | 2.3E+00 N                       | 1.0E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 7440-02-0     | Nickel    | 4.8E-01 J                                 | 2.4E+01                                   | MG/KG | IR15-SB09-2-7-09C                       | 18/20                  | 0.75 - 4.3                      | 2.4E+01                                    | 1.2E+00                 | 1.6E+02 N                       | 1.3E+02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 7440-09-7     | Potassium | 1.8E+01 J                                 | 5.0E+02                                   | MG/KG | IR15-SS03-00-01-09C                     | 17/20                  | 75.3 - 430                      | 5.0E+02                                    | 1.2E+02                 | N/A                             | N/A                            |                                 | NO           | NUT                                                 |
|                   | 7782-49-2     | Selenium  | 2.0E-01 J                                 | 5.2E-01                                   | MG/KG | SWMU46-SM08-0-1                         | 7/26                   | 0.27 - 8.6                      | 5.2E-01                                    | 5.1E-01                 | 3.9E+01 N                       | 2.1E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 7440-22-4     | Silver    | 5.5E-02 J                                 | 1.7E-01 J                                 | MG/KG | IR15-SS05-00-01-09C                     | 3/26                   | 0.27 - 8.6                      | 1.7E-01                                    | 1.3E-01                 | 3.9E+01 N                       | 3.4E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 7440-23-5     | Sodium    | 4.3E+00 J                                 | 6.9E+01 J                                 | MG/KG | IR15-SS03D-00-01-09C                    | 11/20                  | 188 - 1080                      | 6.9E+01                                    | 6.8E+01                 | N/A                             | N/A                            |                                 | NO           | NUT                                                 |
|                   | 7440-28-0     | Thallium  | 1.9E+00 J                                 | 1.9E+00 J                                 | MG/KG | IR15-SB09-2-7-09C                       | 1/20                   | 2.3 - 12.9                      | 1.9E+00                                    | 3.6E-01                 | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 7440-62-2     | Vanadium  | 2.2E+00 J                                 | 2.2E+01                                   | MG/KG | IR15-SS03D-00-01-09C                    | 18/20                  | 3.8 - 21.5                      | 2.2E+01                                    | 8.9E+00                 | 3.9E+01 N                       | N/A                            |                                 | NO           | BSL                                                 |
|                   | 7440-66-6     | Zinc      | 1.5E+00 J                                 | 3.5E+02                                   | MG/KG | IR15-SB01-4-6-09C                       | 13/20                  | 3.8 - 21.5                      | 3.5E+02                                    | 6.6E+00                 | 2.4E+03 N                       | 1.2E+03                        | NCPSRG                          | NO           | BSL                                                 |

### Table 2.5

### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Site 15 MCB Camp Lejeune, North Carolina

Scenario Timeframe: Future

Medium: Surface and Subsurface Soil

Exposure Medium: Surface and Subsurface Soil

| Exposure | CAS    | Chemical | Minimum [1]   | Maximum [1]   | Units | Location      | Detection | Range of  | Concentration [2] | Background [3] | Screening [4]  | Potential | Potential | COPC | Rationale for [5] |
|----------|--------|----------|---------------|---------------|-------|---------------|-----------|-----------|-------------------|----------------|----------------|-----------|-----------|------|-------------------|
| Point    | Number |          | Concentration | Concentration |       | of Maximum    | Frequency | Detection | Used for          | Value          | Toxicity Value | ARAR/TBC  | ARAR/TBC  | Flag | Contaminant       |
|          |        |          | Qualifier     | Qualifier     |       | Concentration |           | Limits    | Screening         |                |                | Value     | Source    |      | Deletion          |
|          |        |          |               |               |       |               |           |           |                   |                |                |           |           |      | or Selection      |

- [1] Minimum/Maximum detected concentrations.
- Maximum concentration is used for screening. If the chemical was not detected, the maximum detection limit is used for screening. [2]
- [3] Background values are lower of two times the arithmetic mean basewide background surface soil or subsurface soil concentrations.

Background values are from Final Base Background Soil Study Report, Marine Corps Base Camp Lejeune, North Carolina,

Baker Environmental, April 25, 2001.

Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites.

http://epa-prgs.ornl.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) residential soil RSLs.

RSL value for 1,4-Dichlorobenzene used as a surrogate for 1,3-Dichlorobenzene

RSL value for p-cresol used as surrogate for 3- and 4-methylphenol.

RSL value for methoxychlor used as surrogate for 4-chlorophenyl-phenylether.

RSL value for nitrobenzene used as surrogate for 4-nitrophenol.

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for technical chlordane used as surrogate for alpha-chlordane.

RSL value for technical-HCH used as surrogate for delta-BHC.

RSL value for technical chlordane used as surrogate for gamma-chlordane.

RSL value for 1,3-dichloropropene used as a surrogate for cis-1,3-dichloropropene and trans-1,3-dichloropropene.

RSL value for endosulfan used as surrogate for endosulfan I, endosulfan II, and endosulfan sulfate.

RSL value for endrin used as surrogate for endrin aldehyde and endrin ketone.

RSL value for 2-chlorophenol used as surrogate for 4-chloro-3-methylphenol and 2-nitrophenol.

RSL value for Mercury (inorganic salts) used for mercury.

Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Detection Limit Above Screening Level (DLASL), not quantitatively evaluated in HHRA

Was detected, and other carcinogenic PAHs that were detected were identified as COPCs (cPAH)

Deletion Reason: No Toxicity Information (NTX)

> Essential Nutrient (NUT) Below Screening Level (BSL)

Detection Limit Below Screening Level (DLBSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

NCPSRG = North Carolina Preliminary Soil Remediation Goal, January, 2010

D = Compound identified in an analysis at a secondary dilution factor

J = Estimated Value

J+ = Analyte present, value may be biased high, actual value may be lower

P = Difference between the concentration on the two columns is greater than 20%

C = Carcinogenic

C\* = N screening level < 100x C screening level, therefore

N screening value/10 used as screening level

 $C^{**} = N$  screening level < 10x C screening level, therefore

N screening value/10 used as screening level

MG/KG = Milligrams per kilogram

N = Noncarcinogenic

N/A = Not available

ND = Non-detect

NL = Noncarcinogenic lead residential soil RSL not adjusted by dividing by 10.

NS = Concentration exceeds Csat (soil saturation concentration),

Csat used as screening level.

### TABLE 2.5a

Risk Ratio Screening for Surface and Subsurface Soil, Maximum Detected Concentration Camp Johnson Site 15 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Maximum Detected Concentration (Qualifier) | Sample Location of<br>Maximum Detected<br>Concentration | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ                |
|----------------------------------------------------|------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|-----------------------------|
| Semi-volatile Organic Compounds (mg/kg)            |                        |                                            |                                                         |                         |                          |                                            |                                           |                             |
| Chrysene                                           | 2 / 25                 | 2.2E-02 J                                  | SWMU46-SM01-0-1                                         | 1.5E+01                 | 1E-06                    | NA                                         | 1E-09                                     | NA                          |
| Dibenz(a,h)anthracene                              | 1 / 25                 | 6.4E-02 J                                  | IR15-SS03D-00-01-09C                                    | 1.5E-02                 | 1E-06                    | NA                                         | 4E-06                                     | NA                          |
| Indeno(1,2,3-cd)pyrene                             | 1 / 25                 | 5.2E-02 J                                  | IR15-SS03D-00-01-09C                                    | 1.5E-01                 | 1E-06                    | NA                                         | 3E-07                                     | NA                          |
| Polychlorinated Biphenyls (mg/kg)                  |                        |                                            |                                                         |                         |                          |                                            |                                           |                             |
| Aroclor-1254                                       | 1 / 25                 | 3.6E-01 J                                  | IR15-SS01-00-01-09C                                     | 1.1E-01                 | 1E-06                    | NA                                         | 3E-06                                     | NA                          |
| Metals (mg/kg)                                     |                        |                                            |                                                         |                         |                          |                                            |                                           |                             |
| Aluminum                                           | 20 / 20                | 1.3E+04                                    | IR15-SS03-00-01-09C                                     | 7.7E+04                 | 1                        | 0.2                                        | NA                                        | Neurological, Developmental |
| Arsenic                                            | 25 / 26                | 1.7E+01                                    | IR15-SB09-2-7-09C                                       | 3.9E-01                 | 1E-06                    | NA                                         | 4E-05                                     | NA NA                       |
| Chromium                                           | 26 / 26                | 5.2E+01 J                                  | IR15-SB09-2-7-09C                                       | 2.9E-01                 | 1E-06                    | NA                                         | 2E-04                                     | NA                          |
| Cobalt                                             | 17 / 20                | 9.3E+00                                    | IR15-SB09-2-7-09C                                       | 2.3E+01                 | 1E+00                    | 0.4                                        | NA                                        | Thyroid                     |
| Iron                                               | 20 / 20                | 1.8E+05 J+                                 | IR15-SB09-2-7-09C                                       | 5.5E+04                 | 1                        | 3.3                                        | NA                                        | Gastrointestinal            |
| Lead                                               | 26 / 26                | 4.8E+02                                    | IR15-SB01-4-6-09C                                       | NA                      |                          | NA                                         |                                           |                             |
| Manganese                                          | 20 / 20                | 6.3E+02                                    | IR15-SB09-2-7-09C                                       | 1.8E+03                 | 1                        | 0.3                                        | NA                                        | Central Nervous System      |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |                                            |                                                         |                         |                          | 4.2                                        |                                           |                             |
| Cumulative Corresponding Cancer Risk <sup>d</sup>  |                        |                                            | ·                                                       | ·                       |                          |                                            | 2E-04                                     |                             |
|                                                    |                        |                                            |                                                         |                         |                          | Total                                      | Developmental HI =                        | 0.2                         |
|                                                    |                        |                                            |                                                         |                         |                          | Total                                      | Gastrointestinal HI =                     | 3.3                         |
|                                                    |                        |                                            |                                                         |                         |                          | Total N                                    | Nervous System HI =                       | 0.5                         |

### Notes:

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index

J = Estimated Value

J+ = Analyte present, value may be biased high, actual value may be lower

mg/kg = milligrams per kilogram

NA = Not available/not applicable

Total Thyroid HI =

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

### TABLE 2.5b

Risk Ratio Screening for Surface and Subsurface Soil, 95% UCL Concentration Camp Johnson Site 15 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | 95% U   | CL   | 95% UCL<br>Rationale | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ     |
|----------------------------------------------------|------------------------|---------|------|----------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|------------------|
| Semi-volatile Organic Compounds (mg/kg)            |                        |         |      |                      |                         |                          |                                            |                                           |                  |
| Chrysene                                           | 2 / 25                 | 2.2E-02 | 4, 5 | Max                  | 1.5E+01                 | 1E-06                    | NA                                         | 1E-09                                     | NA               |
| Dibenz(a,h)anthracene                              | 1 / 25                 | 6.4E-02 | 6    | Max                  | 1.5E-02                 | 1E-06                    | NA                                         | 4E-06                                     | NA               |
| Indeno(1,2,3-cd)pyrene                             | 1 / 25                 | 5.2E-02 | 6    | Max                  | 1.5E-01                 | 1E-06                    | NA                                         | 3E-07                                     | NA               |
| Polychlorinated Biphenyls (mg/kg)                  |                        |         |      |                      |                         |                          |                                            |                                           |                  |
| Aroclor-1254                                       | 1 / 25                 | 3.6E-01 | 6    | Max                  | 1.1E-01                 | 1E-06                    | NA                                         | 3E-06                                     | NA               |
| Metals (mg/kg)                                     |                        |         |      |                      |                         |                          |                                            |                                           |                  |
| Arsenic                                            | 25 / 26                | 4.7E+00 | 1    | 95% KM-c             | 3.9E-01                 | 1E-06                    | NA                                         | 1E-05                                     | NA               |
| Chromium                                           | 26 / 26                | 9.9E+00 | 1    | 95% H                | 2.9E-01                 | 1E-06                    | NA                                         | 3E-05                                     | NA               |
| Iron                                               | 20 / 20                | 5.0E+04 | 1    | 95% Cheb-m           | 5.5E+04                 | 1                        | 0.9                                        | NA                                        | Gastrointestinal |
| Lead                                               | 26 / 26                | 3.6E+01 | 7    | Mean                 | NA                      |                          | NA                                         | NA                                        | NA               |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |         |      |                      |                         | •                        | 0.9                                        |                                           | ·                |
| Cumulative Corresponding Cancer Risk <sup>d</sup>  |                        | •       |      |                      |                         | •                        |                                            | 5E-05                                     |                  |
|                                                    |                        |         |      |                      |                         |                          | Total                                      | Gastrointestinal HI =                     | 0.9              |

### Notes:

- <sup>a</sup> Corresponding Hazard Index equals 95% UCL concentration divided by the RSL divided by the acceptable risk level.
- <sup>b</sup> Corresponding Cancer Risk equals 95% UCL concentration divided by the RSL divided by the acceptable risk level
- <sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.
- <sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern mg/kg = milligrams per kilogram HI = Hazard Index NA = Not available/not applicable

ProUCL, Version 4.00.05 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. May 2010. ProUCL, Version 4.0. Prepared by Lockheed Martin Environmental Services).

Options: 95% Kaplan-Meier (Chebyshev) UCL (95% KM-c); 95% H UCL (95% H); 95% Chebyshev (MVUE) UCL (95% Cheb); 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m); Maximum detected concentration (Max); Arithmetic Mean (Mean)

### Upper Confidence Limit (UCL) Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Test indicates data are gamma distributed.
- (4) Distribution tests are inconclusive
- (5) Max value used because 95% UCL greater than max.
- (6) Only detected in one sample, detected concetration used.
- (7) Lead evaluated using arithmetic mean concentration in lead models, therefore, arithmetic mean concentration presented here.

| Exposure<br>Point | CAS<br>Number | Chemical                                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag |        |
|-------------------|---------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|--------|
| Site 15           | 71-55-6       | 1.1.1-Trichloroethane                            | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 9.1E+02 N                       | 2.0E+02                        | MCL. 15A NCAC 2L                | NO           | DLBSL  |
| Site 15           | 79-34-5       | 1,1,2,2-Tetrachloroethane                        | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/4                    | 1 - 1                           | 2.4E+00                                    | N/A<br>N/A              | 6.7E-02 C                       | 2.0E+02<br>2.0E-01             | 15A NCAC 2L                     | YES          | DLBSL  |
|                   | 76-13-1       | 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/4                    | 1 - 2.4                         | 1.0E+00                                    | N/A                     | 5.9E+03 N                       | 2.0E+05                        | 15A NCAC 2L<br>15A NCAC 2L      | NO           | DLASL  |
|                   | 79-00-5       | 1.1.2-Trichloroethane                            | ND<br>ND                                  | ND                                        | UG/L  |                                         | 0/4                    | 1-1                             | 1.0E+00                                    | N/A                     | 2.4E-01 C                       | 5.0E+00                        | MCL                             | YES          | DLASL  |
|                   | 75-34-3       | 1.1-Dichloroethane                               | ND                                        | ND<br>ND                                  | UG/L  |                                         | 0/4                    | 1-1                             | 1.0E+00                                    | N/A                     | 2.4E+00 C                       | 6.0E+00                        | 15A NCAC 2L                     | NO           | DLASL  |
|                   | 75-35-4       | 1,1-Dichloroethene                               | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1-1                             | 1.0E+00                                    | N/A                     | 3.4E+01 N                       | 7.0E+00                        | MCL, 15A NCAC 2L                | NO           | DLBSL  |
|                   | 120-82-1      | 1.2.4-Trichlorobenzene                           | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1-1                             | 1.0E+00                                    | N/A                     | 4.1E-01 C**                     | 7.0E+01                        | MCL, 15A NCAC 2L                | YES          | DLASL  |
|                   | 106-93-4      | 1.2-Dibromoethane                                | ND<br>ND                                  | ND                                        | UG/L  |                                         | 0/4                    | 1-1                             | 1.0E+00                                    | N/A                     | 6.5E-03 C                       | 5.0E-02                        | MCL MCL                         | YES          | DLASL  |
|                   | 100-33-4      | 1,2-Dibioinoetilaile                             | ND                                        | ND                                        | OG/L  |                                         | 0/4                    | 1-1                             | 1.02+00                                    | IN/A                    | 0.5L-03 C                       | 2.0E-02                        | 15A NCAC 2L                     | ILS          | DLAGE  |
|                   | 95-50-1       | 1.2-Dichlorobenzene                              | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 3.7E+01 N                       | 6.0E+02                        | MCL                             | NO           | DLBSL  |
|                   | 30 30 1       | 1,2-Dictiloroberizerie                           | 145                                       | ND                                        | OO/L  |                                         | 0/4                    |                                 | 1.02100                                    | 10/3                    | 3.72101 14                      | 2.0E+01                        | 15A NCAC 2L                     | 140          | DEBGE  |
|                   | 107-06-2      | 1.2-Dichloroethane                               | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.5E-01 C                       | 5.0E+00                        | MCL                             | YES          | DLASL  |
|                   | 107-00-2      | 1,2-Distributed traine                           | 145                                       | I I I                                     | OO/L  |                                         | 0/4                    |                                 | 1.02100                                    | 10/3                    | 1.52-01-0                       | 4.0E-01                        | 15A NCAC 2L                     | 120          | DEAGE  |
|                   | 78-87-5       | 1,2-Dichloropropane                              | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 3.9E-01 C*                      | 5.0E+00                        | MCL                             | YES          | DLASL  |
|                   | 70-07-5       | 1,2-Dichiolopiopane                              | ND                                        | ND                                        | OG/L  |                                         | 0/4                    | 1-1                             | 1.02+00                                    | IN/A                    | 3.9L-01 C                       | 6.0E-01                        | 15A NCAC 2L                     | ILS          | DLAGE  |
|                   | 541-73-1      | 1.3-Dichlorobenzene                              | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 4.3E-01 C                       | 2.0E+02                        | 15A NCAC 2L                     | YES          | DLASL  |
|                   | 106-46-7      | 1,4-Dichlorobenzene                              | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1-1                             | 1.0E+00                                    | N/A                     | 4.3E-01 C                       | 7.5E+01                        | MCL                             | YES          | DLASL  |
|                   | 100 40 7      | 1,4-Dictiloroberizerie                           | 145                                       | I I I                                     | OO/L  |                                         | 0/4                    |                                 | 1.02100                                    | 10/3                    | 4.52-01 0                       | 6.0E+00                        | 15A NCAC 2L                     | 120          | DEAGE  |
|                   | 78-93-3       | 2-Butanone                                       | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 5 - 5                           | 5.0E+00                                    | N/A                     | 7.1E+02 N                       | 4.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL  |
|                   | 591-78-6      | 2-Hexanone                                       | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 5 - 5                           | 5.0E+00                                    | N/A                     | 4.7E+00 N                       | N/A                            | IOA NOAO ZE                     | YES          | DLASL  |
|                   | 108-10-1      | 4-Methyl-2-pentanone                             | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 5 - 5                           | 5.0E+00                                    | N/A                     | 2.0E+02 N                       | N/A                            |                                 | NO           | DLBSL  |
|                   | 67-64-1       | Acetone                                          | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 5 - 5                           | 5.0E+00                                    | N/A                     | 2.2E+03 N                       | 6.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL  |
|                   | 71-43-2       | Benzene                                          | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 4.1E-01 C                       | 5.0E+00                        | MCL                             | YES          | DLASL  |
|                   | 1             | 2012010                                          | 1,15                                      | .,,5                                      | 00,2  |                                         | 0, 1                   |                                 | 1.02100                                    |                         |                                 | 1.0E+00                        | 15A NCAC 2L                     |              | 52.102 |
|                   | 75-27-4       | Bromodichloromethane                             | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.2E-01 C                       | 8.0E+01                        | MCL                             | YES          | DLASL  |
|                   | 15214         | Bromodernoromenane                               | 145                                       | I I I                                     | OO/L  |                                         | 0/4                    |                                 | 1.02100                                    | 10/3                    | 1.22-01 0                       | 6.0E-01                        | 15A NCAC 2L                     | 120          | DEAGE  |
|                   | 75-25-2       | Bromoform                                        | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 8.5E+00 C*                      | 8.0E+01                        | MCL                             | NO           | DLBSL  |
|                   | 10202         | Sidmolom                                         |                                           | 5                                         | 00,2  |                                         | 0, 1                   |                                 | 1.02100                                    | 1071                    | 0.02100 0                       | 4.0E+00                        | 15A NCAC 2L                     |              | DEBOL  |
|                   | 74-83-9       | Bromomethane                                     | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1.1 - 1.1                       | 1.1E+00                                    | N/A                     | 8.7E-01 N                       | N/A                            | 10/11/0/10/22                   | YES          | DLASL  |
|                   | 75-15-0       | Carbon disulfide                                 | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.0E+02 N                       | 7.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL  |
|                   | 56-23-5       | Carbon tetrachloride                             | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1-1                             | 1.0E+00                                    | N/A                     | 4.4E-01 C                       | 5.0E+00                        | MCL                             | YES          | DLASL  |
|                   | 1 200         |                                                  |                                           | .,,,                                      | 30,2  |                                         | , o, .                 |                                 |                                            |                         |                                 | 3.0E-01                        | 15A NCAC 2L                     | 0            | 32.02  |
|                   | 108-90-7      | Chlorobenzene                                    | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 9.1E+00 N                       | 1.0E+02                        | MCL                             | NO           | DLBSL  |
|                   | . 50 00 .     |                                                  |                                           |                                           | 30,2  |                                         | ٠,٠                    |                                 |                                            |                         | 3.12.00 14                      | 5.0E+01                        | 15A NCAC 2L                     |              | 32332  |
|                   | 75-00-3       | Chloroethane                                     | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 2.1E+03 N                       | 3.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL  |
|                   | 67-66-3       | Chloroform                                       | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/4                    | 1-1                             | 1.0E+00                                    | N/A                     | 1.9E-01 C                       | 8.0E+01                        | MCL                             | YES          | DLASL  |
|                   | 1             |                                                  | ""                                        |                                           | 30,2  |                                         |                        |                                 |                                            | .,,,                    |                                 | 7.0E+01                        | 15A NCAC 2L                     |              | 32.102 |

| Exposure<br>Point | CAS<br>Number | Chemical                           | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|------------------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 74-87-3       | Chloromethane                      | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.9E+01 N                       | 3.0E+00                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 156-59-2      | cis-1,2-Dichloroethene             | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 3.7E+01 N                       | 7.0E+01                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                               |
|                   | 10061-01-5    | cis-1,3-Dichloropropene            | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 4.3E-01 C*                      | 4.0E-01                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 110-82-7      | Cyclohexane                        | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.3E+03 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 124-48-1      | Dibromochloromethane               | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.5E-01 C                       | 6.0E+01<br>4.0E-01             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |
|                   | 75-71-8       | Dichlorodifluoromethane (Freon-12) | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 4.0E+01 N                       | 1.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 100-41-4      | Ethylbenzene                       | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.5E+00 C                       | 7.0E+02<br>6.0E+02             | MCL<br>15A NCAC 2L              | NO           | DLBSL                                               |
|                   | 98-82-8       | Isopropylbenzene                   | 4.9E+00 J                                 | 4.9E+00 J                                 | UG/L  | IR15-TW03D-09C                          | 1/4                    | 1 - 1                           | 4.9E+00                                    | N/A                     | 6.8E+01 N                       | 7.0E+01                        | 15A NCAC 2L                     | NO           | BSL                                                 |
|                   | 79-20-9       | Methyl acetate                     | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 3.7E+03 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 108-87-2      | Methylcyclohexane                  | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 75-09-2       | Methylene chloride                 | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 4.8E+00 C                       | 5.0E+00                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                               |
|                   | 1634-04-4     | Methyl-tert-butyl ether (MTBE)     | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.3E+01 C                       | 2.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 100-42-5      | Styrene                            | 5.9E+00 J                                 | 5.9E+00 J                                 | UG/L  | IR15-TW03D-09C                          | 1/4                    | 1 - 1                           | 5.9E+00                                    | N/A                     | 1.6E+02 N                       | 1.0E+02<br>7.0E+01             | MCL<br>15A NCAC 2L              | NO           | BSL                                                 |
|                   | 127-18-4      | Tetrachloroethene                  | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1.1 - 1.1                       | 1.1E+00                                    | N/A                     | 1.1E-01 C                       | 5.0E+00<br>7.0E-01             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |
|                   | 108-88-3      | Toluene                            | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 2.3E+02 N                       | 1.0E+03<br>6.0E+02             | MCL<br>15A NCAC 2L              | NO           | DLBSL                                               |
|                   | 156-60-5      | trans-1,2-Dichloroethene           | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.1E+01 N                       | 1.0E+02                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                               |
|                   | 10061-02-6    | trans-1,3-Dichloropropene          | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 4.3E-01 C*                      | 4.0E-01                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 79-01-6       | Trichloroethene                    | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 5.1 - 5.1                       | 5.1E+00                                    | N/A                     | 2.0E+00 C                       | 5.0E+00<br>3.0E+00             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |
|                   | 75-69-4       | Trichlorofluoromethane(Freon-11)   | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.3E+02 N                       | 2.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 75-01-4       | Vinyl chloride                     | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.6E-02 C                       | 2.0E+00<br>3.0E-02             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |
|                   | 1330-20-7     | Xylene, total                      | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 1.2 - 1.2                       | 1.2E+00                                    | N/A                     | 2.0E+01 N                       | 1.0E+04<br>5.0E+02             | MCL<br>15A NCAC 2L              | NO           | DLBSL                                               |
|                   | 92-52-4       | 1,1-Biphenyl                       | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+02 N                       | 4.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 108-60-1      | 2,2'-Oxybis(1-chloropropane)       | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.2E-01 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 95-95-4       | 2,4,5-Trichlorophenol              | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 120-83-2      | 2,4-Dichlorophenol                 | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 105-67-9      | 2,4-Dimethylphenol                 | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 7.3E+01 N                       | 1.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 51-28-5       | 2,4-Dinitrophenol                  | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 20 - 22                         | 2.2E+01                                    | N/A                     | 7.3E+00 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 121-14-2      | 2,4-Dinitrotoluene                 | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.2E-01 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 606-20-2      | 2,6-Dinitrotoluene                 | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+00 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 91-58-7       | 2-Chloronaphthalene                | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.9E+02 N                       | N/A                            | ĺ                               | NO           | DLBSL                                               |

| Exposure<br>Point | CAS<br>Number | Chemical                   | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|----------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 95-57-8       | 2-Chlorophenol             | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+01 N                       | 4.0E-01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 91-57-6       | 2-Methylnaphthalene        | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.5E+01 N                       | 3.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 95-48-7       | 2-Methylphenol             | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 88-74-4       | 2-Nitroaniline             | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 88-75-5       | 2-Nitrophenol              | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 91-94-1       | 3,3'-Dichlorobenzidine     | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 20 - 22                         | 2.2E+01                                    | N/A                     | 1.5E-01 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 99-09-2       | 3-Nitroaniline             | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 534-52-1      | 4,6-Dinitro-2-methylphenol | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 20 - 22                         | 2.2E+01                                    | N/A                     | 3.7E-01 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 101-55-3      | 4-Bromophenyl-phenylether  | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 59-50-7       | 4-Chloro-3-methylphenol    | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-47-8      | 4-Chloroaniline            | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.4E-01 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 7005-72-3     | 4-Chlorophenyl-phenylether | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-44-5      | 4-Methylphenol             | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 20 - 22                         | 2.2E+01                                    | N/A                     | 1.8E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 100-01-6      | 4-Nitroaniline             | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.4E+00 C*                      | N/A                            |                                 | YES          | DLASL                                               |
|                   | 100-02-7      | 4-Nitrophenol              | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 20 - 22                         | 2.2E+01                                    | N/A                     | 1.2E-01 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 83-32-9       | Acenaphthene               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.2E+02 N                       | 8.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 208-96-8      | Acenaphthylene             | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.2E+02 N                       | 2.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 98-86-2       | Acetophenone               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 120-12-7      | Anthracene                 | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+03 N                       | 2.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 1912-24-9     | Atrazine                   | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 20 - 22                         | 2.2E+01                                    | N/A                     | 2.9E-01 C                       | 3.0E+00                        | MCL, 15A NCAC 2L                | YES          | DLASL                                               |
|                   | 56-55-3       | Benzo(a)anthracene         | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.0E-02 C                       | 5.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 50-32-8       | Benzo(a)pyrene             | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.0E-03 C                       | 2.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   |               |                            |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 5.0E-03                        | 15A NCAC 2L                     |              |                                                     |
|                   | 205-99-2      | Benzo(b)fluoranthene       | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.0E-02 C                       | 5.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 191-24-2      | Benzo(g,h,i)perylene       | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+02 N                       | 2.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 207-08-9      | Benzo(k)fluoranthene       | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.0E-01 C                       | 5.0E-01                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 111-91-1      | bis(2-Chloroethoxy)methane | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+01 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 111-44-4      | bis(2-Chloroethyl)ether    | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.2E-02 C                       | 3.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 117-81-7      | bis(2-Ethylhexyl)phthalate | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 4.8E+00 C                       | 6.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   |               |                            |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 3.0E+00                        | 15A NCAC 2L                     |              |                                                     |
|                   | 85-68-7       | Butylbenzylphthalate       | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.5E+01 C                       | 1.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 105-60-2      | Caprolactam                | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+03 N                       | 4.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 86-74-8       | Carbazole                  | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 218-01-9      | Chrysene                   | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.0E+00 C                       | 5.0E+00                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 53-70-3       | Dibenz(a,h)anthracene      | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.0E-03 C                       | 5.0E-03                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 132-64-9      | Dibenzofuran               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+00 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 84-66-2       | Diethylphthalate           | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.9E+03 N                       | 6.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 131-11-3      | Dimethyl phthalate         | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |

| Exposure<br>Point | CAS<br>Number | Chemical                   | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC | Rationale for [<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|---------------|----------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|------|------------------------------------------------------------|
|                   | 84-74-2       | Di-n-butylphthalate        | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 20 - 22                         | 2.2E+01                                    | N/A                     | 3.7E+02 N                       | 7.0E+02                        | 15A NCAC 2L                     | NO   | DLBSL                                                      |
|                   | 117-84-0      | Di-n-octylphthalate        | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 4.8E+00 C                       | 1.0E+02                        | 15A NCAC 2L                     | YES  | DLASL                                                      |
|                   | 206-44-0      | Fluoranthene               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.5E+02 N                       | 3.0E+02                        | 15A NCAC 2L                     | NO   | DLBSL                                                      |
|                   | 86-73-7       | Fluorene                   | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.5E+02 N                       | 3.0E+02                        | 15A NCAC 2L                     | NO   | DLBSL                                                      |
|                   | 118-74-1      | Hexachlorobenzene          | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 4.2E-02 C                       | 1.0E+00<br>2.0E-02             | MCL<br>15A NCAC 2L              | YES  | DLASL                                                      |
|                   | 87-68-3       | Hexachlorobutadiene        | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 8.6E-01 C*                      | 4.0E-01                        | 15A NCAC 2L                     | YES  | DLASL                                                      |
|                   | 77-47-4       | Hexachlorocyclopentadiene  | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.2E+01 N                       | 5.0E+01                        | MCL                             | NO   | DLBSL                                                      |
|                   | 67-72-1       | Hexachloroethane           | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+00 C**                     | N/A                            |                                 | YES  | DLASL                                                      |
|                   | 193-39-5      | Indeno(1,2,3-cd)pyrene     | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.0E-02 C                       | 5.0E-02                        | 15A NCAC 2L                     | YES  | DLASL                                                      |
|                   | 78-59-1       | Isophorone                 | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 7.1E+01 C                       | 4.0E+01                        | 15A NCAC 2L                     | NO   | DLBSL                                                      |
|                   | 91-20-3       | Naphthalene                | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.4E-01 C*                      | 6.0E+00                        | 15A NCAC 2L                     | YES  | DLASL                                                      |
|                   | 621-64-7      | n-Nitroso-di-n-propylamine | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 9.6E-03 C                       | N/A                            |                                 | YES  | DLASL                                                      |
|                   | 86-30-6       | n-Nitrosodiphenylamine     | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.4E+01 C                       | N/A                            |                                 | NO   | DLBSL                                                      |
|                   | 98-95-3       | Nitrobenzene               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.2E-01 C                       | N/A                            |                                 | YES  | DLASL                                                      |
|                   | 87-86-5       | Pentachlorophenol          | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 20 - 22                         | 2.2E+01                                    | N/A                     | 5.6E-01 C                       | 1.0E+00<br>3.0E-01             | MCL<br>15A NCAC 2L              | YES  | DLASL                                                      |
|                   | 85-01-8       | Phenanthrene               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+03 N                       | 2.0E+02                        | 15A NCAC 2L                     | NO   | DLBSL                                                      |
|                   | 108-95-2      | Phenol                     | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+03 N                       | 3.0E+01                        | 15A NCAC 2L                     | NO   | DLBSL                                                      |
|                   | 129-00-0      | Pyrene                     | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+02 N                       | 2.0E+02                        | 15A NCAC 2L                     | NO   | DLBSL                                                      |
|                   | 72-54-8       | 4,4'-DDD                   | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 2.8E-01 C                       | 1.0E-01                        | 15A NCAC 2L                     | NO   | DLBSL                                                      |
|                   | 72-55-9       | 4,4'-DDE                   | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 2.0E-01 C                       | N/A                            |                                 | NO   | DLBSL                                                      |
|                   | 50-29-3       | 4,4'-DDT                   | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 2.0E-01 C*                      | 1.0E-01                        | 15A NCAC 2L                     | NO   | DLBSL                                                      |
|                   | 309-00-2      | Aldrin                     | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 4.0E-03 C                       | N/A                            |                                 | YES  | DLASL                                                      |
|                   | 319-84-6      | alpha-BHC                  | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 1.1E-02 C                       | 2.0E-02                        | 15A NCAC 2L                     | YES  | DLASL                                                      |
|                   | 5103-71-9     | alpha-Chlordane            | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 1.9E-01 C*                      | 2.0E+00                        | MCL                             | NO   | DLBSL                                                      |
|                   |               |                            |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 1.0E-01                        | 15A NCAC 2L                     |      |                                                            |
|                   | 12674-11-2    | Aroclor-1016               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.51 - 0.53                     | 5.3E-01                                    | N/A                     | 2.6E-01 C**                     | 5.0E-01                        | MCL                             | YES  | DLASL                                                      |
|                   | 11104-28-2    | Aroclor-1221               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.51 - 0.53                     | 5.3E-01                                    | N/A                     | 6.8E-03 C                       | 5.0E-01                        | MCL                             | YES  | DLASL                                                      |
|                   | 11141-16-5    | Aroclor-1232               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.51 - 0.53                     | 5.3E-01                                    | N/A                     | 6.8E-03 C                       | 5.0E-01                        | MCL                             | YES  | DLASL                                                      |
|                   | 53469-21-9    | Aroclor-1242               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.51 - 0.53                     | 5.3E-01                                    | N/A                     | 3.4E-02 C                       | 5.0E-01                        | MCL                             | YES  | DLASL                                                      |
|                   | 12672-29-6    | Aroclor-1248               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.51 - 0.53                     | 5.3E-01                                    | N/A                     | 3.4E-02 C                       | 5.0E-01                        | MCL                             | YES  | DLASL                                                      |
|                   | 11097-69-1    | Aroclor-1254               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.51 - 0.53                     | 5.3E-01                                    | N/A                     | 3.4E-02 C*                      | 5.0E-01                        | MCL                             | YES  | DLASL                                                      |
|                   | 11096-82-5    | Aroclor-1260               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.51 - 0.53                     | 5.3E-01                                    | N/A                     | 3.4E-02 C                       | 5.0E-01                        | MCL                             | YES  | DLASL                                                      |
|                   | 319-85-7      | beta-BHC                   | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 3.7E-02 C                       | 2.0E-02                        | 15A NCAC 2L                     | YES  | DLASL                                                      |
|                   | 319-86-8      | delta-BHC                  | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 3.7E-02 C                       | 2.0E-02                        | 15A NCAC 2L                     | YES  | DLASL                                                      |
|                   | 60-57-1       | Dieldrin                   | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 4.2E-03 C                       | 2.0E-03                        | 15A NCAC 2L                     | YES  | DLASL                                                      |
|                   | 959-98-8      | Endosulfan I               | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 2.2E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | NO   | DLBSL                                                      |
|                   | 33213-65-9    | Endosulfan II              | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 2.2E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | NO   | DLBSL                                                      |

| Exposure<br>Point | CAS<br>Number | Chemical            | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|---------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 1031-07-8     | Endosulfan sulfate  | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 2.2E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 72-20-8       | Endrin              | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 1.1E+00 N                       | 2.0E+00                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                               |
|                   | 7421-93-4     | Endrin aldehyde     | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 1.1E+00 N                       | 2.0E+00                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 53494-70-5    | Endrin ketone       | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 1.1E+00 N                       | 2.0E+00                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 58-89-9       | gamma-BHC (Lindane) | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 6.1E-02 C                       | 2.0E-01<br>3.0E-02             | MCL<br>15A NCAC 2L              | NO           | DLBSL                                               |
|                   | 5103-74-2     | gamma-Chlordane     | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 1.9E-01 C*                      | 2.0E+00<br>1.0E-01             | MCL<br>15A NCAC 2L              | NO           | DLBSL                                               |
|                   | 76-44-8       | Heptachlor          | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 1.5E-02 C                       | 4.0E-01<br>8.0E-03             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |
|                   | 1024-57-3     | Heptachlor epoxide  | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 7.4E-03 C*                      | 2.0E-01<br>4.0E-03             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |
|                   | 72-43-5       | Methoxychlor        | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 0.051 - 0.053                   | 5.3E-02                                    | N/A                     | 1.8E+01 N                       | 4.0E+01                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                               |
|                   | 8001-35-2     | Toxaphene           | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 1 - 1.1                         | 1.1E+00                                    | N/A                     | 6.1E-02 C                       | 3.0E+00<br>3.0E-02             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |
|                   | 7429-90-5     | Aluminum            | 4.6E+01 J                                 | 3.4E+03                                   | UG/L  | IR15-TW05-09C                           | 5/5                    | 1000 - 1000                     | 3.4E+03                                    | 1.9E+03                 | 3.7E+03 N                       | 50 - 200                       | SMCL                            | NO           | BSL                                                 |
|                   | 7440-36-0     | Antimony            | ND                                        | ND                                        | UG/L  |                                         | 0/5                    | 20 - 20                         | 2.0E+01                                    | 3.3E+00                 | 1.5E+00 N                       | 6.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   | 7440-38-2     | Arsenic             | 3.2E+00 J                                 | 3.2E+00 J                                 | UG/L  | IR15-TW04-09C                           | 1/5                    | 20 - 20                         | 3.2E+00                                    | 5.8E+00                 | 4.5E-02 C                       | 1.0E+01                        | MCL, 15A NCAC 2L                | NO           | BBK                                                 |
|                   | 7440-39-3     | Barium              | 1.9E+01 J                                 | 9.5E+01                                   | UG/L  | IR15-TW03D-09C                          | 5/5                    | 20 - 50                         | 9.5E+01                                    | 8.6E+01                 | 7.3E+02 N                       | 2.0E+03<br>7.0E+02             | MCL<br>15A NCAC 2L              | NO           | BSL                                                 |
|                   | 7440-41-7     | Beryllium           | 1.8E-01 J                                 | 1.8E-01 J                                 | UG/L  | IR15-TW03D-09C                          | 1/5                    | 2 - 2                           | 1.8E-01                                    | 3.1E-01                 | 7.3E+00 N                       | 4.0E+00                        | MCL                             | NO           | BSL, BBK                                            |
|                   | 7440-43-9     | Cadmium             | ND                                        | ND                                        | UG/L  |                                         | 0/5                    | 6 - 6                           | 6.0E+00                                    | 3.6E-01                 | 1.8E+00 N                       | 5.0E+00<br>2.0E+00             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |
|                   | 7440-70-2     | Calcium             | 3.6E+03                                   | 4.6E+04                                   | UG/L  | IR15-TW04-09C                           | 5/5                    | 1000 - 1000                     | 4.6E+04                                    | 6.9E+04                 | N/A                             | N/A                            |                                 | NO           | NUT, BBK                                            |
|                   | 7440-47-3     | Chromium            | 1.7E+00 J                                 | 5.0E+00 J                                 | UG/L  | IR15-TW05-09C                           | 2/5                    | 20 - 20                         | 5.0E+00                                    | 3.1E+00                 | 4.3E-02 C                       | 1.0E+02<br>1.0E+01             | MCL<br>15A NCAC 2L              | YES          | ASL                                                 |
|                   | 7440-48-4     | Cobalt              | 6.3E-01 J                                 | 3.9E+00 J                                 | UG/L  | IR15-TW01-09C                           | 4/5                    | 5 - 5                           | 3.9E+00                                    | 3.4E+00                 | 1.1E+00 N                       | N/A                            |                                 | YES          | ASL                                                 |
|                   | 7440-50-8     | Copper              | 2.8E+00 J                                 | 3.8E+00 J                                 | UG/L  | IR15-TW05-09C                           | 3/5                    | 20 - 20                         | 3.8E+00                                    | 2.8E+00                 | 1.5E+02 N                       | 1.3E+03<br>1.0E+03             | MCL<br>15A NCAC 2L              | NO           | BSL                                                 |
|                   | 7439-89-6     | Iron                | 1.0E+03                                   | 2.6E+04                                   | UG/L  | IR15-TW01-09C                           | 5/5                    | 150 - 150                       | 2.6E+04                                    | 6.0E+03                 | 2.6E+03 N                       | 3.0E+02                        | SMCL, 15A NCAC 2L               | YES          | ASL                                                 |
|                   | 7439-92-1     | Lead                | ND                                        | ND                                        | UG/L  |                                         | 0/5                    | 20 - 20                         | 2.0E+01                                    | 2.8E+00                 | N/A                             | 1.5E+01                        | MCL, 15A NCAC 2L                | YES          | DLASL                                               |
|                   | 7439-95-4     | Magnesium           | 3.9E+02                                   | 4.6E+03                                   | UG/L  | IR15-TW03D-09C                          | 5/5                    | 250 - 250                       | 4.6E+03                                    | 6.4E+03                 | N/A                             | N/A                            |                                 | NO           | NUT, BBK                                            |
|                   | 7439-96-5     | Manganese           | 5.2E+00                                   | 4.4E+02                                   | UG/L  | IR15-TW01-09C                           | 5/5                    | 5 - 5                           | 4.4E+02                                    | 2.1E+02                 | 8.8E+01 N                       | 5.0E+01                        | SMCL, 15A NCAC 2L               | YES          | ASL                                                 |
|                   | 7439-97-6     | Mercury             | ND                                        | ND                                        | UG/L  |                                         | 0/5                    | 0.2 - 0.2                       | 2.0E-01                                    | 1.0E-01                 | 1.1E+00 N                       | 2.0E+00<br>1.0E+00             | MCL<br>15A NCAC 2L              | NO           | DLBSL                                               |
|                   | 7440-02-0     | Nickel              | 2.3E+00 J                                 | 3.0E+01                                   | UG/L  | IR15-TW01-09C                           | 4/5                    | 10 - 10                         | 3.0E+01                                    | 8.0E+00                 | 7.3E+01 N                       | 1.0E+02                        | 15A NCAC 2L                     | NO           | BSL                                                 |
|                   | 7440-09-7     | Potassium           | 6.2E+02 J                                 | 2.5E+03                                   | UG/L  | IR15-TW02-09C                           | 5/5                    | 1000 - 1000                     | 2.5E+03                                    | 3.3E+03                 | N/A                             | N/A                            |                                 | NO           | NUT, BBK                                            |
|                   | 7782-49-2     | Selenium            | ND                                        | ND                                        | UG/L  |                                         | 0/5                    | 20 - 20                         | 2.0E+01                                    | 3.1E+00                 | 1.8E+01 N                       | 5.0E+01<br>2.0E+01             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |

### Table 2.6

### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Site 15 MCB Camp Lejeune, North Carolina

Scenario Timeframe: Future
Medium: Groundwater
Exposure Medium: Groundwater

| Exposure<br>Point | CAS<br>Number | Chemical | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening |         | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|----------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|---------|---------------------------------|--------------------------------|---------------------------------|------|-----------------------------------------------------|
|                   | 7440-22-4     | Silver   | ND                                        | ND                                        | UG/L  |                                         | 0/5                    | 20 - 20                         | 2.0E+01                                    | 7.7E-01 | 1.8E+01 N                       | 2.0E+01                        | 15A NCAC 2L                     | YES  | DLASL                                               |
|                   |               |          |                                           |                                           |       |                                         |                        |                                 |                                            |         |                                 | 1.0E+02                        | SMCL                            |      |                                                     |
|                   | 7440-23-5     | Sodium   | 1.6E+03 J                                 | 8.0E+03                                   | UG/L  | IR15-TW03D-09C                          | 5/5                    | 2500 - 2500                     | 8.0E+03                                    | 2.3E+04 | N/A                             | N/A                            |                                 | NO   | NUT, BBK                                            |
|                   | 7440-28-0     | Thallium | 3.2E+00 J                                 | 3.2E+00 J                                 | UG/L  | IR15-TW04-09C                           | 1/5                    | 30 - 30                         | 3.2E+00                                    | 3.8E+00 | N/A                             | 2.0E+00                        | MCL                             | NO   | NTX, BBK                                            |
|                   | 7440-62-2     | Vanadium | ND                                        | ND                                        | UG/L  |                                         | 0/5                    | 50 - 50                         | 5.0E+01                                    | 4.7E+00 | 1.8E+01 N                       | N/A                            |                                 | YES  | DLASL                                               |
|                   | 7440-66-6     | Zinc     | 5.3E+00 J                                 | 1.1E+01 J                                 | UG/L  | IR15-TW03-09C                           | 5/5                    | 50 - 50                         | 1.1E+01                                    | 4.2E+01 | 1.1E+03 N                       | 1.0E+03                        | 15A NCAC 2L                     | NO   | BSL, BBK                                            |
|                   |               |          |                                           |                                           |       |                                         |                        |                                 |                                            |         |                                 | 5.0E+03                        | SMCL                            |      |                                                     |

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening. If the chemical was not detected, the maximum detection limit is used for screening.

[3] Background values are two times the arithmetic mean basewide background shallow groundwater concentrations. Background values are from Final Base Background Soil Study Report, Marine Corps Base Camp Lejeune, North Carolina , Baker Environmental, April 25, 2001.

[4] Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels for Chemical Contaminants at Superfund Sites.

http://epa-prgs.ornl.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) tap water RSLs.

RSL value for 1,4-Dichlorobenzene used as a surrogate for 1,3-Dichlorobenzene

RSL value for methoxychlor used as surrogate for 4-chlorophenyl-phenylether.

RSL value for 2-Nitroaniline used as surrogate for 3-Nitroaniline.

RSL value for nitrobenzene used as surrogate for 4-nitrophenol.

 $\label{eq:RSL} \textit{RSL} \ \textit{value} \ \textit{for} \ \textit{acenaphthene} \ \textit{used} \ \textit{as} \ \textit{surrogate} \ \textit{for} \ \textit{acenaphthylene}.$ 

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for technical chlordane used as surrogate for alpha-chlordane.

RSL value for technical-HCH used as surrogate for delta-BHC.
RSL value for technical chlordane used as surrogate for gamma-chlordane.

RSL value for 1,3-dichloropropene used as a surrogate for cis-1,3-dichloropropene and trans-1,3-dichloropropene.

RSL value for endosulfan used as surrogate for endosulfan I, endosulfan II, and endosulfan sulfate.

RSL value for endrin used as surrogate for endrin aldehyde and endrin ketone.

RSL value for 2-chlorophenol used as surrogate for 4-chloro-3-methylphenol and 2-nitrophenol.

RSL value for chromium VI used for total chromium.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Detection Limit Above Screening Level (DLASL), not quantitatively evaluated in HHRA

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)
Below Screening Level (BSL)
Below Background (BBK)

Detection Limit Below Screening Level (DLBSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

MCL = Maximum Contaminant Level from EPA's National Primary Drinking Water Standards

SMCL = Secondary Maximum Contaminant Level

15A NCAC 2L = North Carolina Classifications and Groundwater Quality Standards,

January 2010.

J = Estimated Value

C\* = N screening level < 100x C screening level, therefore

N screening value/10 used as screening level

 $C^{\star\star}$  = N screening level < 10x C screening level, therefore

N screening value/10 used as screening level

N = Noncarcinogenic

NA = Not available/not applicable

ND = Not detected

UG/L = Micrograms per liter

### TABLE 2.6a

Risk Ratio Screening for Groundwater, Maximum Detected Concentration Camp Johnson Site 15 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Detected  | Sample Location of<br>Maximum Detected<br>Concentration | Tap Water RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ           |
|----------------------------------------------------|------------------------|-----------|---------------------------------------------------------|---------------|--------------------------|--------------------------------------------|-------------------------------------------|------------------------|
| Metals (ug/L)                                      |                        |           |                                                         |               |                          |                                            |                                           |                        |
| Chromium                                           | 2 / 5                  | 5.0E+00 J | IR15-TW05-09C                                           | 4.3E-02       | 1E-06                    | NA                                         | 1E-04                                     | NA                     |
| Cobalt                                             | 4 / 5                  | 3.9E+00 J | IR15-TW01-09C                                           | 1.1E+01       | 1                        | 0.4                                        |                                           | Thyroid                |
| Iron                                               | 5 / 5                  | 2.6E+04   | IR15-TW01-09C                                           | 2.6E+04       | 1                        | 1                                          |                                           | Gastrointestinal       |
| Manganese                                          | 5 / 5                  | 4.4E+02   | IR15-TW01-09C                                           | 8.8E+02       | 1                        | 0.5                                        |                                           | Central Nervous System |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |           |                                                         |               |                          | 1.8                                        |                                           |                        |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |           |                                                         |               |                          |                                            | 1E-04                                     |                        |
|                                                    | -                      |           | •                                                       |               |                          | Total                                      | Gastrointestinal HI =                     | 1.0                    |
| Notes:                                             |                        |           |                                                         |               |                          | Total Central I                            | Nervous System HI =                       | 0.5                    |

Total Thyroid HI =

0.4

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index

J = Estimated Value

ug/L = micrograms per liter

NA = Not available/not applicable

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

### TABLE 2.6b

Risk Ratio Screening for Groundwater, 95% UCL Concentration Camp Johnson Site 15 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | 95% UCL            | 95% UCL<br>Rationale | Tap Water RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ     |
|----------------------------------------------------|------------------------|--------------------|----------------------|---------------|--------------------------|--------------------------------------------|-------------------------------------------|------------------|
| Metals (ug/L)                                      |                        |                    |                      |               |                          |                                            |                                           |                  |
| Chromium                                           | 2 / 5                  | 5.0E+00 Max        | 4, 5                 | 4.5E-02       | 1E-06                    | NA                                         | 1E-04                                     | NA               |
| Iron                                               | 5 / 5                  | 1.9E+04 95% Stud-t | 1, 2, 3              | 2.6E+04       | 1                        | 0.7                                        | NA                                        | Gastrointestinal |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |                    |                      |               |                          | 0.7                                        |                                           |                  |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |                    |                      |               |                          |                                            | 1E-04                                     |                  |
|                                                    |                        |                    |                      |               |                          | Total                                      | Gastrointestinal HI =                     | 0.7              |

### Notes:

<sup>a</sup> Corresponding Hazard Index equals 95% UCL concentration divided by the RSL divided by the acceptable risk level.

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05,

otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index

NA = Not available/not applicable

ug/L = micrograms per liter

ProUCL, Version 4.00.05 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. May 2010. ProUCL, Version 4.0. Prepared by Lockheed Martin Environmental Services).

Options: Maximum detected concentration (Max); 95% Student's-t UCL (95% Stud-t)

Upper Confidence Limit (UCL) Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Test indicates data are gamma distributed.
- (4) Distribution tests are inconclusive
- (5) Max value used because 95% UCL greater than max.
- (6) Lead evaluated using arithmetic mean concentration in lead models, therefore, arithmetic mean concentration presented here.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals 95% UCL concentration divided by the RSL divided by the acceptable risk level

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

Scenario Timeframe: Current/Future Medium: Surface Soil

| Exposure<br>Point | CAS<br>Number      | Chemical                                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units          | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits  | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|--------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------|-----------------------------------------|------------------------|----------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
| 0:- 4=            |                    |                                                  |                                           |                                           |                |                                         |                        |                                  |                                      |                         |                                 |                                | LIGHANA                         |              | DI DOI                                              |
| Site 17           | 71-55-6            | 1,1,1-Trichloroethane                            | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 6.4E+02 NS                      |                                | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-34-5            | 1,1,2,2-Tetrachloroethane                        | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 5.6E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 76-13-1            | 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 9.1E+02 NS                      |                                | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-00-5            | 1,1,2-Trichloroethane                            | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 1.1E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 75-34-3            | 1,1-Dichloroethane                               | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 3.3E+00 C                       | 3.0E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-35-4            | 1,1-Dichloroethene                               | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 2.4E+01 N                       | 4.6E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 120-82-1           | 1,2,4-Trichlorobenzene                           | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 6.2E+00 C**                     | 2.2E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 96-12-8            | 1,2-Dibromo-3-chloropropane                      | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 5.4E-03 C                       | 2.5E-04                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 106-93-4           | 1,2-Dibromoethane                                | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 3.4E-02 C                       | 9.7E-05                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 95-50-1            | 1,2-Dichlorobenzene                              | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 1.9E+02 N                       | 2.4E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 107-06-2           | 1,2-Dichloroethane                               | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 4.3E-01 C                       | 2.0E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 78-87-5            | 1,2-Dichloropropane                              | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 9.0E-01 C*                      | 3.3E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 541-73-1           | 1,3-Dichlorobenzene                              | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 2.4E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-46-7           | 1,4-Dichlorobenzene                              | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 2.4E+00 C                       | 7.0E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 78-93-3            | 2-Butanone                                       | 2.8E-03 J                                 | 2.3E-02 J                                 | MG/KG          | IR17-SS04-00-01-09C                     | 4/5                    | 0.0061 - 0.013                   | 2.3E-02                              | N/A                     | 2.8E+03 N                       | 1.6E+01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 591-78-6           | 2-Hexanone                                       | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.0061 - 0.013                   | 1.3E-02                              | N/A                     | 2.1E+01 N                       | 1.2E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 108-10-1           | 4-Methyl-2-pentanone                             | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.0061 - 0.013                   | 1.3E-02                              | N/A                     | 5.3E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 67-64-1            | Acetone                                          | 7.0E-02 J                                 | 9.0E-01 J                                 | MG/KG          | IR17-SS04-00-01-09C                     | 4/5                    | 0.0061 - 0.013                   | 9.0E-01                              | N/A                     | 6.1E+03 N                       | 2.4E+01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 71-43-2            | Benzene                                          | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 1.1E+00 C*                      | 7.3E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-27-4            | Bromodichloromethane                             | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 2.7E-01 C                       | 2.9E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-25-2            | Bromoform                                        | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 6.1E+01 C*                      | 1.9E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 74-83-9            | Bromomethane                                     | ND                                        | ND                                        | MG/KG          |                                         | 0/3                    | 0.0092 - 0.011                   | 1.1E-02                              | N/A                     | 7.3E-01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 75-15-0            | Carbon disulfide                                 | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 8.2E+01 N                       | 3.8E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 56-23-5            | Carbon tetrachloride                             | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 6.1E-01 C                       | 2.0E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 108-90-7           | Chlorobenzene                                    | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 2.9E+01 N                       | 4.5E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-00-3            | Chloroethane                                     | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.0061 - 0.013                   | 1.3E-02                              | N/A                     | 1.5E+03 N                       | 1.6E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 67-66-3            | Chloroform                                       | 1.3E-02 J                                 | 1.3E-02 J                                 | MG/KG          | IR17-SS02-00-01-09C                     | 1/4                    | 0.003 - 0.0065                   | 1.3E-02                              | N/A                     | 2.9E-01 C                       | 3.4E-01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 74-87-3            | Chloromethane                                    | 6.5E-03 J                                 | 6.5E-03 J                                 | MG/KG          | IR17-SS01-00-01-09C                     | 1/4                    | 0.0061 - 0.013                   | 6.5E-03                              | N/A                     | 1.2E+01 N                       | 1.5E-02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 156-59-2           | cis-1,2-Dichloroethene                           | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 7.8E+01 N                       | 3.6E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 10061-01-5         | cis-1,3-Dichloropropene                          | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 110-82-7           | Cyclohexane                                      | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 1.2E+02 NS                      |                                |                                 | NO           | DLBSL                                               |
|                   | 124-48-1           | Dibromochloromethane                             | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 6.8E-01 C                       | 1.9E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-71-8            | Dichlorodifluoromethane (Freon-12)               | ND                                        | ND                                        | MG/KG          |                                         | 0/4                    | 0.003 - 0.0065                   | 6.5E-03                              | N/A                     | 1.8E+01 N                       | 2.9E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   |                    | · · · · ·                                        | ND<br>ND                                  | ND<br>ND                                  |                |                                         | 0/4                    | 0.003 - 0.0065                   |                                      | N/A<br>N/A              |                                 |                                | NCPSRG                          | NO           | _                                                   |
|                   | 100-41-4           | Ethylbenzene                                     |                                           |                                           | MG/KG          |                                         |                        |                                  | 6.5E-03                              | 1                       | 0.12100 0                       | 8.1E+00                        |                                 |              | DLBSL                                               |
|                   | 98-82-8<br>79-20-9 | Isopropylbenzene<br>Methyl acetate               | ND<br>3.6E-03 J                           | ND<br>7.0E-02 J                           | MG/KG<br>MG/KG | IR17-SS04-00-01-09C                     | 0/4<br>4/5             | 0.003 - 0.0065<br>0.003 - 0.0065 | 6.5E-03<br>7.0E-02                   | N/A<br>N/A              | 2.1E+02 N<br>7.8E+03 N          | 1.3E+00<br>N/A                 | NCPSRG                          | NO<br>NO     | DLBSL<br>BSL                                        |

Scenario Timeframe: Current/Future Medium: Surface Soil

| Exposure<br>Point | CAS<br>Number | Chemical                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|---------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-------------------------------------------------------------|
|                   | 108-87-2      | Methylcyclohexane                | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.003 - 0.0065                  | 6.5E-03                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                         |
|                   | 75-09-2       | Methylene chloride               | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.0061 - 0.013                  | 1.3E-02                              | N/A                     | 1.1E+01 C                       | 2.3E-02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 1634-04-4     | Methyl-tert-butyl ether (MTBE)   | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.003 - 0.0065                  | 6.5E-03                              | N/A                     | 4.3E+01 C                       | 8.5E-02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 100-42-5      | Styrene                          | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.003 - 0.0065                  | 6.5E-03                              | N/A                     | 6.3E+02 N                       | 9.2E-01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 127-18-4      | Tetrachloroethene                | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.003 - 0.0065                  | 6.5E-03                              | N/A                     | 5.5E-01 C                       | 5.0E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 108-88-3      | Toluene                          | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.003 - 0.0065                  | 6.5E-03                              | N/A                     | 5.0E+02 N                       | 5.5E+00                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 156-60-5      | trans-1,2-Dichloroethene         | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.003 - 0.0065                  | 6.5E-03                              | N/A                     | 1.5E+01 N                       | 5.1E-01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 10061-02-6    | trans-1,3-Dichloropropene        | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.003 - 0.0065                  | 6.5E-03                              | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 79-01-6       | Trichloroethene                  | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.003 - 0.0065                  | 6.5E-03                              | N/A                     | 2.8E+00 C                       | 1.8E-02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 75-69-4       | Trichlorofluoromethane(Freon-11) | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.003 - 0.0065                  | 6.5E-03                              | N/A                     | 7.9E+01 N                       | 2.4E+01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 75-01-4       | Vinyl chloride                   | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.0061 - 0.013                  | 1.3E-02                              | N/A                     | 6.0E-02 C                       | 1.9E-04                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 1330-20-7     | Xylene, total                    | ND                                        | ND                                        | MG/KG |                                         | 0/4                    | 0.003 - 0.0065                  | 6.5E-03                              | N/A                     | 6.3E+01 N                       | 6.0E+00                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 92-52-4       | 1,1-Biphenyl                     | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.1E+02 NS                      | 4.3E+01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 108-60-1      | 2,2'-Oxybis(1-chloropropane)     | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 4.6E+00 C                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 95-95-4       | 2,4,5-Trichlorophenol            | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 120-83-2      | 2,4-Dichlorophenol               | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 105-67-9      | 2,4-Dimethylphenol               | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.2E+02 N                       | 1.4E+00                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 51-28-5       | 2,4-Dinitrophenol                | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.2E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 121-14-2      | 2,4-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.6E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 606-20-2      | 2,6-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+00 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 91-58-7       | 2-Chloronaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.8E+02 NS                      | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 95-57-8       | 2-Chlorophenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.9E+01 N                       | 4.1E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 91-57-6       | 2-Methylnaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.1E+01 N                       | 1.6E+00                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 95-48-7       | 2-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 88-74-4       | 2-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 88-75-5       | 2-Nitrophenol                    | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.9E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 91-94-1       | 3,3'-Dichlorobenzidine           | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.1E+00 C                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 99-09-2       | 3-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                         |
|                   | 534-52-1      | 4,6-Dinitro-2-methylphenol       | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E-01 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 101-55-3      | 4-Bromophenyl-phenylether        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                         |
|                   | 59-50-7       | 4-Chloro-3-methylphenol          | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 106-47-8      | 4-Chloroaniline                  | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.4E+00 C                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 7005-72-3     | 4-Chlorophenyl-phenylether       | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 106-44-5      | 4-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.1E+01 N                       | 4.0E-01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 100-01-6      | 4-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.4E+01 C*                      | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 100-02-7      | 4-Nitrophenol                    | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 4.8E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 83-32-9       | Acenaphthene                     | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.4E+02 N                       | 8.4E+00                        | NCPSRG                          | NO           | DLBSL                                                       |

Scenario Timeframe: Current/Future

Medium: Surface Soil

| Exposure<br>Point | CAS<br>Number | Chemical                   | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|----------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 208-96-8      | Acenaphthylene             | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.4E+02 N                       | 1.1E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 98-86-2       | Acetophenone               | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 7.8E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 120-12-7      | Anthracene                 | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.7E+03 N                       | 6.6E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1912-24-9     | Atrazine                   | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.1E+00 C                       | 2.5E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 100-52-7      | Benzaldehyde               | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 7.8E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 56-55-3       | Benzo(a)anthracene         | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 1.5E-01 C                       | 1.8E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 50-32-8       | Benzo(a)pyrene             | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 1.5E-02 C                       | 5.9E-02                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 205-99-2      | Benzo(b)fluoranthene       | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 1.5E-01 C                       | 6.0E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 191-24-2      | Benzo(g,h,i)perylene       | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.7E+02 N                       | 3.6E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 207-08-9      | Benzo(k)fluoranthene       | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.5E+00 C                       | 5.9E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 111-91-1      | bis(2-Chloroethoxy)methane | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 111-44-4      | bis(2-Chloroethyl)ether    | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.1E-01 C                       | 1.4E-04                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 117-81-7      | bis(2-Ethylhexyl)phthalate | 9.6E-02 J                                 | 9.6E-02 J                                 | MG/KG | IR17-SS01-00-01-09C                     | 1/5                    | 0.18 - 0.24                     | 9.6E-02                              | N/A                     | 3.5E+01 C*                      | 7.2E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 85-68-7       | Butylbenzylphthalate       | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.6E+02 C*                      | 1.5E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 105-60-2      | Caprolactam                | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.1E+03 N                       | 1.8E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 86-74-8       | Carbazole                  | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 218-01-9      | Chrysene                   | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.5E+01 C                       | 1.8E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 53-70-3       | Dibenz(a,h)anthracene      | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 1.5E-02 C                       | 1.9E-01                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 132-64-9      | Dibenzofuran               | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 7.8E+00 N                       | 4.7E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 84-66-2       | Diethylphthalate           | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 4.9E+03 N                       | 3.7E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 131-11-3      | Dimethyl phthalate         | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 84-74-2       | Di-n-butylphthalate        | 9.3E-02 J                                 | 9.3E-02 J                                 | MG/KG | IR17-SS01-00-01-09C                     | 1/5                    | 0.18 - 0.24                     | 9.3E-02                              | N/A                     | 6.1E+02 N                       | 1.9E+01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 117-84-0      | Di-n-octylphthalate        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.5E+01 C*                      | 3.8E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 206-44-0      | Fluoranthene               | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.3E+02 N                       | 3.3E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 86-73-7       | Fluorene                   | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.3E+02 N                       | 5.6E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 118-74-1      | Hexachlorobenzene          | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.0E-01 C                       | 2.6E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 87-68-3       | Hexachlorobutadiene        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+00 C**                     | 8.7E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 77-47-4       | Hexachlorocyclopentadiene  | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 67-72-1       | Hexachloroethane           | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+00 C**                     | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 193-39-5      | Indeno(1,2,3-cd)pyrene     | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 1.5E-01 C                       | 2.0E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 78-59-1       | Isophorone                 | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 5.1E+02 C*                      | 2.0E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 91-20-3       | Naphthalene                | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.6E+00 C*                      | 2.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 621-64-7      | n-Nitroso-di-n-propylamine | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 6.9E-02 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 86-30-6       | n-Nitrosodiphenylamine     | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 9.9E+01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 98-95-3       | Nitrobenzene               | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 4.8E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 87-86-5       | Pentachlorophenol          | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.0E+00 C                       | 3.1E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 85-01-8       | Phenanthrene               | ND<br>ND                                  | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.7E+03 N                       | 5.7E+01                        | NCPSRG                          | NO           | DLBSL                                               |

Scenario Timeframe: Current/Future Medium: Surface Soil

| Exposure<br>Point | CAS<br>Number | Chemical            | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|---------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 108-95-2      | Phenol              | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.8E+03 N                       | 2.3E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 129-00-0      | Pyrene              | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.7E+02 N                       | 2.2E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 72-54-8       | 4,4'-DDD            | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 2.0E+00 C                       | 2.4E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 72-55-9       | 4,4'-DDE            | 6.3E-04 J                                 | 2.2E-03 J                                 | MG/KG | IR17-SS05-00-01-09C                     | 4/5                    | 0.0017 - 0.0025                 | 2.2E-03                              | N/A                     | 1.4E+00 C                       | N/A                            |                                 | NO           | BSL                                                 |
|                   | 50-29-3       | 4,4'-DDT            | 9.0E-04 J                                 | 1.9E-03 J                                 | MG/KG | IR17-SS02-00-01-09C                     | 3/5                    | 0.0017 - 0.0025                 | 1.9E-03                              | N/A                     | 1.7E+00 C*                      | 3.4E-01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 309-00-2      | Aldrin              | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 2.9E-02 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 319-84-6      | alpha-BHC           | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 7.7E-02 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 5103-71-9     | alpha-Chlordane     | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 12674-11-2    | Aroclor-1016        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 3.9E-01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 11104-28-2    | Aroclor-1221        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 11141-16-5    | Aroclor-1232        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 53469-21-9    | Aroclor-1242        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 12672-29-6    | Aroclor-1248        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 11097-69-1    | Aroclor-1254        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 1.1E-01 C**                     | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 11096-82-5    | Aroclor-1260        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 319-85-7      | beta-BHC            | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 319-86-8      | delta-BHC           | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 60-57-1       | Dieldrin            | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 3.0E-02 C                       | 8.1E-04                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 959-98-8      | Endosulfan I        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 33213-65-9    | Endosulfan II       | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1031-07-8     | Endosulfan sulfate  | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 72-20-8       | Endrin              | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 7421-93-4     | Endrin aldehyde     | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 53494-70-5    | Endrin ketone       | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 58-89-9       | gamma-BHC (Lindane) | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 5.2E-01 C*                      | 1.8E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 5103-74-2     | gamma-Chlordane     | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 76-44-8       | Heptachlor          | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.1E-01 C                       | 6.6E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1024-57-3     | Heptachlor epoxide  | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 5.3E-02 C*                      | 8.2E-04                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 72-43-5       | Methoxychlor        | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 3.1E+01 N                       | 2.2E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 8001-35-2     | Toxaphene           | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 4.4E-01 C                       | 4.6E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 7429-90-5     | Aluminum            | 5.2E+03                                   | 7.6E+03 J+                                | MG/KG | IR17-SS01-00-01-09C                     | 5/5                    | 73.7 - 107                      | 7.6E+03                              | 5.5E+03                 | 7.7E+03 N                       | N/A                            |                                 | NO           | BSL                                                 |
|                   | 7440-36-0     | Antimony            | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 1.5 - 2.1                       | 2.1E+00                              | 4.5E-01                 | 3.1E+00 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 7440-38-2     | Arsenic             | 1.1E+00 J                                 | 4.9E+00                                   | MG/KG | IR17-SS01-00-01-09C                     | 5/5                    | 1.5 - 2.1                       | 4.9E+00                              | 6.3E-01                 | 3.9E-01 C*                      | 5.8E+00                        | NCPSRG                          | YES          | ASL                                                 |
|                   | 7440-39-3     | Barium              | 1.3E+01                                   | 2.1E+01                                   | MG/KG | IR17-SS02-00-01-09C                     | 5/5                    | 3.7 - 5.4                       | 2.1E+01                              | 1.5E+01                 | 1.5E+03 N                       | 5.8E+02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 7440-41-7     | Beryllium           | 1.4E-01 J                                 | 1.6E-01                                   | MG/KG | IR17-SS02-00-01-09C                     | 3/5                    | 0.15 - 0.21                     | 1.6E-01                              | 1.0E-01                 | 1.6E+01 N                       | N/A                            |                                 | NO           | BSL                                                 |
|                   | 7440-43-9     | Cadmium             | 2.0E-02 J                                 | 2.0E-02 J                                 | MG/KG | IR17-SS02-00-01-09C                     | 1/5                    | 0.44 - 0.64                     | 2.0E-02                              | 3.3E-02                 | 7.0E+00 N                       | 3.0E+00                        | NCPSRG                          | NO           | BSL, BBK                                            |
|                   | 7440-70-2     | Calcium             | 9.2E+01                                   | 3.7E+02                                   | MG/KG | IR17-SS01D-00-01-09C                    | 5/5                    | 73.7 - 107                      | 3.7E+02                              | 6.4E+03                 | N/A                             | N/A                            |                                 | NO           | NUT, BBK                                            |

Scenario Timeframe: Current/Future Medium: Surface Soil

| Exposure<br>Point | CAS<br>Number | Chemical  | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value |         | Potential<br>ARAR/TBC<br>Source |     | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|-----------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|---------|---------------------------------|-----|-----------------------------------------------------|
|                   | 7440-47-3     | Chromium  | 2.7E+00                                   | 8.3E+00                                   | MG/KG | IR17-SS01-00-01-09C                     | 5/5                    | 1.5 - 2.1                       | 8.3E+00                              | 6.1E+00                 | 2.9E-01 C                       | 3.8E+00 | NCPSRG                          | YES | ASL                                                 |
|                   | 7440-48-4     | Cobalt    | 2.1E-01 J                                 | 3.3E-01 J                                 | MG/KG | IR17-SS04-00-01-09C                     | 4/5                    | 0.37 - 0.54                     | 3.3E-01                              | 2.9E-01                 | 2.3E+00 N                       | N/A     |                                 | NO  | BSL                                                 |
|                   | 7440-50-8     | Copper    | 7.0E-01 J                                 | 1.0E+00 J                                 | MG/KG | IR17-SS01-00-01-09C                     | 5/5                    | 1.5 - 2.1                       | 1.0E+00                              | 4.8E+00                 | 3.1E+02 N                       | 7.0E+02 | NCPSRG                          | NO  | BSL, BBK                                            |
|                   | 7439-89-6     | Iron      | 1.7E+03                                   | 7.6E+03                                   | MG/KG | IR17-SS01-00-01-09C                     | 5/5                    | 11.1 - 16.1                     | 7.6E+03                              | 3.2E+03                 | 5.5E+03 N                       | 1.5E+02 | NCPSRG                          | YES | ASL                                                 |
|                   | 7439-92-1     | Lead      | 7.5E+00                                   | 1.7E+01                                   | MG/KG | IR17-SS01-00-01-09C                     | 5/5                    | 1.5 - 2.1                       | 1.7E+01                              | 1.2E+01                 | 4.0E+02 NL                      | 2.7E+02 | NCPSRG                          | NO  | BSL                                                 |
|                   | 7439-95-4     | Magnesium | 1.3E+02                                   | 6.7E+02                                   | MG/KG | IR17-SS01-00-01-09C                     | 5/5                    | 18.4 - 26.8                     | 6.7E+02                              | 2.4E+02                 | N/A                             | N/A     |                                 | NO  | NUT                                                 |
|                   | 7439-96-5     | Manganese | 5.9E+00                                   | 1.1E+01                                   | MG/KG | IR17-SS04-00-01-09C                     | 5/5                    | 0.37 - 0.54                     | 1.1E+01                              | 1.4E+01                 | 1.8E+02 N                       | 6.5E+01 | NCPSRG                          | NO  | BSL, BBK                                            |
|                   | 7439-97-6     | Mercury   | 4.2E-02                                   | 5.2E-02                                   | MG/KG | IR17-SS01-00-01-09C                     | 2/5                    | 0.032 - 0.045                   | 5.2E-02                              | 8.1E-02                 | 2.3E+00 N                       | 1.0E+00 | NCPSRG                          | NO  | BSL, BBK                                            |
|                   | 7440-02-0     | Nickel    | 1.4E+00                                   | 2.0E+00                                   | MG/KG | IR17-SS02-00-01-09C                     | 5/5                    | 0.74 - 1.1                      | 2.0E+00                              | 1.2E+00                 | 1.6E+02 N                       | 1.3E+02 | NCPSRG                          | NO  | BSL                                                 |
|                   | 7440-09-7     | Potassium | 1.1E+02                                   | 5.0E+02                                   | MG/KG | IR17-SS01-00-01-09C                     | 5/5                    | 73.7 - 107                      | 5.0E+02                              | 1.2E+02                 | N/A                             | N/A     |                                 | NO  | NUT                                                 |
|                   | 7782-49-2     | Selenium  | 6.9E-01 J                                 | 6.9E-01 J                                 | MG/KG | IR17-SS01-00-01-09C                     | 1/5                    | 1.5 - 2.1                       | 6.9E-01                              | 5.6E-01                 | 3.9E+01 N                       | 2.1E+00 | NCPSRG                          | NO  | BSL                                                 |
|                   | 7440-22-4     | Silver    | 4.0E-01 J                                 | 4.0E-01 J                                 | MG/KG | IR17-SS01-00-01-09C                     | 1/5                    | 1.5 - 2.1                       | 4.0E-01                              | 1.4E-01                 | 3.9E+01 N                       | 3.4E+00 | NCPSRG                          | NO  | BSL                                                 |
|                   | 7440-23-5     | Sodium    | 1.3E+01 J                                 | 1.9E+03                                   | MG/KG | IR17-SS01D-00-01-09C                    | 4/5                    | 184 - 268                       | 1.9E+03                              | 8.1E+01                 | N/A                             | N/A     |                                 | NO  | NUT                                                 |
|                   | 7440-28-0     | Thallium  | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 2.2 - 3.2                       | 3.2E+00                              | 3.6E-01                 | N/A                             | N/A     |                                 | NO  | NTX                                                 |
|                   | 7440-62-2     | Vanadium  | 5.8E+00                                   | 2.1E+01                                   | MG/KG | IR17-SS01-00-01-09C                     | 5/5                    | 3.7 - 5.4                       | 2.1E+01                              | 8.9E+00                 | 3.9E+01 N                       | N/A     |                                 | NO  | BSL                                                 |
|                   | 7440-66-6     | Zinc      | 4.3E+00                                   | 5.2E+00                                   | MG/KG | SS05-00-01-09C                          | 4/5                    | 3.7 - 5.4                       | 5.2E+00                              | 1.1E+01                 | 2.4E+03 N                       | 1.2E+03 | NCPSRG                          | NO  | BSL, BBK                                            |

### Table 2.7

### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Site 17 MCB Camp Lejeune, North Carolina

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil

| Exposure | CAS    | Chemical | Minimum [1]   | Maximum [1]   | Units | Location      | Detection | Range of  | Concentration [2] | Background [3] | Screening [4]  | Potential | Potential | COPC | Rationale for [5] |
|----------|--------|----------|---------------|---------------|-------|---------------|-----------|-----------|-------------------|----------------|----------------|-----------|-----------|------|-------------------|
| Point    | Number |          | Concentration | Concentration |       | of Maximum    | Frequency | Detection | Used for          | Value          | Toxicity Value | ARAR/TBC  | ARAR/TBC  | Flag | Contaminant       |
|          |        |          | Qualifier     | Qualifier     |       | Concentration |           | Limits    | Screening         |                |                | Value     | Source    |      | Deletion          |
|          |        |          |               |               |       |               |           |           |                   |                |                |           |           |      | or Selection      |

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening. If the chemical was not detected, the maximum detection limit is used for screening.
- [3] Background values are two times the arithmetic mean basewide background surface soil concentrations.

 ${\it Background\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ \\ {\it Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\ \\ \\ {\it Marine$ 

Baker Environmental, April 25, 2001.

[4] Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites.

http://epa-prgs.ornl.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) residential soil RSLs.

RSL value for 1,4-Dichlorobenzene used as a surrogate for 1,3-Dichlorobenzene

RSL value for p-cresol used as surrogate for 3- and 4-methylphenol.

RSL value for methoxychlor used as surrogate for 4-chlorophenyl-phenylether.

RSL value for nitrobenzene used as surrogate for 4-nitrophenol.

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for technical chlordane used as surrogate for alpha-chlordane.

RSL value for technical-HCH used as surrogate for delta-BHC.

RSL value for technical chlordane used as surrogate for gamma-chlordane.

RSL value for 1,3-dichloropropene used as a surrogate for cis-1,3-dichloropropene and trans-1,3-dichloropropene.

RSL value for endosulfan used as surrogate for endosulfan I, endosulfan II, and endosulfan sulfate.

RSL value for endrin used as surrogate for endrin aldehyde and endrin ketone.

RSL value for 2-chlorophenol used as surrogate for 4-chloro-3-methylphenol and 2-nitrophenol.

RSL value for Mercury (inorganic salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Detection Limit Above Screening Level (DLASL), not quantitatively evaluated in HHRA

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)
Below Screening Level (BSL)
Below Background (BBK)

Detection Limit Below Screening Level (DLBSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

NCPSRG = North Carolina Preliminary Soil Remediation Goal, January, 2010

J = Estimated Value

J+ = Analyte present, value may be biased high, actual value may be lower

C = Carcinogenic

C\* = N screening level < 100x C screening level, therefore

N screening value/10 used as screening level

C\*\* = N screening level < 10x C screening level, therefore

N screening value/10 used as screening level

MG/KG = milligrams per kilogram

N = Noncarcinogenic

N/A = Not available/not applicable

NL = Noncarcinogenic lead residential soil RSL not adjusted by dividing by 10.

NS = Concentration exceeds Csat (soil saturation concentration),

Csat used as screening level.

### TABLE 2.7a

Risk Ratio Screening for Surface Soil, Maximum Detected Concentration Camp Johnson Site 17 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Maximum Detected Concentration (Qualifier) | Sample Location of<br>Maximum Detected<br>Concentration | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ     |
|----------------------------------------------------|------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|------------------|
| Metals (mg/kg)                                     |                        |                                            |                                                         |                         |                          |                                            |                                           |                  |
| Arsenic                                            | 5 / 5                  | 4.9E+00                                    | IR17-SS01-00-01-09C                                     | 3.9E-01                 | 1E-06                    | NA                                         | 1E-05                                     | NA               |
| Chromium                                           | 5 / 5                  | 8.3E+00                                    | IR17-SS01-00-01-09C                                     | 2.9E-01                 | 1E-06                    | NA                                         | 3E-05                                     | NA               |
| Iron                                               | 5 / 5                  | 7.6E+03                                    | IR17-SS01-00-01-09C                                     | 5.5E+04                 | 1                        | 0.1                                        | NA                                        | Gastrointestinal |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |                                            |                                                         |                         |                          | 0.1                                        |                                           |                  |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |                                            |                                                         |                         |                          |                                            | 4E-05                                     |                  |
|                                                    |                        |                                            |                                                         |                         |                          | Total                                      | Gastrointestinal HI =                     | 0.1              |

Constituents selected as COPCs are indicated by shading.

COPC = Constituent of Potential Concern HI = Hazard Index mg/kg = milligrams per kilogram NA = Not available/not applicable

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

d Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

| Exposure<br>Point | CAS<br>Number | Chemical                                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1] Concentration Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|---------------|--------------------------------------------------|-------------------------------------------|-------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|----------------------------------------------------------|
| Site 17           | 71-55-6       | 1.1.1-Trichloroethane                            | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 6.4E+02 NS                      | 1.2E+00                        | NCPSRG                          | NO           | DLBSL                                                    |
| One II            | 79-34-5       | 1.1.2.2-Tetrachloroethane                        | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 5.6E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 76-13-1       | 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 9.1E+02 NS                      |                                | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 79-00-5       | 1.1.2-Trichloroethane                            | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 1.1E+00 C                       | N/A                            | NOI ONO                         | NO           | DLBSL                                                    |
|                   | 75-34-3       | 1.1-Dichloroethane                               | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 3.3E+00 C                       | 3.0E-02                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 75-35-4       | 1.1-Dichloroethene                               | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 2.4E+01 N                       | 4.6E-02                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 120-82-1      | 1,2,4-Trichlorobenzene                           | 1.1E-03 J                                 | 1.1E-03 J                           | MG/KG | IR17-SB01-2-4-09C                       | 1/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 6.2E+00 C**                     | 2.2E+00                        | NCPSRG                          | NO           | BSL                                                      |
|                   | 96-12-8       | 1,2-Dibromo-3-chloropropane                      | 1.6E-03 J                                 | 1.6E-03 J                           | MG/KG | IR17-SB01-2-4-09C                       | 1/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 5.4E-03 C                       | 2.5E-04                        | NCPSRG                          | YES          | ASL                                                      |
|                   | 106-93-4      | 1.2-Dibromoethane                                | ND                                        | ND                                  | MG/KG | II(17 OBO1 2 4 030                      | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 3.4E-02 C                       | 9.7E-05                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 95-50-1       | 1.2-Dichlorobenzene                              | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 1.9E+02 N                       | 2.4E-01                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 107-06-2      | 1.2-Dichloroethane                               | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 4.3E-01 C                       | 2.0E-03                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 78-87-5       | 1,2-Dichloropropane                              | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 9.0E-01 C*                      | 3.3E-03                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 541-73-1      | 1,3-Dichlorobenzene                              | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 2.4E+00 C                       | N/A                            | 1101 0110                       | NO           | DLBSL                                                    |
|                   | 106-46-7      | 1,4-Dichlorobenzene                              | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 2.4E+00 C                       | 7.0E-02                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 78-93-3       | 2-Butanone                                       | 1.4E-03 J                                 | 2.3E-02 J                           | MG/KG | IR17-SS04-00-01-09C                     | 6/10                   | 0.0029 - 0.013                  | 2.3E-02                              | N/A                     | 2.8E+03 N                       | 1.6E+01                        | NCPSRG                          | NO           | BSL                                                      |
|                   | 591-78-6      | 2-Hexanone                                       | ND                                        | ND                                  | MG/KG | 0001 00 01 000                          | 0/9                    | 0.0029 - 0.013                  | 1.3E-02                              | N/A                     | 2.1E+01 N                       | 1.2E+00                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 108-10-1      | 4-Methyl-2-pentanone                             | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0029 - 0.013                  | 1.3E-02                              | N/A                     | 5.3E+02 N                       | N/A                            | 1101 0110                       | NO           | DLBSL                                                    |
|                   | 67-64-1       | Acetone                                          | 7.0E-02 J                                 | 9.0E-01 J                           | MG/KG | IR17-SS04-00-01-09C                     | 6/10                   | 0.0029 - 0.013                  | 9.0E-01                              | N/A                     | 6.1E+03 N                       | 2.4E+01                        | NCPSRG                          | NO           | BSL                                                      |
|                   | 71-43-2       | Benzene                                          | ND                                        | ND                                  | MG/KG | 0001 00 01 000                          | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 1.1E+00 C*                      | 7.3E-02                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 75-27-4       | Bromodichloromethane                             | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 2.7E-01 C                       | 2.9E-03                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 75-25-2       | Bromoform                                        | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 6.1E+01 C*                      | 1.9E-02                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 74-83-9       | Bromomethane                                     | ND                                        | ND                                  | MG/KG |                                         | 0/8                    | 0.0029 - 0.011                  | 1.1E-02                              | N/A                     | 7.3E-01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 75-15-0       | Carbon disulfide                                 | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 8.2E+01 N                       | 3.8E+00                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 56-23-5       | Carbon tetrachloride                             | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 6.1E-01 C                       | 2.0E-03                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 108-90-7      | Chlorobenzene                                    | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 2.9E+01 N                       | 4.5E-01                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 75-00-3       | Chloroethane                                     | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0029 - 0.013                  | 1.3E-02                              | N/A                     | 1.5E+03 N                       | 1.6E+01                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 67-66-3       | Chloroform                                       | 2.3E-03                                   | 1.3E-02 J                           | MG/KG | IR17-SS02-00-01-09C                     | 3/9                    | 0.0014 - 0.0065                 | 1.3E-02                              | N/A                     | 2.9E-01 C                       | 3.4E-01                        | NCPSRG                          | NO           | BSL                                                      |
|                   | 74-87-3       | Chloromethane                                    | 6.5E-03 J                                 | 6.5E-03 J                           | MG/KG | IR17-SS01-00-01-09C                     | 1/9                    | 0.0029 - 0.013                  | 6.5E-03                              | N/A                     | 1.2E+01 N                       | 1.5E-02                        | NCPSRG                          | NO           | BSL                                                      |
|                   | 156-59-2      | cis-1,2-Dichloroethene                           | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 7.8E+01 N                       | 3.6E-01                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 10061-01-5    | cis-1,3-Dichloropropene                          | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 110-82-7      | Cyclohexane                                      | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 1.2E+02 NS                      | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 124-48-1      | Dibromochloromethane                             | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 6.8E-01 C                       | 1.9E-03                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 75-71-8       | Dichlorodifluoromethane (Freon-12)               | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 1.8E+01 N                       | 2.9E+01                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 100-41-4      | Ethylbenzene                                     | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 5.4E+00 C                       | 8.1E+00                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 98-82-8       | Isopropylbenzene                                 | ND                                        | ND                                  | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 2.1E+02 N                       | 1.3E+00                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 79-20-9       | Methyl acetate                                   | 1.3E-03 J                                 | 9.6E-02 J                           | MG/KG | IR17-SB03-2-7-09C                       | 8/10                   | 0.0014 - 0.0065                 | 9.6E-02                              | N/A                     | 7.8E+03 N                       | N/A                            |                                 | NO           | BSL                                                      |

| Exposure<br>Point | CAS<br>Number | Chemical                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|---------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|----------------------------------------------------------|
|                   | 108-87-2      | Methylcyclohexane                | ND                                        | ND                                        | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 5.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 75-09-2       | Methylene chloride               | 1.5E-03 J                                 | 1.5E-03 J                                 | MG/KG | IR17-SB03-2-7-09C                       | 1/9                    | 0.0029 - 0.013                  | 1.5E-03                              | N/A                     | 1.1E+01 C                       | 2.3E-02                        | NCPSRG                          | NO           | BSL                                                      |
|                   | 1634-04-4     | Methyl-tert-butyl ether (MTBE)   | ND                                        | ND                                        | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 4.3E+01 C                       | 8.5E-02                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 100-42-5      | Styrene                          | ND                                        | ND                                        | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 6.3E+02 N                       | 9.2E-01                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 127-18-4      | Tetrachloroethene                | ND                                        | ND                                        | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 5.5E-01 C                       | 5.0E-03                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 108-88-3      | Toluene                          | ND                                        | ND                                        | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 5.0E+02 N                       | 5.5E+00                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 156-60-5      | trans-1,2-Dichloroethene         | ND                                        | ND                                        | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 1.5E+01 N                       | 5.1E-01                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 10061-02-6    | trans-1,3-Dichloropropene        | ND                                        | ND                                        | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 79-01-6       | Trichloroethene                  | ND                                        | ND                                        | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 2.8E+00 C                       | 1.8E-02                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 75-69-4       | Trichlorofluoromethane(Freon-11) | ND                                        | ND                                        | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 7.9E+01 N                       | 2.4E+01                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 75-01-4       | Vinyl chloride                   | ND                                        | ND                                        | MG/KG |                                         | 0/8                    | 0.0029 - 0.013                  | 1.3E-02                              | N/A                     | 6.0E-02 C                       | 1.9E-04                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 1330-20-7     | Xylene, total                    | ND                                        | ND                                        | MG/KG |                                         | 0/9                    | 0.0014 - 0.0065                 | 6.5E-03                              | N/A                     | 6.3E+01 N                       | 6.0E+00                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 92-52-4       | 1,1-Biphenyl                     | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.1E+02 NS                      | 4.3E+01                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 108-60-1      | 2,2'-Oxybis(1-chloropropane)     | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 4.6E+00 C                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 95-95-4       | 2,4,5-Trichlorophenol            | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 120-83-2      | 2,4-Dichlorophenol               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 105-67-9      | 2,4-Dimethylphenol               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.2E+02 N                       | 1.4E+00                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 51-28-5       | 2,4-Dinitrophenol                | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.2E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 121-14-2      | 2,4-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.6E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 606-20-2      | 2,6-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+00 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 91-58-7       | 2-Chloronaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.8E+02 NS                      | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 95-57-8       | 2-Chlorophenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.9E+01 N                       | 4.1E-03                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 91-57-6       | 2-Methylnaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.1E+01 N                       | 1.6E+00                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 95-48-7       | 2-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 88-74-4       | 2-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 88-75-5       | 2-Nitrophenol                    | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.9E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 91-94-1       | 3,3'-Dichlorobenzidine           | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.1E+00 C                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 99-09-2       | 3-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 534-52-1      | 4,6-Dinitro-2-methylphenol       | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 4.9E-01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 101-55-3      | 4-Bromophenyl-phenylether        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                      |
|                   | 59-50-7       | 4-Chloro-3-methylphenol          | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 106-47-8      | 4-Chloroaniline                  | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.4E+00 C                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 7005-72-3     | 4-Chlorophenyl-phenylether       | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 106-44-5      | 4-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.1E+01 N                       | 4.0E-01                        | NCPSRG                          | NO           | DLBSL                                                    |
|                   | 100-01-6      | 4-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.4E+01 C*                      | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 100-02-7      | 4-Nitrophenol                    | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 4.8E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                                    |
|                   | 83-32-9       | Acenaphthene                     | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.4E+02 N                       | 8.4E+00                        | NCPSRG                          | NO           | DLBSL                                                    |

| Exposure<br>Point | CAS<br>Number | Chemical                   | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|---------------|----------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-------------------------------------------------------------|
|                   | 208-96-8      | Acenaphthylene             | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.4E+02 N                       | 1.1E+01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 98-86-2       | Acetophenone               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 7.8E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 120-12-7      | Anthracene                 | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.7E+03 N                       | 6.6E+02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 1912-24-9     | Atrazine                   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.1E+00 C                       | 2.5E-02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 100-52-7      | Benzaldehyde               | ND                                        | ND                                        | MG/KG |                                         | 0/5                    | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 7.8E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 56-55-3       | Benzo(a)anthracene         | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 1.5E-01 C                       | 1.8E-01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 50-32-8       | Benzo(a)pyrene             | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 1.5E-02 C                       | 5.9E-02                        | NCPSRG                          | YES          | DLASL                                                       |
|                   | 205-99-2      | Benzo(b)fluoranthene       | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 1.5E-01 C                       | 6.0E-01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 191-24-2      | Benzo(g,h,i)perylene       | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.7E+02 N                       | 3.6E+02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 207-08-9      | Benzo(k)fluoranthene       | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.5E+00 C                       | 5.9E+00                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 111-91-1      | bis(2-Chloroethoxy)methane | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 111-44-4      | bis(2-Chloroethyl)ether    | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.1E-01 C                       | 1.4E-04                        | NCPSRG                          | YES          | DLASL                                                       |
|                   | 117-81-7      | bis(2-Ethylhexyl)phthalate | 9.6E-02 J                                 | 9.6E-02 J                                 | MG/KG | IR17-SS01-00-01-09C                     | 1/10                   | 0.18 - 0.24                     | 9.6E-02                              | N/A                     | 3.5E+01 C*                      | 7.2E+00                        | NCPSRG                          | NO           | BSL                                                         |
|                   | 85-68-7       | Butylbenzylphthalate       | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.6E+02 C*                      | 1.5E+02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 105-60-2      | Caprolactam                | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.1E+03 N                       | 1.8E+01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 86-74-8       | Carbazole                  | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                         |
|                   | 218-01-9      | Chrysene                   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.5E+01 C                       | 1.8E+01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 53-70-3       | Dibenz(a,h)anthracene      | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 1.5E-02 C                       | 1.9E-01                        | NCPSRG                          | YES          | DLASL                                                       |
|                   | 132-64-9      | Dibenzofuran               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 7.8E+00 N                       | 4.7E+00                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 84-66-2       | Diethylphthalate           | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 4.9E+03 N                       | 3.7E+01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 131-11-3      | Dimethyl phthalate         | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                         |
|                   | 84-74-2       | Di-n-butylphthalate        | 9.3E-02 J                                 | 9.3E-02 J                                 | MG/KG | IR17-SS01-00-01-09C                     | 1/10                   | 0.18 - 0.24                     | 9.3E-02                              | N/A                     | 6.1E+02 N                       | 1.9E+01                        | NCPSRG                          | NO           | BSL                                                         |
|                   | 117-84-0      | Di-n-octylphthalate        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.5E+01 C*                      | 3.8E+01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 206-44-0      | Fluoranthene               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.3E+02 N                       | 3.3E+02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 86-73-7       | Fluorene                   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 2.3E+02 N                       | 5.6E+01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 118-74-1      | Hexachlorobenzene          | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.0E-01 C                       | 2.6E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 87-68-3       | Hexachlorobutadiene        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+00 C**                     | 8.7E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 77-47-4       | Hexachlorocyclopentadiene  | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 67-72-1       | Hexachloroethane           | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 6.1E+00 C**                     | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 193-39-5      | Indeno(1,2,3-cd)pyrene     | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 1.5E-01 C                       | 2.0E+00                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 78-59-1       | Isophorone                 | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 5.1E+02 C*                      | 2.0E-01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 91-20-3       | Naphthalene                | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.6E+00 C*                      | 2.1E-01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 621-64-7      | n-Nitroso-di-n-propylamine | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.035 - 0.049                   | 4.9E-02                              | N/A                     | 6.9E-02 C                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 86-30-6       | n-Nitrosodiphenylamine     | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 9.9E+01 C                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 98-95-3       | Nitrobenzene               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 4.8E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 87-86-5       | Pentachlorophenol          | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 3.0E+00 C                       | 3.1E-02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 85-01-8       | Phenanthrene               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.7E+03 N                       | 5.7E+01                        | NCPSRG                          | NO           | DLBSL                                                       |

| Exposure<br>Point | CAS<br>Number | Chemical            | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|---------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 108-95-2      | Phenol              | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.8E+03 N                       | 2.3E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 129-00-0      | Pyrene              | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.18 - 0.24                     | 2.4E-01                              | N/A                     | 1.7E+02 N                       | 2.2E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 72-54-8       | 4,4'-DDD            | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 2.0E+00 C                       | 2.4E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 72-55-9       | 4,4'-DDE            | 4.1E-04 J                                 | 2.2E-03 J                                 | MG/KG | IR17-SS05-00-01-09C                     | 5/10                   | 0.0017 - 0.0025                 | 2.2E-03                              | N/A                     | 1.4E+00 C                       | N/A                            |                                 | NO           | BSL                                                 |
|                   | 50-29-3       | 4,4'-DDT            | 9.0E-04 J                                 | 1.9E-03 J                                 | MG/KG | IR17-SS02-00-01-09C                     | 3/10                   | 0.0017 - 0.0025                 | 1.9E-03                              | N/A                     | 1.7E+00 C*                      | 3.4E-01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 309-00-2      | Aldrin              | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 2.9E-02 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 319-84-6      | alpha-BHC           | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 7.7E-02 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 5103-71-9     | alpha-Chlordane     | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 12674-11-2    | Aroclor-1016        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 3.9E-01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 11104-28-2    | Aroclor-1221        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 11141-16-5    | Aroclor-1232        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 53469-21-9    | Aroclor-1242        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 12672-29-6    | Aroclor-1248        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 11097-69-1    | Aroclor-1254        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 1.1E-01 C**                     | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 11096-82-5    | Aroclor-1260        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.017 - 0.024                   | 2.4E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 319-85-7      | beta-BHC            | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 319-86-8      | delta-BHC           | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 60-57-1       | Dieldrin            | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 3.0E-02 C                       | 8.1E-04                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 959-98-8      | Endosulfan I        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 33213-65-9    | Endosulfan II       | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1031-07-8     | Endosulfan sulfate  | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 72-20-8       | Endrin              | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 7421-93-4     | Endrin aldehyde     | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 53494-70-5    | Endrin ketone       | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 58-89-9       | gamma-BHC (Lindane) | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 5.2E-01 C*                      | 1.8E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 5103-74-2     | gamma-Chlordane     | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 76-44-8       | Heptachlor          | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 1.1E-01 C                       | 6.6E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1024-57-3     | Heptachlor epoxide  | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 5.3E-02 C*                      | 8.2E-04                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 72-43-5       | Methoxychlor        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0017 - 0.0025                 | 2.5E-03                              | N/A                     | 3.1E+01 N                       | 2.2E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 8001-35-2     | Toxaphene           | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.033 - 0.049                   | 4.9E-02                              | N/A                     | 4.4E-01 C                       | 4.6E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 7429-90-5     | Aluminum            | 4.5E+03                                   | 2.0E+04                                   | MG/KG | IR17-SB03-2-7-09C                       | 10/10                  | 73.7 - 107                      | 2.0E+04                              | 5.5E+03                 | 7.7E+03 N                       | N/A                            |                                 | YES          | ASL                                                 |
|                   | 7440-36-0     | Antimony            | 9.3E-01 J                                 | 9.3E-01 J                                 | MG/KG | IR17-SB01-2-4-09C                       | 1/10                   | 1.5 - 2.1                       | 9.3E-01                              | 3.6E-01                 | 3.1E+00 N                       | N/A                            |                                 | NO           | BSL                                                 |
|                   | 7440-38-2     | Arsenic             | 9.5E-01 J                                 | 1.5E+01                                   | MG/KG | IR17-SB03D-2-7-09C                      | 10/10                  | 1.5 - 2.1                       | 1.5E+01                              | 6.3E-01                 | 3.9E-01 C*                      | 5.8E+00                        | NCPSRG                          | YES          | ASL                                                 |
|                   | 7440-39-3     | Barium              | 6.6E+00                                   | 2.2E+01                                   | MG/KG | IR17-SB03-2-7-09C                       | 10/10                  | 3.7 - 5.4                       | 2.2E+01                              | 1.5E+01                 | 1.5E+03 N                       | 5.8E+02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 7440-41-7     | Beryllium           | 5.5E-02 J                                 | 3.1E-01                                   | MG/KG | IR17-SB03-2-7-09C                       | 8/10                   | 0.15 - 0.21                     | 3.1E-01                              | 1.0E-01                 | 1.6E+01 N                       | N/A                            |                                 | NO           | BSL                                                 |
|                   | 7440-43-9     | Cadmium             | 2.0E-02 J                                 | 2.0E-02 J                                 | MG/KG | IR17-SS02-00-01-09C                     | 1/10                   | 0.44 - 0.64                     | 2.0E-02                              | 2.3E-02                 | 7.0E+00 N                       | 3.0E+00                        | NCPSRG                          | NO           | BSL, BBK                                            |
|                   | 7440-70-2     | Calcium             | 9.2E+01                                   | 3.7E+02                                   | MG/KG | IR17-SS01D-00-01-09C                    | 7/10                   | 73.7 - 107                      | 3.7E+02                              | 4.4E+02                 | N/A                             | N/A                            | l                               | NO           | NUT, BBK                                            |

### ${\sf Table} \ 2.8$ OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Site 17 MCB Camp Lejeune, North Carolina

| Exposure<br>Point | CAS<br>Number | Chemical  | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value |        |     | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|-----------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|--------|-----|-----------------------------------------------------|
|                   | 7440-47-3     | Chromium  | 2.7E+00                                   | 3.6E+01                                   | MG/KG | IR17-SB03-2-7-09C                       | 10/10                  | 1.5 - 2.1                       | 3.6E+01                              | 6.1E+00                 | 2.9E-01 C                       | 3.8E+00                        | NCPSRG | YES | ASL                                                 |
|                   | 7440-48-4     | Cobalt    | 2.1E-01 J                                 | 1.1E+00                                   | MG/KG | IR17-SB03-2-7-09C                       | 9/10                   | 0.37 - 0.54                     | 1.1E+00                              | 2.9E-01                 | 2.3E+00 N                       | N/A                            |        | NO  | BSL                                                 |
|                   | 7440-50-8     | Copper    | 6.6E-01 J                                 | 5.0E+00                                   | MG/KG | IR17-SB03-2-7-09C                       | 10/10                  | 1.5 - 2.1                       | 5.0E+00                              | 2.6E+00                 | 3.1E+02 N                       | 7.0E+02                        | NCPSRG | NO  | BSL                                                 |
|                   | 7439-89-6     | Iron      | 1.7E+03                                   | 2.8E+04                                   | MG/KG | IR17-SB03D-2-7-09C                      | 10/10                  | 11.1 - 16.1                     | 2.8E+04                              | 3.2E+03                 | 5.5E+03 N                       | 1.5E+02                        | NCPSRG | YES | ASL                                                 |
|                   | 7439-92-1     | Lead      | 3.3E+00                                   | 1.7E+01                                   | MG/KG | IR17-SS01-00-01-09C                     | 10/10                  | 1.5 - 2.1                       | 1.7E+01                              | 8.5E+00                 | 4.0E+02 NL                      | 2.7E+02                        | NCPSRG | NO  | BSL                                                 |
|                   | 7439-95-4     | Magnesium | 1.3E+02                                   | 1.0E+03                                   | MG/KG | IR17-SB03-2-7-09C                       | 10/10                  | 18.4 - 26.8                     | 1.0E+03                              | 2.4E+02                 | N/A                             | N/A                            |        | NO  | NUT                                                 |
|                   | 7439-96-5     | Manganese | 5.4E+00                                   | 1.3E+01                                   | MG/KG | IR17-SB03D-2-7-09C                      | 10/10                  | 0.37 - 0.54                     | 1.3E+01                              | 9.3E+00                 | 1.8E+02 N                       | 6.5E+01                        | NCPSRG | NO  | BSL                                                 |
|                   | 7439-97-6     | Mercury   | 4.2E-02                                   | 5.2E-02                                   | MG/KG | IR17-SS01-00-01-09C                     | 3/10                   | 0.032 - 0.045                   | 5.2E-02                              | 7.1E-02                 | 2.3E+00 N                       | 1.0E+00                        | NCPSRG | NO  | BSL, BBK                                            |
|                   | 7440-02-0     | Nickel    | 1.2E+00                                   | 2.7E+00                                   | MG/KG | IR17-SB03-2-7-09C                       | 10/10                  | 0.74 - 1.1                      | 2.7E+00                              | 1.2E+00                 | 1.5E+02 N                       | 1.3E+02                        | NCPSRG | NO  | BSL                                                 |
|                   | 7440-09-7     | Potassium | 1.1E+02                                   | 1.1E+03                                   | MG/KG | IR17-SB03-2-7-09C                       | 10/10                  | 73.7 - 107                      | 1.1E+03                              | 1.2E+02                 | N/A                             | N/A                            |        | NO  | NUT                                                 |
|                   | 7782-49-2     | Selenium  | 6.9E-01 J                                 | 1.4E+00 J                                 | MG/KG | IR17-SB03D-2-7-09C                      | 2/10                   | 1.5 - 2.1                       | 1.4E+00                              | 5.1E-01                 | 3.9E+01 N                       | 2.1E+00                        | NCPSRG | NO  | BSL                                                 |
|                   | 7440-22-4     | Silver    | 4.0E-01 J                                 | 4.0E-01 J                                 | MG/KG | IR17-SS01-00-01-09C                     | 1/10                   | 1.5 - 2.1                       | 4.0E-01                              | 1.3E-01                 | 3.9E+01 N                       | 3.4E+00                        | NCPSRG | NO  | BSL                                                 |
|                   | 7440-23-5     | Sodium    | 5.3E+00 J                                 | 1.9E+03                                   | MG/KG | IR17-SS01D-00-01-09C                    | 9/10                   | 184 - 268                       | 1.9E+03                              | 6.8E+01                 | N/A                             | N/A                            |        | NO  | NUT                                                 |
|                   | 7440-28-0     | Thallium  | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 2.2 - 3.2                       | 3.2E+00                              | 3.6E-01                 | N/A                             | N/A                            |        | NO  | NTX                                                 |
|                   | 7440-62-2     | Vanadium  | 5.8E+00                                   | 7.0E+01                                   | MG/KG | IR17-SB03D-2-7-09C                      | 10/10                  | 3.7 - 5.4                       | 7.0E+01                              | 8.9E+00                 | 3.9E+01 N                       | N/A                            |        | YES | ASL                                                 |
|                   | 7440-66-6     | Zinc      | 2.4E+00 J                                 | 8.9E+00                                   | MG/KG | IR17-SB03-2-7-09C                       | 9/10                   | 3.7 - 5.4                       | 8.9E+00                              | 6.6E+00                 | 2.4E+03 N                       | 1.2E+03                        | NCPSRG | NO  | BSL                                                 |

### Table 2.8

### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Site 17
MCB Camp Lejeune, North Carolina

Scenario Timeframe: Future Medium: Surface and Subsurface Soil

Exposure Medium: Surface and Subsurface Soil

| Exposure | CAS    | Chemical | Minimum [1]   | Maximum [1]   | Units | Location      | Detection | Range of  | Concentration [2] | Background [3] | Screening [4]  | Potential | Potential | COPC | Rationale for [5] |
|----------|--------|----------|---------------|---------------|-------|---------------|-----------|-----------|-------------------|----------------|----------------|-----------|-----------|------|-------------------|
| Point    | Number |          | Concentration | Concentration |       | of Maximum    | Frequency | Detection | Used for          | Value          | Toxicity Value | ARAR/TBC  | ARAR/TBC  | Flag | Contaminant       |
|          |        |          | Qualifier     | Qualifier     |       | Concentration |           | Limits    | Screening         |                |                | Value     | Source    |      | Deletion          |
|          |        |          |               |               |       |               |           |           |                   |                |                |           |           |      | or Selection      |

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening. If the chemical was not detected, the maximum detection limit is used for screening.
- [3] Background values are lower of two times the arithmetic mean basewide background surface soil or subsurface soil concentrations.

 ${\it Background\ Soil\ Study\ Report,\ Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ ,}$ 

Baker Environmental, April 25, 2001.

[4] Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites.

http://epa-prgs.ornl.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) residential soil RSLs.

RSL value for n-Hexane used as surrogate for Methylcyclohexane.

RSL value for 2-Nitroaniline used as surrogate for 3-Nitroaniline.

RSL value for 1,4-Dichlorobenzene used as a surrogate for 1,3-Dichlorobenzene

RSL value for p-cresol used as surrogate for 3- and 4-methylphenol.

RSL value for methoxychlor used as surrogate for 4-chlorophenyl-phenylether.

RSL value for nitrobenzene used as surrogate for 4-nitrophenol.

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(q,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for technical chlordane used as surrogate for alpha-chlordane.

RSL value for technical-HCH used as surrogate for delta-BHC.

RSL value for technical chlordane used as surrogate for gamma-chlordane.

RSL value for 1,3-dichloropropene used as a surrogate for cis-1,3-dichloropropene and trans-1,3-dichloropropene.

RSL value for endosulfan used as surrogate for endosulfan I, endosulfan II, and endosulfan sulfate.

RSL value for endrin used as surrogate for endrin aldehyde and endrin ketone.

RSL value for 2-chlorophenol used as surrogate for 4-chloro-3-methylphenol and 2-nitrophenol.

RSL value for Mercury (inorganic salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Detection Limit Above Screening Level (DLASL), not quantitatively evaluated in HHRA

Deletion Reason:

No Toxicity Information (NTX) Essential Nutrient (NUT) Below Screening Level (BSL) Below Background (BBK)

Detection Limit Below Screening Level (DLBSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

NCPSRG = North Carolina Preliminary Soil Remediation Goal, January, 2010

- J = Estimated Value
- C = Carcinogenic
- C\* = N screening level < 100x C screening level, therefore

N screening value/10 used as screening level

C\*\* = N screening level < 10x C screening level, therefore

N screening value/10 used as screening level

MG/KG = Milligrams per kilogram

N = Noncarcinogenic

N/A = Not available/not applicable

NL = Noncarcinogenic lead residential soil RSL not adjusted by dividing by 10.

NS = Concentration exceeds Csat (soil saturation concentration),

Csat used as screening level.

### TABLE 2.8a

Risk Ratio Screening for Surface and Subsurface Soil, Maximum Detected Concentration Camp Johnson Site 17 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Maximum Detected Concentration (Qualifier) | Sample Location of<br>Maximum Detected<br>Concentration | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ                |
|----------------------------------------------------|------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|-----------------------------|
| Metals (mg/kg)                                     |                        |                                            |                                                         |                         |                          |                                            |                                           |                             |
| Aluminum                                           | 10 / 10                | 2.0E+04                                    | IR17-SB03-2-7-09C                                       | 7.7E+04                 | 1                        | 0.3                                        | NA                                        | Neurological, Developmental |
| Arsenic                                            | 10 / 10                | 1.5E+01                                    | IR17-SB03D-2-7-09C                                      | 3.9E-01                 | 1E-06                    | NA                                         | 4E-05                                     | NA .                        |
| Chromium                                           | 10 / 10                | 3.6E+01                                    | IR17-SB03-2-7-09C                                       | 2.9E-01                 | 1E-06                    | NA                                         | 1E-04                                     | NA                          |
| Iron                                               | 10 / 10                | 2.8E+04                                    | IR17-SB03D-2-7-09C                                      | 5.5E+04                 | 1                        | 0.5                                        | NA                                        | Gastrointestinal            |
| Vanadium                                           | 10 / 10                | 7.0E+01                                    | IR17-SB03D-2-7-09C                                      | 3.9E+02                 | 1                        | 0.2                                        | NA                                        | Hair                        |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |                                            |                                                         |                         |                          | 1.0                                        |                                           |                             |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |                                            |                                                         |                         |                          |                                            | 2E-04                                     |                             |
|                                                    | -                      | •                                          |                                                         | -                       | -                        | Tota                                       | Developmental HI =                        | 0.3                         |
|                                                    |                        |                                            |                                                         |                         |                          | Total                                      | Gastrointestinal HI =                     | 0.5                         |
| Notes:                                             |                        |                                            |                                                         |                         |                          |                                            | Total Hair HI =                           | 0.2                         |

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern HI = Hazard Index mg/kg = milligrams per kilogram NA = Not available/not applicable Total Neurological HI =

0.3

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

### TABLE 2.8b

Risk Ratio Screening for Surface and Subsurface Soil, 95% UCL Concentration Camp Johnson Site 17 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | 95% UCL      | 95% UCL<br>Rationale | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ |
|----------------------------------------------------|------------------------|--------------|----------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|--------------|
| Metals (mg/kg)                                     |                        |              |                      |                         |                          |                                            |                                           |              |
| Arsenic                                            | 10 / 10                | 7.0E+00 1, 3 | 95% App-G            | 3.9E-01                 | 1E-06                    | NA                                         | 2E-05                                     | NA           |
| Chromium                                           | 10 / 10                | 2.3E+01 1    | 95% H-UCL            | 2.9E-01                 | 1E-06                    | NA                                         | 8E-05                                     | NA           |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |              |                      |                         | ·                        | NA                                         |                                           |              |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |              |                      |                         |                          |                                            | 1E-04                                     |              |

### Notes:

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern mg/kg = milligrams per kilogram HI = Hazard Index NA = Not available/not applicable.

ProUCL, Version 4.00.05 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. May 2010. ProUCL, Version 4.0. Prepared by Lockheed Martin Environmental Services).

Options: 95% Approximate Gamma UCL (95% App-G); 95% H UCL (95% H)

### Upper Confidence Limit (UCL) Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Test indicates data are gamma distributed.
- (4) Distribution tests are inconclusive
- (5) Max value used because 95% UCL greater than max.
- (6) Only detected in one sample, detected concentration used.

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals 95% UCL concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals 95% UCL concentration divided by the RSL divided by the acceptable risk level

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

### Table 2.9

### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Site 17 MCB Camp Lejeune, North Carolina

Scenario Timeframe: Future
Medium: Subsurface Soil
Exposure Medium: Subsurface Soil

| Exposure<br>Point | CAS<br>Number | Chemical                     | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units          | Detection<br>Frequency | Range of<br>Detection<br>Limits   | Concentration [2]<br>Used for<br>Screening |                   | Screening [4]<br>Toxicity Value |                      | Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|------------------------------|-------------------------------------------|-------------------------------------------|----------------|------------------------|-----------------------------------|--------------------------------------------|-------------------|---------------------------------|----------------------|------|-----------------------------------------------------|
| Site 17           |               | Chromium (III) Chromium (VI) | 2.0E+01 J<br>1.2E+00                      |                                           | MG/KG<br>MG/KG | 4/5<br><b>5/5</b>      | 0.24 - 0.31<br><b>0.67 - 0.74</b> | 3.7E+01<br>1.9E+00                         | N/A<br><b>N/A</b> | 1.2E+04 N<br>2.9E-01 C          | <br>NCPSRG<br>NCPSRG |      | BSL<br>ASL                                          |

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening. If the chemical was not detected, the maximum detection limit is used for screening. Chromium III not analyzed for in subsurface soil samples. Concentration of chromium III assumed to be the difference between the reported hexavalent chromium concentration and reported total chromium concentration.

[3] Background values are lower of two times the arithmetic mean basewide background surface soil or subsurface soil concentrations. Background values are from Final Base Background Soil Study Report, Marine Corps Base Camp Lejeune, North Carolina, Baker Environmental, April 25, 2001.

[4] Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites. http://epa-prgs.oml.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) residential soil RSLs.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Detection Limit Above Screening Level (DLASL), not quantitatively evaluated in HHRA

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT) Below Screening Level (BSL) Below Background (BBK)

Detection Limit Below Screening Level (DLBSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

NCPSRG = North Carolina Preliminary Soil Remediation Goal, January, 2010

J = Estimated Value

C = Carcinogenic

MG/KG = Milligrams per kilogram

N = Noncarcinogenic

N/A = Not available/not applicable

### TABLE 2.9a

Risk Ratio Screening for Surface and Subsurface Soil, Maximum Detected Concentration Camp Johnson Site 17 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Maximum Detected Concentration (Qualifier) | Sample Location of<br>Maximum Detected<br>Concentration | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ |
|----------------------------------------------------|------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|--------------|
| Metals (mg/kg)                                     |                        |                                            |                                                         |                         |                          |                                            |                                           |              |
| Chromium (VI)                                      | 5 / 5                  | 1.9E+00                                    | IR17-SB05-5-6-10C                                       | 2.9E-01                 | 1E-06                    | NA                                         | 7E-06                                     | NA           |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |                                            |                                                         |                         |                          | 0.0                                        |                                           |              |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |                                            |                                                         |                         |                          |                                            | 7E-06                                     |              |

### Notes:

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern HI = Hazard Index mg/kg = milligrams per kilogram NA = Not available/not applicable

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

| Exposure<br>Point | CAS<br>Number      | Chemical                                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units        | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2<br>Used for<br>Screening | Background [3] | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|--------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------|-----------------------------------------|------------------------|---------------------------------|-------------------------------------------|----------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
| Site 17           | 71-55-6            | 1,1,1-Trichloroethane                            | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 9.1E+02 N                       | 2.0E+02                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                               |
| Sile 17           | 79-34-5            | 1,1,2,2-Tetrachloroethane                        | ND<br>ND                                  | ND<br>ND                                  | UG/L         |                                         | 0/2                    | 1 - 2.4                         | 2.4E+00                                   | N/A            | 6.7E-02 C                       | 2.0E+02<br>2.0E-01             | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 76-13-1            | 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 5.9E+03 N                       | 2.0E+05                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 79-00-5            | 1.1.2-Trichloroethane                            | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1-1                             | 1.0E+00                                   | N/A            | 2.4E-01 C                       | 5.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   | 75-34-3            | 1,1-Dichloroethane                               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1-1                             | 1.0E+00                                   | N/A            | 2.4E+00 C                       | 6.0E+00                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 75-35-4            | 1,1-Dichloroethene                               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 3.4E+01 N                       | 7.0E+00                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                               |
|                   | 120-82-1           | 1,2,4-Trichlorobenzene                           | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 4.1E-01 C**                     | 7.0E+01                        | MCL, 15A NCAC 2L                | YES          | DLASL                                               |
|                   | 96-12-8            | 1,2-Dibromo-3-chloropropane                      | ND                                        | ND                                        | UG/L         |                                         | 0/1                    | 2 - 2                           | 2.0E+00                                   | N/A            | 3.2E-04 C                       | 2.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   |                    |                                                  |                                           |                                           |              |                                         |                        |                                 |                                           |                |                                 | 4.0E-02                        | 15A NCAC 2L                     |              |                                                     |
|                   | 106-93-4           | 1,2-Dibromoethane                                | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 6.5E-03 C                       | 5.0E-02                        | MCL                             | YES          | DLASL                                               |
|                   |                    |                                                  |                                           |                                           |              |                                         |                        |                                 |                                           |                |                                 | 2.0E-02                        | 15A NCAC 2L                     |              |                                                     |
|                   | 95-50-1            | 1,2-Dichlorobenzene                              | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 3.7E+01 N                       | 6.0E+02                        | MCL                             | NO           | DLBSL                                               |
|                   |                    |                                                  |                                           |                                           |              |                                         |                        |                                 |                                           |                |                                 | 2.0E+01                        | 15A NCAC 2L                     |              |                                                     |
|                   | 107-06-2           | 1,2-Dichloroethane                               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 1.5E-01 C                       | 5.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   |                    |                                                  |                                           |                                           |              |                                         |                        |                                 |                                           |                |                                 | 4.0E-01                        | 15A NCAC 2L                     |              |                                                     |
|                   | 78-87-5            | 1,2-Dichloropropane                              | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 3.9E-01 C*                      | 5.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   |                    |                                                  |                                           |                                           |              |                                         |                        |                                 |                                           |                |                                 | 6.0E-01                        | 15A NCAC 2L                     |              |                                                     |
|                   | 541-73-1           | 1,3-Dichlorobenzene                              | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 4.3E-01 C                       | 2.0E+02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 106-46-7           | 1,4-Dichlorobenzene                              | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 4.3E-01 C                       | 7.5E+01                        | MCL                             | YES          | DLASL                                               |
|                   |                    |                                                  |                                           |                                           |              |                                         |                        |                                 |                                           |                |                                 | 6.0E+00                        | 15A NCAC 2L                     |              |                                                     |
|                   | 78-93-3            | 2-Butanone                                       | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 5 - 5                           | 5.0E+00                                   | N/A            | 7.1E+02 N                       | 4.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 591-78-6           | 2-Hexanone                                       | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 5 - 5                           | 5.0E+00                                   | N/A            | 4.7E+00 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 108-10-1           | 4-Methyl-2-pentanone                             | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 5 - 5                           | 5.0E+00                                   | N/A            | 2.0E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 67-64-1            | Acetone                                          | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 5 - 5                           | 5.0E+00                                   | N/A            | 2.2E+03 N                       | 6.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 71-43-2            | Benzene                                          | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 4.1E-01 C                       | 5.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   |                    |                                                  |                                           |                                           |              |                                         |                        |                                 |                                           |                |                                 | 1.0E+00                        | 15A NCAC 2L                     |              |                                                     |
|                   | 75-27-4            | Bromodichloromethane                             | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 1.2E-01 C                       | 8.0E+01                        | MCL                             | YES          | DLASL                                               |
|                   | 75.05.0            |                                                  |                                           |                                           |              |                                         | 0.40                   |                                 | 4.05.00                                   |                | . ==                            | 6.0E-01                        | 15A NCAC 2L                     |              | D. DO.                                              |
|                   | 75-25-2            | Bromoform                                        | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 8.5E+00 C*                      | 8.0E+01                        | MCL                             | NO           | DLBSL                                               |
|                   | 74-83-9            | Bromomethane                                     | ND                                        | ND                                        | 1107         |                                         | 0/2                    | 1 - 1.1                         | 1.1E+00                                   | N/A            | 8.7E-01 N                       | 4.0E+00<br>N/A                 | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 74-83-9<br>75-15-0 | Carbon disulfide                                 | ND<br>ND                                  | ND<br>ND                                  | UG/L<br>UG/L |                                         | 0/2                    | 1 - 1.1                         | 1.1E+00<br>1.0E+00                        | N/A<br>N/A     | 1.0E+02 N                       | 7.0E+02                        | 15A NCAC 2L                     | NO           | DLASL                                               |
|                   | 75-15-0<br>56-23-5 | Carbon disullide Carbon tetrachloride            | ND<br>ND                                  | ND<br>ND                                  | UG/L         |                                         | 0/2                    | 1-1                             | 1.0E+00<br>1.0E+00                        | N/A<br>N/A     | 4.4E-01 C                       | 7.0E+02<br>5.0E+00             | MCL                             | YES          | DLBSL                                               |
|                   | 30-23-3            | Carbon terractillonge                            | IND                                       | ND                                        | JUG/L        |                                         | 0/2                    | 1-1                             | 1.00+00                                   | IN/A           | 4.4E-01 C                       | 3.0E-01                        | 15A NCAC 2L                     | 153          | DLASL                                               |
|                   | 108-90-7           | Chlorobenzene                                    | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                   | N/A            | 9.1E+00 N                       | 1.0E+02                        | MCL                             | NO           | DLBSL                                               |
|                   | 100-30-7           | OHIOTODOTIZENE                                   | ND                                        | IND                                       | JG/L         |                                         | U/Z                    | 1-1                             | 1.02+00                                   | IN/A           | 3.1L+00 N                       | 5.0E+01                        | 15A NCAC 2L                     | 140          | DLDGL                                               |

| Exposure<br>Point | CAS<br>Number        | Chemical                              | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units        | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|----------------------|---------------------------------------|-------------------------------------------|-------------------------------------------|--------------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-------------------------------------------------------------|
|                   | 75-00-3              | Chloroethane                          | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 2.1E+03 N                       | 3.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                                       |
|                   | 67-66-3              | Chloroform                            | 4.4E+00                                   | 4.4E+00                                   | UG/L         | IR17-TW01-09C                           | 1/2                    | 1 - 1                           | 4.4E+00                                    | N/A                     | 1.9E-01 C                       | 8.0E+01                        | MCL                             | YES          | ASL                                                         |
|                   |                      |                                       |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 7.0E+01                        | 15A NCAC 2L                     |              |                                                             |
|                   | 74-87-3              | Chloromethane                         | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.9E+01 N                       | 3.0E+00                        | 15A NCAC 2L                     | NO           | DLBSL                                                       |
|                   | 156-59-2             | cis-1,2-Dichloroethene                | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 3.7E+01 N                       | 7.0E+01                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                                       |
|                   |                      | cis-1,3-Dichloropropene               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 4.3E-01 C*                      | 4.0E-01                        | 15A NCAC 2L                     | YES          | DLASL                                                       |
|                   | 110-82-7             | Cyclohexane                           | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.3E+03 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 124-48-1             | Dibromochloromethane                  | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.5E-01 C                       | 6.0E+01<br>4.0E-01             | MCL<br>15A NCAC 2L              | YES          | DLASL                                                       |
|                   | 75-71-8              | Dichlorodifluoromethane (Freon-12)    | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 3.9E+01 N                       | 1.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                                       |
|                   | 100-41-4             | Ethylbenzene                          | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1-1                             | 1.0E+00                                    | N/A                     | 1.5E+00 C                       | 7.0E+02                        | MCL                             | NO           | DLBSL                                                       |
|                   | 100 41 4             | Ethylbenzene                          | ND                                        | NB                                        | OOIL         |                                         | 0/2                    |                                 | 1.02100                                    | 1073                    | 1.52100 0                       | 6.0E+02                        | 15A NCAC 2L                     | 140          | DEBOL                                                       |
|                   | 98-82-8              | Isopropylbenzene                      | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 6.8E+01 N                       | 7.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                                       |
|                   | 79-20-9              | Methyl acetate                        | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1-1                             | 1.0E+00                                    | N/A                     | 3.7E+03 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 108-87-2             | Methylcyclohexane                     | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 8.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 75-09-2              | Methylene chloride                    | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 4.8E+00 C                       | 5.0E+00                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                                       |
|                   | 1634-04-4            | Methyl-tert-butyl ether (MTBE)        | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.3E+01 C                       | 2.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                                       |
|                   | 100-42-5             | Styrene                               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.6E+02 N                       | 1.0E+02                        | MCL                             | NO           | DLBSL                                                       |
|                   |                      |                                       |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 7.0E+01                        | 15A NCAC 2L                     |              |                                                             |
|                   | 127-18-4             | Tetrachloroethene                     | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1.1                         | 1.1E+00                                    | N/A                     | 1.1E-01 C                       | 5.0E+00                        | MCL                             | YES          | DLASL                                                       |
|                   |                      |                                       |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 7.0E-01                        | 15A NCAC 2L                     |              |                                                             |
|                   | 108-88-3             | Toluene                               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 2.3E+02 N                       | 1.0E+03                        | MCL                             | NO           | DLBSL                                                       |
|                   |                      |                                       |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 6.0E+02                        | 15A NCAC 2L                     |              |                                                             |
|                   | 156-60-5             | trans-1,2-Dichloroethene              | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.1E+01 N                       | 1.0E+02                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                                       |
|                   | 10061-02-6           | trans-1,3-Dichloropropene             | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 4.3E-01 C*                      | 4.0E-01                        | 15A NCAC 2L                     | YES          | DLASL                                                       |
|                   | 79-01-6              | Trichloroethene                       | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 5.1                         | 5.1E+00                                    | N/A                     | 2.0E+00 C                       | 5.0E+00                        | MCL                             | YES          | DLASL                                                       |
|                   |                      |                                       |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 3.0E+00                        | 15A NCAC 2L                     |              |                                                             |
|                   | 75-69-4              | Trichlorofluoromethane(Freon-11)      | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.3E+02 N                       | 2.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                                       |
|                   | 75-01-4              | Vinyl chloride                        | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.6E-02 C                       | 2.0E+00                        | MCL                             | YES          | DLASL                                                       |
|                   |                      |                                       |                                           |                                           |              |                                         |                        |                                 |                                            |                         | 1                               | 3.0E-02                        | 15A NCAC 2L                     |              |                                                             |
|                   | 1330-20-7            | Xylene, total                         | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 1 - 1.2                         | 1.2E+00                                    | N/A                     | 2.0E+01 N                       | 1.0E+04                        | MCL                             | NO           | DLBSL                                                       |
|                   |                      |                                       |                                           |                                           | l            |                                         |                        |                                 |                                            |                         | l <u></u>                       | 5.0E+02                        | 15A NCAC 2L                     | 1            |                                                             |
|                   | 92-52-4              | 1,1-Biphenyl                          | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 1.8E+02 N                       | 4.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                                       |
|                   |                      | 2,2'-Oxybis(1-chloropropane)          | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 3.2E-01 C                       | N/A                            |                                 | YES          | DLASL                                                       |
|                   | 95-95-4              | 2,4,5-Trichlorophenol                 | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 3.7E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 120-83-2<br>105-67-9 | 2,4-Dichlorophenol 2,4-Dimethylphenol | ND<br>ND                                  | ND<br>ND                                  | UG/L<br>UG/L |                                         | 0/2<br>0/2             | 10 - 10<br>10 - 10              | 1.0E+01<br>1.0E+01                         | N/A<br>N/A              | 1.1E+01 N<br>7.3E+01 N          | N/A<br>1.0E+02                 | 15A NCAC 2L                     | NO<br>NO     | DLBSL<br>DLBSL                                              |

| Exposure<br>Point | CAS<br>Number | Chemical                   | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|----------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 51-28-5       | 2,4-Dinitrophenol          | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 20 - 20                         | 2.0E+01                              | N/A                     | 7.3E+00 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 121-14-2      | 2,4-Dinitrotoluene         | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 606-20-2      | 2,6-Dinitrotoluene         | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 3.7E+00 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 91-58-7       | 2-Chloronaphthalene        | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 2.9E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 95-57-8       | 2-Chlorophenol             | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 1.8E+01 N                       | 4.0E-01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 91-57-6       | 2-Methylnaphthalene        | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 1.5E+01 N                       | 3.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 95-48-7       | 2-Methylphenol             | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 1.8E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 88-74-4       | 2-Nitroaniline             | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 3.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 88-75-5       | 2-Nitrophenol              | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 91-94-1       | 3,3'-Dichlorobenzidine     | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 20 - 20                         | 2.0E+01                              | N/A                     | 1.5E-01 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 99-09-2       | 3-Nitroaniline             | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 3.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 534-52-1      | 4,6-Dinitro-2-methylphenol | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 20 - 20                         | 2.0E+01                              | N/A                     | 2.9E-01 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 101-55-3      | 4-Bromophenyl-phenylether  | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 59-50-7       | 4-Chloro-3-methylphenol    | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 3.7E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-47-8      | 4-Chloroaniline            | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 3.4E-01 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 7005-72-3     | 4-Chlorophenyl-phenylether | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-44-5      | 4-Methylphenol             | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 20 - 20                         | 2.0E+01                              | N/A                     | 1.8E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 100-01-6      | 4-Nitroaniline             | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 3.4E+00 C*                      | N/A                            |                                 | YES          | DLASL                                               |
|                   | 100-02-7      | 4-Nitrophenol              | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 20 - 20                         | 2.0E+01                              | N/A                     | 1.2E-01 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 83-32-9       | Acenaphthene               | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 2.2E+02 N                       | 8.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 208-96-8      | Acenaphthylene             | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 2.2E+02 N                       | 2.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 98-86-2       | Acetophenone               | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 3.7E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 120-12-7      | Anthracene                 | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 1.1E+03 N                       | 2.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 1912-24-9     | Atrazine                   | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 20 - 20                         | 2.0E+01                              | N/A                     | 2.9E-01 C                       | 3.0E+00                        | MCL, 15A NCAC 2L                | YES          | DLASL                                               |
|                   | 56-55-3       | Benzo(a)anthracene         | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 2.9E-02 C                       | 5.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 50-32-8       | Benzo(a)pyrene             | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 2.9E-03 C                       | 2.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   |               | · ///                      |                                           |                                           |       |                                         |                        |                                 |                                      |                         |                                 | 5.0E-03                        | 15A NCAC 2L                     |              |                                                     |
|                   | 205-99-2      | Benzo(b)fluoranthene       | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 2.9E-02 C                       | 5.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 191-24-2      | Benzo(g,h,i)perylene       | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 1.1E+02 N                       | 2.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 207-08-9      | Benzo(k)fluoranthene       | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 2.9E-01 C                       | 5.0E-01                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 111-91-1      | bis(2-Chloroethoxy)methane | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 1.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 111-44-4      | bis(2-Chloroethyl)ether    | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 1.2E-02 C                       | 3.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 117-81-7      | bis(2-Ethylhexyl)phthalate | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 4.8E+00 C                       | 6.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   |               |                            |                                           |                                           |       |                                         |                        |                                 |                                      |                         |                                 | 3.0E+00                        | 15A NCAC 2L                     |              | _                                                   |
|                   | 85-68-7       | Butylbenzylphthalate       | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | 3.5E+01 C                       | 1.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 105-60-2      | Caprolactam                | 4.5E+00 J                                 | 4.5E+00 J                                 | UG/L  | IR17-TW01-09C                           | 1/2                    | 10 - 10                         | 4.5E+00                              | N/A                     | 1.8E+03 N                       | 4.0E+03                        | 15A NCAC 2L                     | NO           | BSL                                                 |
|                   | 86-74-8       | Carbazole                  | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 10 - 10                         | 1.0E+01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |

| Exposure<br>Point | CAS<br>Number       | Chemical                   | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units        | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------------|----------------------------|-------------------------------------------|-------------------------------------------|--------------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 218-01-9            | Chrysene                   | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 2.9E+00 C                       | 5.0E+00                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 53-70-3             | Dibenz(a,h)anthracene      | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 2.9E-03 C                       | 5.0E-03                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 132-64-9            | Dibenzofuran               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 3.7E+00 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 84-66-2             | Diethylphthalate           | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 2.9E+03 N                       | 6.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 131-11-3            | Dimethyl phthalate         | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 84-74-2             | Di-n-butylphthalate        | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 20 - 20                         | 2.0E+01                                    | N/A                     | 3.7E+02 N                       | 7.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 117-84-0            | Di-n-octylphthalate        | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 4.8E+00 C                       | 1.0E+02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 206-44-0            | Fluoranthene               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 1.5E+02 N                       | 3.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 86-73-7             | Fluorene                   | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 1.5E+02 N                       | 3.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 118-74-1            | Hexachlorobenzene          | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 4.2E-02 C                       | 1.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   |                     |                            |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 2.0E-02                        | 15A NCAC 2L                     |              |                                                     |
|                   | 87-68-3             | Hexachlorobutadiene        | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 8.6E-01 C*                      | 4.0E-01                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 77-47-4             | Hexachlorocyclopentadiene  | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 2.2E+01 N                       | 5.0E+01                        | MCL                             | NO           | DLBSL                                               |
|                   | 67-72-1             | Hexachloroethane           | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 3.7E+00 C**                     | N/A                            |                                 | YES          | DLASL                                               |
|                   | 193-39-5            | Indeno(1,2,3-cd)pyrene     | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 2.9E-02 C                       | 5.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 78-59-1             | Isophorone                 | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 7.1E+01 C                       | 4.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 91-20-3             | Naphthalene                | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 1.4E-01 C*                      | 6.0E+00                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 621-64-7            | n-Nitroso-di-n-propylamine | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 9.6E-03 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 86-30-6             | n-Nitrosodiphenylamine     | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 1.4E+01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 98-95-3             | Nitrobenzene               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 1.2E-01 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 87-86-5             | Pentachlorophenol          | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 20 - 20                         | 2.0E+01                                    | N/A                     | 5.6E-01 C                       | 1.0E+00<br>3.0E-01             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |
|                   | 05.04.0             | Dhaaaathaaa                | ND                                        | ND                                        |              |                                         | 0/0                    | 40 40                           | 4.05.04                                    | N1/A                    | 1.1E+03 N                       |                                |                                 | NO           | DLBSL                                               |
|                   | 85-01-8             | Phenanthrene               | ND                                        | ND<br>ND                                  | UG/L         |                                         | 0/2<br>0/2             | 10 - 10<br>10 - 10              | 1.0E+01                                    | N/A                     |                                 | 2.0E+02                        | 15A NCAC 2L                     | NO           | _                                                   |
|                   | 108-95-2            | Phenol                     | ND                                        | ND<br>ND                                  | UG/L         |                                         |                        |                                 | 1.0E+01                                    | N/A                     | 1.1E+03 N                       | 3.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL<br>DLBSL                                      |
|                   | 129-00-0<br>72-54-8 | Pyrene<br>4,4'-DDD         | ND<br>ND                                  | ND<br>ND                                  | UG/L         |                                         | 0/2<br>0/2             | 10 - 10                         | 1.0E+01<br>5.0E-02                         | N/A<br>N/A              | 1.1E+02 N<br>2.8E-01 C          | 2.0E+02                        | 15A NCAC 2L<br>15A NCAC 2L      | NO           | DLBSL                                               |
|                   |                     |                            |                                           |                                           | UG/L         |                                         |                        | 0.05 - 0.05                     |                                            |                         |                                 | 1.0E-01                        | 15A NUAU ZL                     | NO           |                                                     |
|                   | 72-55-9<br>50-29-3  | 4,4'-DDE<br>4,4'-DDT       | ND<br>ND                                  | ND<br>ND                                  | UG/L<br>UG/L |                                         | 0/2<br>0/2             | 0.05 - 0.05<br>0.05 - 0.05      | 5.0E-02<br>5.0E-02                         | N/A<br>N/A              | 2.0E-01 C<br>2.0E-01 C*         | N/A<br>1.0E-01                 | 15A NCAC 2L                     | NO           | DLBSL<br>DLBSL                                      |
|                   | 309-00-2            | Aldrin                     | ND<br>ND                                  | ND<br>ND                                  | UG/L         |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02<br>5.0E-02                         | N/A<br>N/A              | 4.0E-03 C                       | 1.0E-01<br>N/A                 | IDA NUAU ZL                     | YES          | DLBSL                                               |
|                   | 319-84-6            | alpha-BHC                  | ND<br>ND                                  | ND<br>ND                                  | UG/L         |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02<br>5.0E-02                         | N/A<br>N/A              | 4.0E-03 C<br>1.1E-02 C          | 2.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   |                     | · ·                        | ND<br>ND                                  | ND<br>ND                                  | UG/L         |                                         | 0/2                    |                                 |                                            | N/A<br>N/A              |                                 |                                | MCL                             | NO           | DLASL                                               |
|                   | 5103-71-9           | alpha-Chlordane            | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | IN/A                    | 1.9E-01 C*                      | 2.0E+00<br>1.0E-01             |                                 | NO           | DEROF                                               |
|                   | 12674-11-2          | Aroclor-1016               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 0.5 - 0.5                       | 5.0E-01                                    | N/A                     | 2.6E-01 C**                     | 1.0E-01<br>5.0E-01             | 15A NCAC 2L<br>MCL              | YES          | DLASL                                               |
|                   | 11104-28-2          | Aroclor-1221               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 0.5 - 0.5                       | 5.0E-01                                    | N/A                     | 6.8E-03 C                       | 5.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   | 11141-16-5          | Aroclor-1232               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 0.5 - 0.5                       | 5.0E-01                                    | N/A                     | 6.8E-03 C                       | 5.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   | 53469-21-9          | Aroclor-1242               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 0.5 - 0.5                       | 5.0E-01                                    | N/A                     | 3.4E-02 C                       | 5.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   | 12672-29-6          | Aroclor-1248               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 0.5 - 0.5                       | 5.0E-01                                    | N/A                     | 3.4E-02 C                       | 5.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   |                     | Aroclor-1254               | ND                                        | ND                                        | UG/L         |                                         | 0/2                    | 0.5 - 0.5                       | 5.0E-01                                    | N/A                     | 3.4E-02 C*                      | 5.0E-01                        | MCL                             | YES          | DLASL                                               |

| Exposure<br>Point | CAS<br>Number | Chemical            | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5]<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|---------------|---------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|--------------------------------------------------------------|
|                   | 11096-82-5    | Aroclor-1260        | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.5 - 0.5                       | 5.0E-01                                    | N/A                     | 3.4E-02 C                       | 5.0E-01                        | MCL                             | YES          | DLASL                                                        |
|                   | 319-85-7      | beta-BHC            | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 3.7E-02 C                       | 2.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                                        |
|                   | 319-86-8      | delta-BHC           | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 3.7E-02 C                       | 2.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                                        |
|                   | 60-57-1       | Dieldrin            | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 4.2E-03 C                       | 2.0E-03                        | 15A NCAC 2L                     | YES          | DLASL                                                        |
|                   | 959-98-8      | Endosulfan I        | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 2.2E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 33213-65-9    | Endosulfan II       | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 2.2E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 1031-07-8     | Endosulfan sulfate  | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 2.2E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 72-20-8       | Endrin              | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 1.1E+00 N                       | 2.0E+00                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                                        |
|                   | 7421-93-4     | Endrin aldehyde     | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 1.1E+00 N                       | 2.0E+00                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 53494-70-5    | Endrin ketone       | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 1.1E+00 N                       | 2.0E+00                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 58-89-9       | gamma-BHC (Lindane) | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 6.1E-02 C                       | 2.0E-01                        | MCL                             | NO           | DLBSL                                                        |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 3.0E-02                        | 15A NCAC 2L                     |              |                                                              |
|                   | 5103-74-2     | gamma-Chlordane     | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 1.9E-01 C*                      | 2.0E+00                        | MCL                             | NO           | DLBSL                                                        |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 1.0E-01                        | 15A NCAC 2L                     |              |                                                              |
|                   | 76-44-8       | Heptachlor          | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 1.5E-02 C                       | 4.0E-01                        | MCL                             | YES          | DLASL                                                        |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 8.0E-03                        | 15A NCAC 2L                     |              |                                                              |
|                   | 1024-57-3     | Heptachlor epoxide  | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 7.4E-03 C*                      | 2.0E-01                        | MCL                             | YES          | DLASL                                                        |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 4.0E-03                        | 15A NCAC 2L                     |              |                                                              |
|                   | 72-43-5       | Methoxychlor        | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 0.05 - 0.05                     | 5.0E-02                                    | N/A                     | 1.8E+01 N                       | 4.0E+01                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                                        |
|                   | 8001-35-2     | Toxaphene           | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 6.1E-02 C                       | 3.0E+00                        | MCL                             | YES          | DLASL                                                        |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 3.0E-02                        | 15A NCAC 2L                     |              |                                                              |
|                   | 7429-90-5     | Aluminum            | 1.3E+03                                   | 1.7E+03                                   | UG/L  | IR17-TW01-09C                           | 2/2                    | 1000 - 1000                     | 1.7E+03                                    | 1.9E+03                 | 3.7E+03 N                       | 50 - 200                       | SMCL                            | NO           | BSL, BBK                                                     |
|                   | 7440-36-0     | Antimony            | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 20 - 20                         | 2.0E+01                                    | 3.3E+00                 | 1.5E+00 N                       | 6.0E+00                        | MCL                             | YES          | DLASL                                                        |
|                   | 7440-38-2     | Arsenic             | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 20 - 20                         | 2.0E+01                                    | 5.8E+00                 | 4.5E-02 C                       | 1.0E+01                        | MCL, 15A NCAC 2L                | YES          | DLASL                                                        |
|                   | 7440-39-3     | Barium              | 9.2E+00 J                                 | 4.7E+02                                   | UG/L  | IR17-TW01-09C                           | 2/2                    | 50 - 50                         | 4.7E+02                                    | 8.6E+01                 | 7.3E+02 N                       | 2.0E+03                        | MCL                             | NO           | BSL                                                          |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 7.0E+02                        | 15A NCAC 2L                     |              |                                                              |
|                   | 7440-41-7     | Beryllium           | 1.6E-01 J                                 | 1.6E-01 J                                 | UG/L  | IR17-TW02D-09C                          | 1/2                    | 2 - 2                           | 1.6E-01                                    | 3.1E-01                 | 7.3E+00 N                       | 4.0E+00                        | MCL                             | NO           | BSL, BBK                                                     |
|                   | 7440-43-9     | Cadmium             | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 6 - 6                           | 6.0E+00                                    | 3.6E-01                 | 1.8E+00 N                       | 5.0E+00                        | MCL                             | YES          | DLASL                                                        |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 2.0E+00                        | 15A NCAC 2L                     |              |                                                              |
|                   | 7440-70-2     | Calcium             | 9.1E+02 J                                 | 1.1E+05                                   | UG/L  | IR17-TW01-09C                           | 2/2                    | 1000 - 1000                     | 1.1E+05                                    | 6.9E+04                 | N/A                             | N/A                            |                                 | NO           | NUT                                                          |
|                   | 7440-47-3     | Chromium            | 1.8E+00 J                                 | 1.8E+00 J                                 | UG/L  | IR17-TW01-09C                           | 1/2                    | 20 - 20                         | 1.8E+00                                    | 3.1E+00                 | 4.3E-02 C                       | 1.0E+02                        | MCL                             | NO           | BBK                                                          |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                            |                         | 1                               | 1.0E+01                        | 15A NCAC 2L                     |              |                                                              |
|                   | 7440-48-4     | Cobalt              | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/2                    | 5 - 5                           | 5.0E+00                                    | 3.4E+00                 | 1.1E+00 N                       | N/A                            | MCI                             | YES<br>NO    | DLASL<br>DLBSL                                               |
|                   | 7440-50-8     | Copper              | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 20 - 20                         | 2.0E+01                                    | 2.8E+00                 | 1.5E+02 N                       | 1.3E+03                        | MCL                             | NO           | DEBSE                                                        |
|                   | 7400 00 0     |                     | 4.05.00                                   | 0.05.00                                   |       | ID47 TM04 CCC                           | 0/0                    | 450 450                         | 0.05.00                                    | 0.05.00                 | 0.05.00                         | 1.0E+03                        | 15A NCAC 2L                     | N.C          | DOL DOL                                                      |
|                   | 7439-89-6     | Iron                | 1.2E+03                                   | 2.6E+03                                   | UG/L  | IR17-TW01-09C                           | 2/2                    | 150 - 150                       | 2.6E+03                                    | 6.0E+03                 | 2.6E+03 N                       | 3.0E+02                        | SMCL, 15A NCAC 2L               | NO           | BSL, BBK                                                     |
|                   | 7439-92-1     | Lead                | 3.2E+00 J                                 | 3.2E+00 J                                 | UG/L  | IR17-TW02D-09C                          | 2/2                    | 20 - 20                         | 3.2E+00                                    | 2.8E+00                 | N/A                             | 1.5E+01                        | MCL, 15A NCAC 2L                | NO           | BSL                                                          |
|                   | 7439-95-4     | Magnesium           | 5.4E+02                                   | 5.7E+04                                   | UG/L  | IR17-TW01-09C                           | 2/2                    | 250 - 250                       | 5.7E+04                                    | 6.4E+03                 | N/A                             | N/A                            |                                 | NO           | NUT                                                          |

#### Table 2.10

#### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Site 17 MCB Camp Lejeune, North Carolina

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

| Exposure<br>Point | CAS<br>Number | Chemical  | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source |     | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|-----------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|-----|-----------------------------------------------------|
|                   | 7439-96-5     | Manganese | 1.8E+01                                   | 5.8E+01                                   | UG/L  | IR17-TW01-09C                           | 2/2                    | 5 - 5                           | 5.8E+01                                    | 2.1E+02                 | 8.8E+01 N                       | 5.0E+01                        | SMCL, 15A NCAC 2L               | NO  | BSL, BBK                                            |
|                   | 7439-97-6     | Mercury   | 2.5E-01                                   | 2.5E-01                                   | UG/L  | IR17-TW01-09C                           | 1/2                    | 0.2 - 0.2                       | 2.5E-01                                    | 1.0E-01                 | 1.1E+00 N                       | 2.0E+00                        | MCL                             | NO  | BSL                                                 |
|                   |               |           |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 1.0E+00                        | 15A NCAC 2L                     |     |                                                     |
|                   | 7440-02-0     | Nickel    | 1.4E+01                                   | 1.4E+01                                   | UG/L  | IR17-TW01-09C                           | 1/2                    | 10 - 10                         | 1.4E+01                                    | 8.0E+00                 | 7.3E+01 N                       | 1.0E+02                        | 15A NCAC 2L                     | NO  | BSL                                                 |
|                   | 7440-09-7     | Potassium | 1.1E+03                                   | 8.3E+03                                   | UG/L  | IR17-TW01-09C                           | 2/2                    | 1000 - 1000                     | 8.3E+03                                    | 3.3E+03                 | N/A                             | N/A                            |                                 | NO  | NUT                                                 |
|                   | 7782-49-2     | Selenium  | 4.2E+00 J                                 | 4.2E+00 J                                 | UG/L  | IR17-TW02D-09C                          | 1/2                    | 20 - 20                         | 4.2E+00                                    | 3.1E+00                 | 1.8E+01 N                       | 5.0E+01                        | MCL                             | NO  | BSL                                                 |
|                   |               |           |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 2.0E+01                        | 15A NCAC 2L                     |     |                                                     |
|                   | 7440-22-4     | Silver    | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 20 - 20                         | 2.0E+01                                    | 7.7E-01                 | 1.8E+01 N                       | 2.0E+01                        | 15A NCAC 2L                     | YES | DLASL                                               |
|                   |               |           |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 1.0E+02                        | SMCL                            |     |                                                     |
|                   | 7440-23-5     | Sodium    | 7.5E+03                                   | 5.0E+05                                   | UG/L  | IR17-TW01-09C                           | 2/2                    | 2500 - 2500                     | 5.0E+05                                    | 2.3E+04                 | N/A                             | N/A                            |                                 | NO  | NUT                                                 |
|                   | 7440-28-0     | Thallium  | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 30 - 30                         | 3.0E+01                                    | 3.8E+00                 | N/A                             | 2.0E+00                        | MCL                             | NO  | NTX                                                 |
|                   | 7440-62-2     | Vanadium  | ND                                        | ND                                        | UG/L  |                                         | 0/2                    | 50 - 50                         | 5.0E+01                                    | 4.7E+00                 | 1.8E+01 N                       | N/A                            |                                 | YES | DLASL                                               |
|                   | 7440-66-6     | Zinc      | 5.7E+00 J                                 | 1.0E+01 J                                 | UG/L  | IR17-TW01-09C                           | 2/2                    | 50 - 50                         | 1.0E+01                                    | 4.2E+01                 | 1.1E+03 N                       | 1.0E+03                        | 15A NCAC 2L                     | NO  | BSL, BBK                                            |
|                   |               |           |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 5.0E+03                        | SMCL                            |     |                                                     |

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening. If the chemical was not detected, the maximum detection limit is used for screening.
- [3] Background values are two times the arithmetic mean basewide background shallow groundwater concentrations. Background values are from Final Base Background Soil Study Report, Marine Corps Base Camp Lejeune, North Carolina, Baker Environmental, April 25, 2001.
- [4] Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels for Chemical Contaminants at Superfund Sites.

http://epa-prgs.ornl.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) tap water RSLs.

RSL value for n-Hexane used as surrogate for Methylcyclohexane.

RSL value for 1,4-Dichlorobenzene used as a surrogate for 1,3-Dichlorobenzene

RSL value for 2-Nitroaniline used as surrogate for 3-Nitroaniline.

RSL value for methoxychlor used as surrogate for 4-chlorophenyl-phenylether.

RSL value for nitrobenzene used as surrogate for 4-nitrophenol.

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for technical chlordane used as surrogate for alpha-chlordane.

RSL value for technical-HCH used as surrogate for delta-BHC.

RSL value for technical chlordane used as surrogate for gamma-chlordane.

RSL value for 1,3-dichloropropene used as a surrogate for cis-1,3-dichloropropene and trans-1,3-dichloropropene.

RSL value for endosulfan used as surrogate for endosulfan I, endosulfan II, and endosulfan sulfate.

RSL value for endrin used as surrogate for endrin aldehyde and endrin ketone.

RSL value for 2-chlorophenol used as surrogate for 4-chloro-3-methylphenol and 2-nitrophenol.

RSL value for chromium VI used for total chromium.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Detection Limit Above Screening Level (DLASL), not quantitatively evaluated in HHRA

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)

Essential Nutrient (NUT)
Below Screening Level (BSL)
Below Background (BBK)

Detection Limit Below Screening Level (DLBSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

MCL = Maximum Contaminant Level from EPA's National Primary Drinking Water Standards

SMCL = Secondary Maximum Contaminant Level

15A NCAC 2L = North Carolina Classifications and Groundwater Quality Standards,

January 2010.

J = Estimated Value

 $C^* = N$  screening level < 100x C screening level, therefore

N screening value/10 used as screening level

C\*\* = N screening level < 10x C screening level, therefore

N screening value/10 used as screening level

N = Noncarcinogenic

N/A = Not available/not applicable

ND = Not detected

UG/L = Micrograms per liter

### TABLE 2109a

Risk Ratio Screening for Groundwater, Maximum Detected Concentration Camp Johnson Site 17 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Detected | Sample Location of<br>Maximum Detected<br>Concentration | Tap Water RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ |
|----------------------------------------------------|------------------------|----------|---------------------------------------------------------|---------------|--------------------------|--------------------------------------------|-------------------------------------------|--------------|
| Volatile Organic Compounds (ug/L)                  |                        |          |                                                         |               |                          |                                            |                                           |              |
| Chloroform                                         | 1 / 2                  | 4.4E+00  | IR17-TW01-09C                                           | 1.9E-01       | 1E-06                    | NA                                         | 2E-05                                     | NA           |
| Cumulative Corresponding Hazard Index <sup>c</sup> | ·                      | <u> </u> |                                                         |               | ·                        | NA                                         |                                           | _            |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |          |                                                         |               |                          |                                            | 2E-05                                     |              |

### Notes:

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern HI = Hazard Index

J = Estimated Value

ug/L = micrograms per liter

NA = Not available/not applicable

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

 $<sup>^{\</sup>rm c} \ {\rm Cumulative} \ {\rm Corresponding} \ {\rm Hazard} \ {\rm Index} \ {\rm equals} \ {\rm sum} \ {\rm of} \ {\rm Corresponding} \ {\rm Hazard} \ {\rm Indices} \ {\rm for} \ {\rm each} \ {\rm constituent}.$ 

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

| Exposure<br>Point | CAS<br>Number | Chemical                                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
| Site 85           | 71-55-6       | 1,1,1-Trichloroethane                            | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 6.4E+02 NS                      | 1.2E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-34-5       | 1,1,2,2-Tetrachloroethane                        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 5.6E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 76-13-1       | 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 9.1E+02 NS                      | 9.2E+03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-00-5       | 1,1,2-Trichloroethane                            | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.1E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 75-34-3       | 1,1-Dichloroethane                               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 3.3E+00 C                       | 3.0E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-35-4       | 1,1-Dichloroethene                               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.4E+01 N                       | 4.6E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 120-82-1      | 1,2,4-Trichlorobenzene                           | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 6.2E+00 C**                     | 2.2E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 96-12-8       | 1,2-Dibromo-3-chloropropane                      | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 5.4E-03 C                       | 2.5E-04                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 106-93-4      | 1,2-Dibromoethane                                | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 3.4E-02 C                       | 9.7E-05                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 95-50-1       | 1,2-Dichlorobenzene                              | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.9E+02 N                       | 2.4E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 107-06-2      | 1,2-Dichloroethane                               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 4.3E-01 C                       | 2.0E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 78-87-5       | 1,2-Dichloropropane                              | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 8.9E-01 C*                      | 3.3E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 541-73-1      | 1,3-Dichlorobenzene                              | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.4E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-46-7      | 1,4-Dichlorobenzene                              | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.4E+00 C                       | 7.0E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 78-93-3       | 2-Butanone                                       | 6.6E-03 J                                 | 2.7E-02 J                                 | MG/KG | IR85-SS14D-00-01-09C                    | 5/10                   | 0.0086 - 0.019                  | 2.7E-02                                    | N/A                     | 2.8E+03 N                       | 1.6E+01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 591-78-6      | 2-Hexanone                                       | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0086 - 0.019                  | 1.9E-02                                    | N/A                     | 2.1E+01 N                       | 1.2E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 108-10-1      | 4-Methyl-2-pentanone                             | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0086 - 0.019                  | 1.9E-02                                    | N/A                     | 5.3E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 67-64-1       | Acetone                                          | 3.8E-02 J                                 | 1.3E+00 J                                 | MG/KG | IR85-SS09-00-01-09C                     | 12/12                  | 0.0086 - 0.019                  | 1.3E+00                                    | N/A                     | 6.1E+03 N                       | 2.4E+01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 71-43-2       | Benzene                                          | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.1E+00 C*                      | 7.3E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-27-4       | Bromodichloromethane                             | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.7E-01 C                       | 2.9E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-25-2       | Bromoform                                        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 6.1E+01 C*                      | 1.9E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 74-83-9       | Bromomethane                                     | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0086 - 0.019                  | 1.9E-02                                    | N/A                     | 7.3E-01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 75-15-0       | Carbon disulfide                                 | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 8.2E+01 N                       | 3.8E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 56-23-5       | Carbon tetrachloride                             | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 6.1E-01 C                       | 2.0E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 108-90-7      | Chlorobenzene                                    | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.9E+01 N                       | 4.5E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-00-3       | Chloroethane                                     | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0086 - 0.019                  | 1.9E-02                                    | N/A                     | 1.5E+03 N                       | 1.6E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 67-66-3       | Chloroform                                       | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.9E-01 C                       | 3.4E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 74-87-3       | Chloromethane                                    | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0086 - 0.019                  | 1.9E-02                                    | N/A                     | 1.2E+01 N                       | 1.5E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 156-59-2      | cis-1,2-Dichloroethene                           | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 7.8E+01 N                       | 3.6E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 10061-01-5    | cis-1,3-Dichloropropene                          | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 110-82-7      | Cyclohexane                                      | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.2E+02 NS                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 124-48-1      | Dibromochloromethane                             | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 6.8E-01 C                       | 1.9E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-71-8       | Dichlorodifluoromethane (Freon-12)               | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.8E+01 N                       | 2.9E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 100-41-4      | Ethylbenzene                                     | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 5.4E+00 C                       | 8.1E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 98-82-8       | Isopropylbenzene                                 | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.1E+02 N                       | 1.3E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-20-9       | Methyl acetate                                   | 3.8E-03 J                                 | 2.0E-01 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 10/10                  | 0.0043 - 0.0095                 | 2.0E-01                                    | N/A                     | 7.8E+03 N                       | N/A                            |                                 | NO           | BSL                                                 |

| Exposure<br>Point | CAS<br>Number | Chemical                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 108-87-2      | Methylcyclohexane                | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                              | N/A                     | 5.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 75-09-2       | Methylene chloride               | 1.4E-02 J                                 | 1.4E-02 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 1/10                   | 0.0086 - 0.019                  | 1.4E-02                              | N/A                     | 1.1E+01 C                       | 2.3E-02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 1634-04-4     | Methyl-tert-butyl ether (MTBE)   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                              | N/A                     | 4.3E+01 C                       | 8.5E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 100-42-5      | Styrene                          | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                              | N/A                     | 6.3E+02 N                       | 9.2E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 127-18-4      | Tetrachloroethene                | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                              | N/A                     | 5.5E-01 C                       | 5.0E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 108-88-3      | Toluene                          | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                              | N/A                     | 5.0E+02 N                       | 5.5E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 156-60-5      | trans-1,2-Dichloroethene         | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                              | N/A                     | 1.5E+01 N                       | 5.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 10061-02-6    | trans-1,3-Dichloropropene        | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                              | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-01-6       | Trichloroethene                  | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                              | N/A                     | 2.8E+00 C                       | 1.8E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-69-4       | Trichlorofluoromethane(Freon-11) | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                              | N/A                     | 7.9E+01 N                       | 2.4E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-01-4       | Vinyl chloride                   | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0086 - 0.019                  | 1.9E-02                              | N/A                     | 6.0E-02 C                       | 1.9E-04                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1330-20-7     | Xylene, total                    | ND                                        | ND                                        | MG/KG |                                         | 0/10                   | 0.0043 - 0.0095                 | 9.5E-03                              | N/A                     | 6.3E+01 N                       | 6.0E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 92-52-4       | 1,1-Biphenyl                     | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 2.1E+02 NS                      | 4.3E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 108-60-1      | 2,2'-Oxybis(1-chloropropane)     | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 4.6E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 95-95-4       | 2,4,5-Trichlorophenol            | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 120-83-2      | 2,4-Dichlorophenol               | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 105-67-9      | 2,4-Dimethylphenol               | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.2E+02 N                       | 1.4E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 51-28-5       | 2,4-Dinitrophenol                | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.2E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 121-14-2      | 2,4-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.6E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 606-20-2      | 2,6-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 6.1E+00 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 91-58-7       | 2-Chloronaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.8E+02 NS                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 95-57-8       | 2-Chlorophenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.9E+01 N                       | 4.1E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 91-57-6       | 2-Methylnaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.1E+01 N                       | 1.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 95-48-7       | 2-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 88-74-4       | 2-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 6.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 88-75-5       | 2-Nitrophenol                    | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.9E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 91-94-1       | 3,3'-Dichlorobenzidine           | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.1E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 99-09-2       | 3-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 6.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 534-52-1      | 4,6-Dinitro-2-methylphenol       | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 4.9E-01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 101-55-3      | 4-Bromophenyl-phenylether        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 59-50-7       | 4-Chloro-3-methylphenol          | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-47-8      | 4-Chloroaniline                  | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 2.4E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 7005-72-3     | 4-Chlorophenyl-phenylether       | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-44-5      | 4-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.1E+01 N                       | 4.0E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 100-01-6      | 4-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 2.4E+01 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 100-02-7      | 4-Nitrophenol                    | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 4.8E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
| l                 | 83-32-9       | Acenaphthene                     | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.4E+02 N                       | 8.4E+00                        | NCPSRG                          | NO           | DLBSL                                               |

| Exposure<br>Point | CAS<br>Number | Chemical                   | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|----------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 208-96-8      | Acenaphthylene             | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.4E+02 N                       | 1.1E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 98-86-2       | Acetophenone               | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 7.8E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 120-12-7      | Anthracene                 | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.7E+03 N                       | 6.6E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1912-24-9     | Atrazine                   | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 2.1E+00 C                       | 2.5E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 100-52-7      | Benzaldehyde               | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 7.8E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 56-55-3       | Benzo(a)anthracene         | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.036 - 0.047                   | 4.7E-02                              | N/A                     | 1.5E-01 C                       | 1.8E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 50-32-8       | Benzo(a)pyrene             | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.036 - 0.047                   | 4.7E-02                              | N/A                     | 1.5E-02 C                       | 5.9E-02                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 205-99-2      | Benzo(b)fluoranthene       | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.036 - 0.047                   | 4.7E-02                              | N/A                     | 1.5E-01 C                       | 6.0E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 191-24-2      | Benzo(g,h,i)perylene       | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.7E+02 N                       | 3.6E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 207-08-9      | Benzo(k)fluoranthene       | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.5E+00 C                       | 5.9E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 111-91-1      | bis(2-Chloroethoxy)methane | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 111-44-4      | bis(2-Chloroethyl)ether    | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 2.1E-01 C                       | 1.4E-04                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 117-81-7      | bis(2-Ethylhexyl)phthalate | 2.9E-02 J                                 | 1.4E-01 J                                 | MG/KG | IR85-SS06-00-01-09C                     | 3/13                   | 0.18 - 0.23                     | 1.4E-01                              | N/A                     | 3.5E+01 C*                      | 7.2E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 85-68-7       | Butylbenzylphthalate       | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 2.6E+02 C*                      | 1.5E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 105-60-2      | Caprolactam                | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.1E+03 N                       | 1.8E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 86-74-8       | Carbazole                  | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 218-01-9      | Chrysene                   | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.5E+01 C                       | 1.8E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 53-70-3       | Dibenz(a,h)anthracene      | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.036 - 0.047                   | 4.7E-02                              | N/A                     | 1.5E-02 C                       | 1.9E-01                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 132-64-9      | Dibenzofuran               | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 7.8E+00 N                       | 4.7E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 84-66-2       | Diethylphthalate           | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 4.9E+03 N                       | 3.7E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 131-11-3      | Dimethyl phthalate         | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 84-74-2       | Di-n-butylphthalate        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 6.1E+02 N                       | 1.9E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 117-84-0      | Di-n-octylphthalate        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.5E+01 C*                      | 3.8E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 206-44-0      | Fluoranthene               | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 2.3E+02 N                       | 3.3E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 86-73-7       | Fluorene                   | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 2.3E+02 N                       | 5.6E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 118-74-1      | Hexachlorobenzene          | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.0E-01 C                       | 2.6E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 87-68-3       | Hexachlorobutadiene        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 6.1E+00 C**                     | 8.7E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 77-47-4       | Hexachlorocyclopentadiene  | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 67-72-1       | Hexachloroethane           | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 6.1E+00 C**                     | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 193-39-5      | Indeno(1,2,3-cd)pyrene     | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.036 - 0.047                   | 4.7E-02                              | N/A                     | 1.5E-01 C                       | 2.0E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 78-59-1       | Isophorone                 | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.036 - 0.047                   | 4.7E-02                              | N/A                     | 5.1E+02 C*                      | 2.0E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 91-20-3       | Naphthalene                | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.6E+00 C*                      | 2.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 621-64-7      | n-Nitroso-di-n-propylamine | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.036 - 0.047                   | 4.7E-02                              | N/A                     | 6.9E-02 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 86-30-6       | n-Nitrosodiphenylamine     | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 9.9E+01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 98-95-3       | Nitrobenzene               | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 4.8E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 87-86-5       | Pentachlorophenol          | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 3.0E+00 C                       | 3.1E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 85-01-8       | Phenanthrene               | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.7E+03 N                       | 5.7E+01                        | NCPSRG                          | NO           | DLBSL                                               |

| Exposure<br>Point | CAS<br>Number | Chemical            | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|---------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 108-95-2      | Phenol              | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.8E+03 N                       | 2.3E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 129-00-0      | Pyrene              | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                              | N/A                     | 1.7E+02 N                       | 2.2E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 72-54-8       | 4,4'-DDD            | 3.9E-04 J                                 | 3.1E-03 J                                 | MG/KG | IR85-SS18-00-01-09C                     | 5/13                   | 0.0018 - 0.0023                 | 3.1E-03                              | N/A                     | 2.0E+00 C                       | 2.4E-01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 72-55-9       | 4,4'-DDE            | 6.4E-04 J                                 | 2.9E-02 J                                 | MG/KG | IR85-SS18-00-01-09C                     | 12/13                  | 0.0018 - 0.0023                 | 2.9E-02                              | N/A                     | 1.4E+00 C                       | N/A                            |                                 | NO           | BSL                                                 |
|                   | 50-29-3       | 4,4'-DDT            | 6.8E-04 J                                 | 2.5E-02 J                                 | MG/KG | IR85-SS18-00-01-09C                     | 11/13                  | 0.0018 - 0.0023                 | 2.5E-02                              | N/A                     | 1.7E+00 C*                      | 3.4E-01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 309-00-2      | Aldrin              | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 2.9E-02 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 319-84-6      | alpha-BHC           | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 7.7E-02 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 5103-71-9     | alpha-Chlordane     | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 12674-11-2    | Aroclor-1016        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.017 - 0.023                   | 2.3E-02                              | N/A                     | 3.9E-01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 11104-28-2    | Aroclor-1221        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.017 - 0.023                   | 2.3E-02                              | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 11141-16-5    | Aroclor-1232        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.017 - 0.023                   | 2.3E-02                              | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 53469-21-9    | Aroclor-1242        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.017 - 0.023                   | 2.3E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 12672-29-6    | Aroclor-1248        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.017 - 0.023                   | 2.3E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 11097-69-1    | Aroclor-1254        | 4.0E-02 J                                 | 5.0E-02                                   | MG/KG | IR85-SS17-00-01-09C                     | 2/13                   | 0.017 - 0.023                   | 5.0E-02                              | N/A                     | 1.1E-01 C**                     | N/A                            |                                 | NO           | BSL                                                 |
|                   | 11096-82-5    | Aroclor-1260        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.017 - 0.023                   | 2.3E-02                              | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 319-85-7      | beta-BHC            | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 319-86-8      | delta-BHC           | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 60-57-1       | Dieldrin            | 1.9E-03 J                                 | 1.9E-03 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 1/13                   | 0.0018 - 0.0023                 | 1.9E-03                              | N/A                     | 3.0E-02 C                       | 8.1E-04                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 959-98-8      | Endosulfan I        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 33213-65-9    | Endosulfan II       | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1031-07-8     | Endosulfan sulfate  | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 72-20-8       | Endrin              | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 7421-93-4     | Endrin aldehyde     | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 53494-70-5    | Endrin ketone       | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 58-89-9       | gamma-BHC (Lindane) | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 5.2E-01 C*                      | 1.8E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 5103-74-2     | gamma-Chlordane     | 8.8E-04 J                                 | 2.7E-03 J                                 | MG/KG | IR85-SS18-00-01-09C                     | 2/13                   | 0.0018 - 0.0023                 | 2.7E-03                              | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 76-44-8       | Heptachlor          | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 1.1E-01 C                       | 6.6E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1024-57-3     | Heptachlor epoxide  | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 5.3E-02 C*                      | 8.2E-04                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 72-43-5       | Methoxychlor        | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0018 - 0.0023                 | 2.3E-03                              | N/A                     | 3.1E+01 N                       | 2.2E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 8001-35-2     | Toxaphene           | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.036 - 0.047                   | 4.7E-02                              | N/A                     | 4.4E-01 C                       | 4.6E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 7429-90-5     | Aluminum            | 3.0E+03 J+                                | 7.3E+03 J+                                | MG/KG | IR85-SS14D-00-01-09C                    | 13/13                  | 75.2 - 1930                     | 7.3E+03                              | 5.5E+03                 | 7.7E+03 N                       | N/A                            |                                 | NO           | BSL                                                 |
|                   | 7440-36-0     | Antimony            | 5.9E+00 J-                                | 5.9E+00 J-                                | MG/KG | IR85-SS18-00-01-09C                     | 1/13                   | 1.5 - 38.5                      | 5.9E+00                              | 4.5E-01                 | 3.1E+00 N                       | N/A                            |                                 | YES          | ASL                                                 |
|                   | 7440-38-2     | Arsenic             | 5.7E-01 J                                 | 9.9E+00 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 13/13                  | 1.5 - 38.5                      | 9.9E+00                              | 6.3E-01                 | 3.9E-01 C*                      | 5.8E+00                        | NCPSRG                          | YES          | ASL                                                 |
|                   | 7440-39-3     | Barium              | 5.9E+00                                   | 3.1E+01 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 12/13                  | 3.8 - 96.3                      | 3.1E+01                              | 1.5E+01                 | 1.5E+03 N                       | 5.8E+02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 7440-41-7     | Beryllium           | 2.5E-02 J                                 | 9.6E-02 J                                 | MG/KG | IR85-SS18-00-01-09C                     | 9/13                   | 0.15 - 3.9                      | 9.6E-02                              | 1.0E-01                 | 1.6E+01 N                       | N/A                            |                                 | NO           | BSL, BBK                                            |
|                   | 7440-43-9     | Cadmium             | 5.9E-01                                   | 3.5E+00                                   | MG/KG | IR85-SS18-00-01-09C                     | 3/13                   | 0.45 - 11.6                     | 3.5E+00                              | 3.3E-02                 | 7.0E+00 N                       | 3.0E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 7440-70-2     | Calcium             | 4.1E+01 J                                 | 4.7E+02                                   | MG/KG | IR85-SS16-00-01-09C                     | 8/13                   | 75.2 - 1930                     | 4.7E+02                              | 6.4E+03                 | N/A                             | N/A                            | l                               | NO           | NUT, BBK                                            |

#### Table 2 11

#### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Site 85 MCB Camp Lejeune, North Carolina

Scenario Timeframe: Current/Future Medium: Surface Soil Exposure Medium: Surface Soil

| Exposure<br>Point | CAS<br>Number | Chemical  | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening |         | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value |        |     | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|-----------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|---------|---------------------------------|--------------------------------|--------|-----|-----------------------------------------------------|
|                   | 7440-47-3     | Chromium  | 2.7E+00                                   | 8.5E+00 J                                 | MG/KG | IR85-SS18-00-01-09C                     | 12/13                  | 1.5 - 38.5                      | 8.5E+00                                    | 6.1E+00 | 2.9E-01 C                       | 3.8E+00                        | NCPSRG | YES | ASL                                                 |
|                   | 7440-48-4     | Cobalt    | 1.1E-01 J                                 | 2.4E+00 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 11/13                  | 0.38 - 9.6                      | 2.4E+00                                    | 2.9E-01 | 2.3E+00 N                       | N/A                            |        | YES | ASL                                                 |
|                   | 7440-50-8     | Copper    | 7.6E-01 J                                 | 2.1E+02                                   | MG/KG | IR85-SS18-00-01-09C                     | 13/13                  | 1.5 - 38.5                      | 2.1E+02                                    | 4.8E+00 | 3.1E+02 N                       | 7.0E+02                        | NCPSRG | NO  | BSL                                                 |
|                   | 7439-89-6     | Iron      | 1.7E+03                                   | 1.2E+04                                   | MG/KG | IR85-SS18-00-01-09C                     | 13/13                  | 11.3 - 289                      | 1.2E+04                                    | 3.2E+03 | 5.5E+03 N                       | 1.5E+02                        | NCPSRG | YES | ASL                                                 |
|                   | 7439-92-1     | Lead      | 4.8E+00                                   | 6.1E+02                                   | MG/KG | IR85-SS18-00-01-09C                     | 13/13                  | 1.5 - 38.5                      | 6.1E+02                                    | 1.2E+01 | 4.0E+02 NL                      | 2.7E+02                        | NCPSRG | YES | ASL                                                 |
|                   | 7439-95-4     | Magnesium | 8.1E+01 J                                 | 1.8E+02                                   | MG/KG | IR85-SS14D-00-01-09C                    | 13/13                  | 18.8 - 482                      | 1.8E+02                                    | 2.4E+02 | N/A                             | N/A                            |        | NO  | NUT, BBK                                            |
|                   | 7439-96-5     | Manganese | 5.9E+00                                   | 1.1E+04                                   | MG/KG | IR85-SS17-00-01-09C                     | 13/13                  | 0.38 - 9.6                      | 1.1E+04                                    | 1.4E+01 | 1.8E+02 N                       | 6.5E+01                        | NCPSRG | YES | ASL                                                 |
|                   | 7439-97-6     | Mercury   | 3.7E-02                                   | 8.8E+00                                   | MG/KG | IR85-SS18-00-01-09C                     | 11/13                  | 0.032 - 0.43                    | 8.8E+00                                    | 8.1E-02 | 2.3E+00 N                       | 1.0E+00                        | NCPSRG | YES | ASL                                                 |
|                   | 7440-02-0     | Nickel    | 9.1E-01                                   | 8.7E+00 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 13/13                  | 0.75 - 19.3                     | 8.7E+00                                    | 1.2E+00 | 1.5E+02 N                       | 1.3E+02                        | NCPSRG | NO  | BSL                                                 |
|                   | 7440-09-7     | Potassium | 7.2E+01 J                                 | 1.4E+02                                   | MG/KG | IR85-SS06-00-01-09C                     | 9/13                   | 75.2 - 1930                     | 1.4E+02                                    | 1.2E+02 | N/A                             | N/A                            |        | NO  | NUT                                                 |
|                   | 7782-49-2     | Selenium  | 4.5E-01 J                                 | 4.5E-01 J                                 | MG/KG | IR85-SS14-00-01-09C                     | 1/13                   | 1.5 - 38.5                      | 4.5E-01                                    | 5.6E-01 | 3.9E+01 N                       | 2.1E+00                        | NCPSRG | NO  | BSL, BBK                                            |
|                   | 7440-22-4     | Silver    | 8.3E-02 J                                 | 2.9E-01 J                                 | MG/KG | IR85-SS16-00-01-09C                     | 5/13                   | 1.5 - 38.5                      | 2.9E-01                                    | 1.4E-01 | 3.9E+01 N                       | 3.4E+00                        | NCPSRG | NO  | BSL                                                 |
|                   | 7440-23-5     | Sodium    | 3.2E+00 J                                 | 7.5E+00 J                                 | MG/KG | IR85-SS09D-00-01-09C                    | 7/13                   | 188 - 4820                      | 7.5E+00                                    | 8.1E+01 | N/A                             | N/A                            |        | NO  | NUT, BBK                                            |
|                   | 7440-28-0     | Thallium  | 4.4E-01 J                                 | 1.9E+01 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 2/13                   | 2.3 - 57.8                      | 1.9E+01                                    | 3.6E-01 | N/A                             | N/A                            |        | NO  | NTX                                                 |
|                   | 7440-62-2     | Vanadium  | 5.3E+00 J                                 | 1.0E+01 J                                 | MG/KG | IR85-SS14D-00-01-09C                    | 12/13                  | 3.8 - 96.3                      | 1.0E+01                                    | 8.9E+00 | 3.9E+01 N                       | N/A                            |        | NO  | BSL                                                 |
|                   | 7440-66-6     | Zinc      | 4.2E+00                                   | 5.6E+03                                   | MG/KG | IR85-SS17-00-01-09C                     | 11/13                  | 3.8 - 96.3                      | 5.6E+03                                    | 1.1E+01 | 2.3E+03 N                       | 1.2E+03                        | NCPSRG | YES | ASL                                                 |

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening. If the chemical was not detected, the maximum detection limit is used for screening.
- [3] Background values are two times the arithmetic mean basewide background surface soil concentrations.

Background values are from Final Base Background Soil Study Report, Marine Corps Base Camp Lejeune, North Carolina,

Baker Environmental, April 25, 2001.

[4] Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites.

http://epa-prgs.ornl.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) residential soil RSLs.

RSL value for 1,4-Dichlorobenzene used as a surrogate for 1,3-Dichlorobenzene

RSL value for RSL value for p-cresol used as surrogate for 3- and 4-methylphenol.

RSL value for RSL value for methoxychlor used as surrogate for 4-chlorophenyl-phenylether.

RSL value for RSL value for nitrobenzene used as surrogate for 4-nitrophenol.

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for technical chlordane used as surrogate for alpha-chlordane.

RSL value for technical-HCH used as surrogate for delta-BHC.

RSL value for technical chlordane used as surrogate for gamma-chlordane.

RSL value for 1,3-dichloropropene used as a surrogate for cis-1,3-dichloropropene and trans-1,3-dichloropropene.

RSL value for endosulfan used as surrogate for endosulfan I, endosulfan II, and endosulfan sulfate.

RSL value for endrin used as surrogate for endrin aldehyde and endrin ketone.

RSL value for 2-chlorophenol used as surrogate for 4-chloro-3-methylphenol and 2-nitrophenol.

RSL value for Mercury (inorganic salts) used for mercury.

Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Detection Limit Above Screening Level (DLASL), not quantitatively evaluated in HHRA

Deletion Reason: No Toxicity Information (NTX) Essential Nutrient (NUT)

> Below Screening Level (BSL) Below Background (BBK)

Detection Limit Below Screening Level (DLBSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

NCPSRG = North Carolina Preliminary Soil Remediation Goal, January, 2010

J = Estimated Value

J- = Analyte present, value may be biased low, actual value may be higher

J+ = Analyte present, value may be biased high, actual value may be lower

C = Carcinogenic

C\* = N screening level < 100x C screening level, therefore

N screening value/10 used as screening level

C\*\* = N screening level < 10x C screening level, therefore

N screening value/10 used as screening level

MG/KG = Milligrams per kilogram

N = Noncarcinogenic

NA = Not available/not applicable

ND = Non-detect

NL = Noncarcinogenic lead residential soil RSL not adjusted by dividing by 10.

NS = Concentration exceeds Csat (soil saturation concentration),

Csat used as screening level.

### TABLE 2.11a

Risk Ratio Screening for Surface Soil, Maximum Detected Concentration Camp Johnson Site 85 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Maximum Detected Concentration (Qualifier) | Sample Location of<br>Maximum Detected<br>Concentration | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ           |
|----------------------------------------------------|------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|------------------------|
| Metals (mg/kg)                                     |                        |                                            |                                                         |                         |                          |                                            |                                           |                        |
| Antimony                                           | 1 / 13                 | 5.9E+00 J-                                 | IR85-SS18-00-01-09C                                     | 3.1E+01                 | 1                        | 0.2                                        | NA                                        | Longevity, Blood       |
| Arsenic                                            | 13 / 13                | 9.9E+00 J                                  | IR85-SS17-00-01-09C                                     | 3.9E-01                 | 1E-06                    | NA                                         | 3E-05                                     | NA                     |
| Chromium                                           | 12 / 13                | 8.5E+00 J                                  | IR85-SS18-00-01-09C                                     | 2.9E-01                 | 1E-06                    | NA                                         | 3E-05                                     | NA                     |
| Cobalt                                             | 11 / 13                | 2.4E+00 J                                  | IR85-SS17-00-01-09C                                     | 2.3E+01                 | 1                        | 0.1                                        | NA                                        | Thyroid                |
| Iron                                               | 13 / 13                | 1.2E+04                                    | IR85-SS18-00-01-09C                                     | 5.5E+04                 | 1                        | 0.2                                        | NA                                        | Gastrointestinal       |
| Lead                                               | 13 / 13                | 6.1E+02                                    | IR85-SS18-00-01-09C                                     | NA                      |                          | NA                                         | NA                                        | NA                     |
| Manganese                                          | 13 / 13                | 1.1E+04                                    | IR85-SS17-00-01-09C                                     | 1.8E+03                 | 1                        | 5.9                                        | NA                                        | Central Nervous System |
| Mercury                                            | 11 / 13                | 8.8E+00                                    | IR85-SS18-00-01-09C                                     | 2.3E+01                 | 1                        | 0.4                                        | NA                                        | Autoimmune             |
| Zinc                                               | 11 / 13                | 5.6E+03                                    | IR85-SS17-00-01-09C                                     | 2.3E+04                 | 1                        | 0.2                                        | NA                                        | Blood                  |
| Cumulative Corresponding Hazard Index <sup>c</sup> | •                      | •                                          |                                                         | •                       | •                        | 7.1                                        |                                           |                        |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |                                            |                                                         |                         |                          |                                            | 5E-05                                     |                        |

### Notes:

<sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC. Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index

J = Estimated Value

J- = Analyte present, value may be biased low, actual value may be higher

mg/kg = milligrams per kilogram

NA = Not available/not applicable

|         | 5E-05                 |     |
|---------|-----------------------|-----|
| To      | tal Autoimmune HI =   | 0.4 |
|         | Total Blood HI =      | 0.4 |
| Total   | Gastrointestinal HI = | 0.2 |
|         | Total Longevity HI =  | 0.2 |
| Total N | Nervous System HI =   | 5.9 |
|         | Total Thyroid HI =    | 0.1 |

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

### TABLE 2.11b

Risk Ratio Screening for Surface Soil, 95% UCL Concentration Camp Johnson Site 85 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | 95% UC  | CL | 95% UCL<br>Rationale | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ           |
|----------------------------------------------------|------------------------|---------|----|----------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|------------------------|
| Metals (mg/kg)                                     |                        |         |    |                      |                         |                          |                                            |                                           |                        |
| Lead                                               | 13 / 13                | 7.2E+01 | 6  | Mean                 | NA                      | NA                       | NA                                         | NA                                        |                        |
| Manganese                                          | 13 / 13                | 9.1E+03 | 4  | 99% Cheb-m           | 1.8E+03                 | 1                        | 5.0                                        | NA                                        | Central Nervous System |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |         |    |                      |                         |                          | 5.0                                        |                                           |                        |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |         |    |                      |                         |                          |                                            | NA                                        |                        |
|                                                    |                        |         |    |                      |                         |                          | Total Central N                            | Veryous System HI =                       | 5.0                    |

#### Notes:

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern mg/kg = milligrams per kilogram HI = Hazard Index NA = Not available/not applicable.

ProUCL, Version 4.00.05 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. May 2010. ProUCL, Version 4.0. Prepared by Lockheed Martin Environmental Services). Options: 99% Chebshev (Mean, Sd) UCL (99% Cheb-m)

Upper Confidence Limit (UCL) Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Test indicates data are gamma distributed.
- (4) Distribution tests are inconclusive
- (5) Max value used because 95% UCL greater than max.
- (6) Lead evaluated using arithmetic mean concentration in lead models, therefore, arithmetic mean concentration presented here.

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals 95% UCL concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals 95% UCL concentration divided by the RSL divided by the acceptable risk level

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

| Exposure<br>Point | CAS<br>Number | Chemical                                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|---------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-------------------------------------------------------------|
| Site 85           | 71-55-6       | 1.1.1-Trichloroethane                            | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 6.4E+02 NS                      | 1.2E+00                        | NCPSRG                          | NO           | DLBSL                                                       |
| OILC 00           | 79-34-5       | 1.1.2.2-Tetrachloroethane                        | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 5.6E-01 C                       | 1.2E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 76-13-1       | 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 9.1E+02 NS                      | 9.2E+03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 79-00-5       | 1.1.2-Trichloroethane                            | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.1E+00 C                       | N/A                            | THOI ONG                        | NO           | DLBSL                                                       |
|                   | 75-34-3       | 1,1-Dichloroethane                               | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 3.3E+00 C                       | 3.0E-02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 75-35-4       | 1.1-Dichloroethene                               | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.4E+01 N                       | 4.6E-02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 120-82-1      | 1.2.4-Trichlorobenzene                           | 2.0E-03 J                                 | 2.7E-03 J                                 | MG/KG | IR85-SB11-2-7-09C                       | 5/19                   | 0.0016 - 0.0095                 | 2.7E-03                                    | N/A                     | 6.2E+00 C**                     | 2.2E+00                        | NCPSRG                          | NO           | BSL                                                         |
|                   | 96-12-8       | 1,2-Dibromo-3-chloropropane                      | 2.4E-03 J                                 | 2.4E-03 J                                 | MG/KG | IR85-SB11-2-7-09C                       | 1/19                   | 0.0016 - 0.0095                 | 2.4E-03                                    | N/A                     | 5.4E-03 C                       | 2.5E-04                        | NCPSRG                          | NO           | BSL                                                         |
|                   | 106-93-4      | 1,2-Dibromoethane                                | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 3.4E-02 C                       | 9.7E-05                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 95-50-1       | 1,2-Dichlorobenzene                              | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.9E+02 N                       | 2.4E-01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 107-06-2      | 1,2-Dichloroethane                               | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 4.3E-01 C                       | 2.0E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 78-87-5       | 1,2-Dichloropropane                              | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 8.9E-01 C*                      | 3.3E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 541-73-1      | 1,3-Dichlorobenzene                              | 1.2E-03 J                                 | 1.4E-03 J                                 | MG/KG | 308-2-7-09C : IR85-SB11-2               | 3/19                   | 0.0016 - 0.0095                 | 1.4E-03                                    | N/A                     | 2.4E+00 C                       | N/A                            |                                 | NO           | BSL                                                         |
|                   | 106-46-7      | 1,4-Dichlorobenzene                              | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.4E+00 C                       | 7.0E-02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 78-93-3       | 2-Butanone                                       | 1.5E-03 J                                 | 2.7E-02 J                                 | MG/KG | IR85-SS14D-00-01-09C                    | 13/20                  | 0.0029 - 0.019                  | 2.7E-02                                    | N/A                     | 2.8E+03 N                       | 1.6E+01                        | NCPSRG                          | NO           | BSL                                                         |
|                   | 591-78-6      | 2-Hexanone                                       | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0031 - 0.019                  | 1.9E-02                                    | N/A                     | 2.1E+01 N                       | 1.2E+00                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 108-10-1      | 4-Methyl-2-pentanone                             | 1.5E-03 J                                 | 1.5E-03 J                                 | MG/KG | IR85-SB11-2-7-09C                       | 1/19                   | 0.0031 - 0.019                  | 1.5E-03                                    | N/A                     | 5.3E+02 N                       | N/A                            |                                 | NO           | BSL                                                         |
|                   | 67-64-1       | Acetone                                          | 3.0E-02 J                                 | 1.3E+00 J                                 | MG/KG | IR85-SS09-00-01-09C                     | 20/22                  | 0.0029 - 0.019                  | 1.3E+00                                    | N/A                     | 6.1E+03 N                       | 2.4E+01                        | NCPSRG                          | NO           | BSL                                                         |
|                   | 71-43-2       | Benzene                                          | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.1E+00 C*                      | 7.3E-02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 75-27-4       | Bromodichloromethane                             | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.7E-01 C                       | 2.9E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 75-25-2       | Bromoform                                        | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 6.1E+01 C*                      | 1.9E-02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 74-83-9       | Bromomethane                                     | ND                                        | ND                                        | MG/KG |                                         | 0/12                   | 0.0035 - 0.019                  | 1.9E-02                                    | N/A                     | 7.3E-01 N                       | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 75-15-0       | Carbon disulfide                                 | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 8.2E+01 N                       | 3.8E+00                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 56-23-5       | Carbon tetrachloride                             | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 6.1E-01 C                       | 2.0E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 108-90-7      | Chlorobenzene                                    | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.9E+01 N                       | 4.5E-01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 75-00-3       | Chloroethane                                     | ND                                        | ND                                        | MG/KG |                                         | 0/18                   | 0.0031 - 0.019                  | 1.9E-02                                    | N/A                     | 1.5E+03 N                       | 1.6E+01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 67-66-3       | Chloroform                                       | 1.0E-03 J                                 | 1.0E-03 J                                 | MG/KG | IR85-SB11-2-7-09C                       | 1/19                   | 0.0016 - 0.0095                 | 1.0E-03                                    | N/A                     | 2.9E-01 C                       | 3.4E-01                        | NCPSRG                          | NO           | BSL                                                         |
|                   | 74-87-3       | Chloromethane                                    | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0031 - 0.019                  | 1.9E-02                                    | N/A                     | 1.2E+01 N                       | 1.5E-02                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 156-59-2      | cis-1,2-Dichloroethene                           | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 7.8E+01 N                       | 3.6E-01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 10061-01-5    | cis-1,3-Dichloropropene                          | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 110-82-7      | Cyclohexane                                      | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.2E+02 NS                      | N/A                            |                                 | NO           | DLBSL                                                       |
|                   | 124-48-1      | Dibromochloromethane                             | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 6.8E-01 C                       | 1.9E-03                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 75-71-8       | Dichlorodifluoromethane (Freon-12)               | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.8E+01 N                       | 2.9E+01                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 100-41-4      | Ethylbenzene                                     | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 5.4E+00 C                       | 8.1E+00                        | NCPSRG                          | NO           | DLBSL                                                       |
|                   | 98-82-8       | Isopropylbenzene                                 | 2.0E-03 J                                 | 2.7E-03 J                                 | MG/KG | IR85-SB08-2-7-09C                       | 5/19                   | 0.0016 - 0.0095                 | 2.7E-03                                    | N/A                     | 2.1E+02 N                       | 1.3E+00                        | NCPSRG                          | NO           | BSL                                                         |
|                   | 79-20-9       | Methyl acetate                                   | 1.2E-03 J                                 | 2.0E-01 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 16/20                  | 0.0014 - 0.0095                 | 2.0E-01                                    | N/A                     | 7.8E+03 N                       | N/A                            | l                               | NO           | BSL                                                         |

| Exposure<br>Point | CAS<br>Number | Chemical                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 108-87-2      | Methylcyclohexane                | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 5.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 75-09-2       | Methylene chloride               | 6.2E-04 J                                 | 1.4E-02 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 9/20                   | 0.0029 - 0.019                  | 1.4E-02                                    | N/A                     | 1.1E+01 C                       | 2.3E-02                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 1634-04-4     | Methyl-tert-butyl ether (MTBE)   | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 4.3E+01 C                       | 8.5E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 100-42-5      | Styrene                          | 2.1E-03 J                                 | 2.8E-03 J                                 | MG/KG | IR85-SB08-2-7-09C                       | 6/19                   | 0.0016 - 0.0095                 | 2.8E-03                                    | N/A                     | 6.3E+02 N                       | 9.2E-01                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 127-18-4      | Tetrachloroethene                | 1.3E-03 J                                 | 1.6E-03 J                                 | MG/KG | 308-2-7-09C : IR85-SB11-2               | 4/19                   | 0.0016 - 0.0095                 | 1.6E-03                                    | N/A                     | 5.5E-01 C                       | 5.0E-03                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 108-88-3      | Toluene                          | 6.4E-04 J                                 | 6.4E-04 J                                 | MG/KG | IR85-SB17-6-7-09C                       | 1/19                   | 0.0016 - 0.0095                 | 6.4E-04                                    | N/A                     | 5.0E+02 N                       | 5.5E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 156-60-5      | trans-1,2-Dichloroethene         | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.5E+01 N                       | 5.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 10061-02-6    | trans-1,3-Dichloropropene        | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 1.7E+00 C*                      | 2.3E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 79-01-6       | Trichloroethene                  | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 2.8E+00 C                       | 1.8E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-69-4       | Trichlorofluoromethane(Freon-11) | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 7.9E+01 N                       | 2.4E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 75-01-4       | Vinyl chloride                   | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.0033 - 0.019                  | 1.9E-02                                    | N/A                     | 6.0E-02 C                       | 1.9E-04                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1330-20-7     | Xylene, total                    | ND                                        | ND                                        | MG/KG |                                         | 0/19                   | 0.0016 - 0.0095                 | 9.5E-03                                    | N/A                     | 6.3E+01 N                       | 6.0E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 92-52-4       | 1,1-Biphenyl                     | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 2.1E+02 NS                      | 4.3E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 108-60-1      | 2,2'-Oxybis(1-chloropropane)     | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 4.6E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 95-95-4       | 2,4,5-Trichlorophenol            | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 120-83-2      | 2,4-Dichlorophenol               | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 105-67-9      | 2,4-Dimethylphenol               | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 1.2E+02 N                       | 1.4E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 51-28-5       | 2,4-Dinitrophenol                | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 1.2E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 121-14-2      | 2,4-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 1.6E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 606-20-2      | 2,6-Dinitrotoluene               | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 6.1E+00 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 91-58-7       | 2-Chloronaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 1.8E+02 NS                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 95-57-8       | 2-Chlorophenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 3.9E+01 N                       | 4.1E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 91-57-6       | 2-Methylnaphthalene              | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 3.1E+01 N                       | 1.6E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 95-48-7       | 2-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 3.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 88-74-4       | 2-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 6.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 88-75-5       | 2-Nitrophenol                    | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 3.9E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 91-94-1       | 3,3'-Dichlorobenzidine           | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 1.1E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 99-09-2       | 3-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 6.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 534-52-1      | 4,6-Dinitro-2-methylphenol       | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 4.9E-01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 101-55-3      | 4-Bromophenyl-phenylether        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 59-50-7       | 4-Chloro-3-methylphenol          | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 6.1E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-47-8      | 4-Chloroaniline                  | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 2.4E+00 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 7005-72-3     | 4-Chlorophenyl-phenylether       | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 3.1E+01 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 106-44-5      | 4-Methylphenol                   | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 3.1E+01 N                       | 4.0E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 100-01-6      | 4-Nitroaniline                   | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 2.4E+01 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 100-02-7      | 4-Nitrophenol                    | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 4.8E+00 C*                      | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 83-32-9       | Acenaphthene                     | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 3.4E+02 N                       | 8.4E+00                        | NCPSRG                          | NO           | DLBSL                                               |

| Exposure<br>Point | CAS<br>Number | Chemical                   | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2<br>Used for<br>Screening | Background [3<br>Value | Screening [4] Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|----------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|-------------------------------------------|------------------------|------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 208-96-8      | Acenaphthylene             | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 3.4E+02 N                    | 1.1E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 98-86-2       | Acetophenone               | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 7.8E+02 N                    | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 120-12-7      | Anthracene                 | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 1.7E+03 N                    | 6.6E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 1912-24-9     | Atrazine                   | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 2.1E+00 C                    | 2.5E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 100-52-7      | Benzaldehyde               | ND                                        | ND                                        | MG/KG |                                         | 0/13                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 7.8E+02 N                    | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 56-55-3       | Benzo(a)anthracene         | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.036 - 0.047                   | 4.7E-02                                   | N/A                    | 1.5E-01 C                    | 1.8E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 50-32-8       | Benzo(a)pyrene             | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.036 - 0.047                   | 4.7E-02                                   | N/A                    | 1.5E-02 C                    | 5.9E-02                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 205-99-2      | Benzo(b)fluoranthene       | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.036 - 0.047                   | 4.7E-02                                   | N/A                    | 1.5E-01 C                    | 6.0E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 191-24-2      | Benzo(g,h,i)perylene       | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 1.7E+02 N                    | 3.6E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 207-08-9      | Benzo(k)fluoranthene       | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 1.5E+00 C                    | 5.9E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 111-91-1      | bis(2-Chloroethoxy)methane | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 1.8E+01 N                    | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 111-44-4      | bis(2-Chloroethyl)ether    | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 2.1E-01 C                    | 1.4E-04                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 117-81-7      | bis(2-Ethylhexyl)phthalate | 2.9E-02 J                                 | 1.4E-01 J                                 | MG/KG | IR85-SS06-00-01-09C                     | 4/23                   | 0.18 - 0.23                     | 1.4E-01                                   | N/A                    | 3.5E+01 C*                   | 7.2E+00                        | NCPSRG                          | NO           | BSL                                                 |
|                   | 85-68-7       | Butylbenzylphthalate       | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 2.6E+02 C*                   | 1.5E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 105-60-2      | Caprolactam                | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 3.1E+03 N                    | 1.8E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 86-74-8       | Carbazole                  | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | N/A                          | N/A                            |                                 | NO           | NTX                                                 |
|                   | 218-01-9      | Chrysene                   | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 1.5E+01 C                    | 1.8E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 53-70-3       | Dibenz(a,h)anthracene      | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.036 - 0.047                   | 4.7E-02                                   | N/A                    | 1.5E-02 C                    | 1.9E-01                        | NCPSRG                          | YES          | DLASL                                               |
|                   | 132-64-9      | Dibenzofuran               | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 7.8E+00 N                    | 4.7E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 84-66-2       | Diethylphthalate           | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 4.9E+03 N                    | 3.7E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 131-11-3      | Dimethyl phthalate         | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | N/A                          | N/A                            |                                 | NO           | NTX                                                 |
|                   | 84-74-2       | Di-n-butylphthalate        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 6.1E+02 N                    | 1.9E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 117-84-0      | Di-n-octylphthalate        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 3.5E+01 C*                   | 3.8E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 206-44-0      | Fluoranthene               | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 2.3E+02 N                    | 3.3E+02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 86-73-7       | Fluorene                   | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 2.3E+02 N                    | 5.6E+01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 118-74-1      | Hexachlorobenzene          | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 3.0E-01 C                    | 2.6E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 87-68-3       | Hexachlorobutadiene        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 6.1E+00 C**                  | 8.7E-03                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 77-47-4       | Hexachlorocyclopentadiene  | ND                                        | ND                                        | MG/KG |                                         | 0/22                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 3.7E+01 N                    | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 67-72-1       | Hexachloroethane           | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 6.1E+00 C**                  | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 193-39-5      | Indeno(1,2,3-cd)pyrene     | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.036 - 0.047                   | 4.7E-02                                   | N/A                    | 1.5E-01 C                    | 2.0E+00                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 78-59-1       | Isophorone                 | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.036 - 0.047                   | 4.7E-02                                   | N/A                    | 5.1E+02 C*                   | 2.0E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 91-20-3       | Naphthalene                | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 3.6E+00 C*                   | 2.1E-01                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 621-64-7      | n-Nitroso-di-n-propylamine | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.036 - 0.047                   | 4.7E-02                                   | N/A                    | 6.9E-02 C                    | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 86-30-6       | n-Nitrosodiphenylamine     | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 9.9E+01 C                    | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 98-95-3       | Nitrobenzene               | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 4.8E+00 C*                   | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 87-86-5       | Pentachlorophenol          | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 3.0E+00 C                    | 3.1E-02                        | NCPSRG                          | NO           | DLBSL                                               |
|                   | 85-01-8       | Phenanthrene               | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                   | N/A                    | 1.7E+03 N                    | 5.7E+01                        | NCPSRG                          | NO           | DLBSL                                               |

| Exposure<br>Point | CAS<br>Number | Chemical            | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC | Rationale for<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|---------------|---------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|------|----------------------------------------------------------|
|                   | 108-95-2      | Phenol              | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 1.8E+03 N                       | 2.3E-01                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 129-00-0      | Pyrene              | ND<br>ND                                  | ND<br>ND                                  | MG/KG |                                         | 0/23                   | 0.18 - 0.23                     | 2.3E-01                                    | N/A                     | 1.7E+02 N                       | 2.3E+02                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 72-54-8       | 4.4'-DDD            | 3.9E-04 J                                 | 3.1E-03 J                                 | MG/KG | IR85-SS18-00-01-09C                     | 7/23                   | 0.0017 - 0.0023                 | 3.1E-03                                    | N/A                     | 2.0E+00 C                       | 2.4E-01                        | NCPSRG                          | NO   | BSL                                                      |
|                   | 72-55-9       | 4.4'-DDE            | 6.4E-04 J                                 | 3.1E-02                                   | MG/KG | IR85-SB07-2-4-09C                       | 14/23                  | 0.0017 - 0.0023                 | 3.1E-02                                    | N/A                     | 1.4E+00 C                       | N/A                            | 1101 0110                       | NO   | BSL                                                      |
|                   | 50-29-3       | 4.4'-DDT            | 6.8E-04 J                                 | 2.5E-02 J                                 | MG/KG | IR85-SS18-00-01-09C                     | 13/23                  | 0.0017 - 0.0023                 | 2.5E-02                                    | N/A                     | 1.7E+00 C*                      | 3.4E-01                        | NCPSRG                          | NO   | BSL                                                      |
|                   | 309-00-2      | Aldrin              | ND                                        | ND ND                                     | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 2.9E-02 C*                      | N/A                            |                                 | NO   | DLBSL                                                    |
|                   | 319-84-6      | alpha-BHC           | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 7.7E-02 C                       | 1.2E-03                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 5103-71-9     | alpha-Chlordane     | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 12674-11-2    | Aroclor-1016        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.017 - 0.023                   | 2.3E-02                                    | N/A                     | 3.9E-01 N                       | N/A                            |                                 | NO   | DLBSL                                                    |
|                   | 11104-28-2    | Aroclor-1221        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.017 - 0.023                   | 2.3E-02                                    | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO   | DLBSL                                                    |
|                   | 11141-16-5    | Aroclor-1232        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.017 - 0.023                   | 2.3E-02                                    | N/A                     | 1.4E-01 C                       | N/A                            |                                 | NO   | DLBSL                                                    |
|                   | 53469-21-9    | Aroclor-1242        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.017 - 0.023                   | 2.3E-02                                    | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO   | DLBSL                                                    |
|                   | 12672-29-6    | Aroclor-1248        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.017 - 0.023                   | 2.3E-02                                    | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO   | DLBSL                                                    |
|                   | 11097-69-1    | Aroclor-1254        | 4.0E-02 J                                 | 5.0E-02                                   | MG/KG | IR85-SS17-00-01-09C                     | 2/23                   | 0.017 - 0.023                   | 5.0E-02                                    | N/A                     | 1.1E-01 C**                     | N/A                            |                                 | NO   | BSL                                                      |
|                   | 11096-82-5    | Aroclor-1260        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.017 - 0.023                   | 2.3E-02                                    | N/A                     | 2.2E-01 C                       | N/A                            |                                 | NO   | DLBSL                                                    |
|                   | 319-85-7      | beta-BHC            | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 319-86-8      | delta-BHC           | 1.1E-03 J                                 | 1.1E-03 J                                 | MG/KG | IR85-SB13-2-7-09C                       | 1/23                   | 0.0017 - 0.0023                 | 1.1E-03                                    | N/A                     | 2.7E-01 C                       | 1.2E-03                        | NCPSRG                          | NO   | BSL                                                      |
|                   | 60-57-1       | Dieldrin            | 1.9E-03 J                                 | 1.9E-03 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 1/23                   | 0.0017 - 0.0023                 | 1.9E-03                                    | N/A                     | 3.0E-02 C                       | 8.1E-04                        | NCPSRG                          | NO   | BSL                                                      |
|                   | 959-98-8      | Endosulfan I        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 33213-65-9    | Endosulfan II       | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 1031-07-8     | Endosulfan sulfate  | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 3.7E+01 N                       | 5.6E+00                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 72-20-8       | Endrin              | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 7421-93-4     | Endrin aldehyde     | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 53494-70-5    | Endrin ketone       | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 1.8E+00 N                       | 8.1E-01                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 58-89-9       | gamma-BHC (Lindane) | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 5.2E-01 C*                      | 1.8E-03                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 5103-74-2     | gamma-Chlordane     | 8.8E-04 J                                 | 2.7E-03 J                                 | MG/KG | IR85-SS18-00-01-09C                     | 3/23                   | 0.0017 - 0.0023                 | 2.7E-03                                    | N/A                     | 1.6E+00 C*                      | 6.8E-02                        | NCPSRG                          | NO   | BSL                                                      |
|                   | 76-44-8       | Heptachlor          | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 1.1E-01 C                       | 6.6E-03                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 1024-57-3     | Heptachlor epoxide  | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 5.3E-02 C*                      | 8.2E-04                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 72-43-5       | Methoxychlor        | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.0017 - 0.0023                 | 2.3E-03                                    | N/A                     | 3.1E+01 N                       | 2.2E+01                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 8001-35-2     | Toxaphene           | ND                                        | ND                                        | MG/KG |                                         | 0/23                   | 0.033 - 0.047                   | 4.7E-02                                    | N/A                     | 4.4E-01 C                       | 4.6E-02                        | NCPSRG                          | NO   | DLBSL                                                    |
|                   | 7429-90-5     | Aluminum            | 3.0E+03 J+                                | 1.2E+04                                   | MG/KG | IR85-SB09-2-7-09C                       | 23/23                  | 75.2 - 1930                     | 1.2E+04                                    | 5.5E+03                 | 7.7E+03 N                       | N/A                            |                                 | YES  | ASL                                                      |
|                   | 7440-36-0     | Antimony            | 5.9E+00 J-                                | 5.9E+00 J-                                | MG/KG | IR85-SS18-00-01-09C                     | 1/23                   | 1.5 - 38.5                      | 5.9E+00                                    | 3.6E-01                 | 3.1E+00 N                       | N/A                            |                                 | YES  | ASL                                                      |
|                   | 7440-38-2     | Arsenic             | 5.7E-01 J                                 | 9.9E+00 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 23/23                  | 1.5 - 38.5                      | 9.9E+00                                    | 6.3E-01                 | 3.9E-01 C*                      | 5.8E+00                        | NCPSRG                          | YES  | ASL                                                      |
|                   | 7440-39-3     | Barium              | 4.9E+00                                   | 3.1E+01 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 22/23                  | 3.8 - 96.3                      | 3.1E+01                                    | 1.5E+01                 | 1.5E+03 N                       | 5.8E+02                        | NCPSRG                          | NO   | BSL                                                      |
|                   | 7440-41-7     | Beryllium           | 2.4E-02 J                                 | 9.6E-02 J                                 | MG/KG | IR85-SS18-00-01-09C                     | 13/23                  | 0.15 - 3.9                      | 9.6E-02                                    | 1.0E-01                 | 1.6E+01 N                       | N/A                            |                                 | NO   | BSL, BBK                                                 |
|                   | 7440-43-9     | Cadmium             | 5.9E-01                                   | 3.5E+00                                   | MG/KG | IR85-SS18-00-01-09C                     | 3/23                   | 0.45 - 11.6                     | 3.5E+00                                    | 2.3E-02                 | 7.0E+00 N                       | 3.0E+00                        | NCPSRG                          | NO   | BSL                                                      |
|                   | 7440-70-2     | Calcium             | 1.7E+01 J                                 | 4.7E+02                                   | MG/KG | IR85-SS16-00-01-09C                     | 10/23                  | 75.2 - 1930                     | 4.7E+02                                    | 4.4E+02                 | N/A                             | N/A                            |                                 | NO   | NUT                                                      |

#### Table 2.12

#### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Site 85 MCB Camp Lejeune, North Carolina

Scenario Timeframe: Future

Medium: Surface and Subsurface Soil

Exposure Medium: Surface and Subsurface Soil

| Exposure<br>Point | CAS<br>Number | Chemical  | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening |         | Screening [4]<br>Toxicity Value |         |        |     | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|-----------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|---------|---------------------------------|---------|--------|-----|-----------------------------------------------------|
|                   | 7440-47-3     | Chromium  | 2.7E+00                                   | 1.3E+01                                   | MG/KG | IR85-SB09-2-7-09C                       | 22/23                  | 1.5 - 38.5                      | 1.3E+01                              | 6.1E+00 | 2.9E-01 C                       | 3.8E+00 | NCPSRG | YES | ASL                                                 |
|                   | 7440-48-4     | Cobalt    | 1.1E-01 J                                 | 2.4E+00 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 15/23                  | 0.38 - 9.6                      | 2.4E+00                              | 2.9E-01 | 2.3E+00 N                       | N/A     |        | YES | ASL                                                 |
|                   | 7440-50-8     | Copper    | 5.4E-01 J                                 | 2.1E+02                                   | MG/KG | IR85-SS18-00-01-09C                     | 23/23                  | 1.5 - 38.5                      | 2.1E+02                              | 2.6E+00 | 3.1E+02 N                       | 7.0E+02 | NCPSRG | NO  | BSL                                                 |
|                   | 7439-89-6     | Iron      | 1.7E+03                                   | 1.2E+04                                   | MG/KG | IR85-SS18-00-01-09C                     | 23/23                  | 11.3 - 289                      | 1.2E+04                              | 3.2E+03 | 5.5E+03 N                       | 1.5E+02 | NCPSRG | YES | ASL                                                 |
|                   | 7439-92-1     | Lead      | 2.8E+00                                   | 6.1E+02                                   | MG/KG | IR85-SS18-00-01-09C                     | 23/23                  | 1.5 - 38.5                      | 6.1E+02                              | 8.5E+00 | 4.0E+02 NL                      | 2.7E+02 | NCPSRG | YES | ASL                                                 |
|                   | 7439-95-4     | Magnesium | 8.1E+01 J                                 | 4.2E+02                                   | MG/KG | IR85-SB09-2-7-09C                       | 23/23                  | 18.8 - 482                      | 4.2E+02                              | 2.4E+02 | N/A                             | N/A     |        | NO  | NUT                                                 |
|                   | 7439-96-5     | Manganese | 4.5E+00                                   | 1.1E+04                                   | MG/KG | IR85-SS17-00-01-09C                     | 23/23                  | 0.38 - 9.6                      | 1.1E+04                              | 9.3E+00 | 1.8E+02 N                       | 6.5E+01 | NCPSRG | YES | ASL                                                 |
|                   | 7439-97-6     | Mercury   | 3.5E-02                                   | 8.8E+00                                   | MG/KG | IR85-SS18-00-01-09C                     | 13/23                  | 0.032 - 0.43                    | 8.8E+00                              | 7.1E-02 | 2.4E+00 N                       | 1.0E+00 | NCPSRG | YES | ASL                                                 |
|                   | 7440-02-0     | Nickel    | 7.6E-01 J                                 | 8.7E+00 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 22/23                  | 0.75 - 19.3                     | 8.7E+00                              | 1.2E+00 | 1.5E+02 N                       | 1.3E+02 | NCPSRG | NO  | BSL                                                 |
|                   | 7440-09-7     | Potassium | 7.2E+01 J                                 | 3.1E+02                                   | MG/KG | IR85-SB09-2-7-09C                       | 19/23                  | 75.2 - 1930                     | 3.1E+02                              | 1.2E+02 | N/A                             | N/A     |        | NO  | NUT                                                 |
|                   | 7782-49-2     | Selenium  | 4.5E-01 J                                 | 4.7E-01 J                                 | MG/KG | IR85-SB09-2-7-09C                       | 2/23                   | 1.5 - 38.5                      | 4.7E-01                              | 5.1E-01 | 3.9E+01 N                       | 2.1E+00 | NCPSRG | NO  | BSL, BBK                                            |
|                   | 7440-22-4     | Silver    | 8.3E-02 J                                 | 2.9E-01 J                                 | MG/KG | IR85-SS16-00-01-09C                     | 8/23                   | 1.5 - 38.5                      | 2.9E-01                              | 1.3E-01 | 3.9E+01 N                       | 3.4E+00 | NCPSRG | NO  | BSL                                                 |
|                   | 7440-23-5     | Sodium    | 3.2E+00 J                                 | 2.3E+01 J                                 | MG/KG | IR85-SB09-2-7-09C                       | 16/23                  | 188 - 4820                      | 2.3E+01                              | 6.8E+01 | N/A                             | N/A     |        | NO  | NUT, BSL                                            |
|                   | 7440-28-0     | Thallium  | 4.4E-01 J                                 | 1.9E+01 J                                 | MG/KG | IR85-SS17-00-01-09C                     | 2/23                   | 2.3 - 57.8                      | 1.9E+01                              | 3.6E-01 | N/A                             | N/A     |        | NO  | NTX                                                 |
|                   | 7440-62-2     | Vanadium  | 5.3E+00 J                                 | 1.6E+01                                   | MG/KG | IR85-SB09-2-7-09C                       | 22/23                  | 3.8 - 96.3                      | 1.6E+01                              | 8.9E+00 | 3.9E+01 N                       | N/A     |        | NO  | BSL                                                 |
|                   | 7440-66-6     | Zinc      | 4.2E+00                                   | 5.6E+03                                   | MG/KG | IR85-SS17-00-01-09C                     | 17/23                  | 3.8 - 96.3                      | 5.6E+03                              | 6.6E+00 | 2.3E+03 N                       | 1.2E+03 | NCPSRG | YES | ASL                                                 |

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening. If the chemical was not detected, the maximum detection limit is used for screening.
- Background values are lower of two times the arithmetic mean basewide background surface soil or subsurface soil concentrations.

 ${\it Background\ North\ Carolina\ }, \\ {\it Base\ Background\ Soil\ Study\ Report,\ Marine\ Corps\ Base\ Camp\ Lejeune,\ North\ Carolina\ }, \\$ 

Baker Environmental, April 25, 2001.

[4] Oak Ridge National Laboratory (ORNL). May 2010. Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites.

http://epa-prgs.ornl.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) residential soil RSLs.

RSL value for 1,4-Dichlorobenzene used as a surrogate for 1,3-Dichlorobenzene

RSL value for p-cresol used as surrogate for 3- and 4-methylphenol.

RSL value for methoxychlor used as surrogate for 4-chlorophenyl-phenylether.

RSL value for nitrobenzene used as surrogate for 4-nitrophenol.

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for technical chlordane used as surrogate for alpha-chlordane.

RSL value for technical-HCH used as surrogate for delta-BHC.

RSL value for technical chlordane used as surrogate for gamma-chlordane.

RSL value for 1,3-dichloropropene used as a surrogate for cis-1,3-dichloropropene and trans-1,3-dichloropropene.

RSL value for endosulfan used as surrogate for endosulfan I, endosulfan II, and endosulfan sulfate.

RSL value for endrin used as surrogate for endrin aldehyde and endrin ketone.

RSL value for 2-chlorophenol used as surrogate for 4-chloro-3-methylphenol and 2-nitrophenol.

RSL value for Mercury (inorganic salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Detection Limit Above Screening Level (DLASL), not quantitatively evaluated in HHRA

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)
Below Screening Level (BSL)
Below Background (BBK)

Detection Limit Below Screening Level (DLBSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

NCPSRG = North Carolina Preliminary Soil Remediation Goal, January, 2010

D = Compound identified in an analysis at a secondary dilution factor

J = Estimated Value

J- = Analyte present, value may be biased low, actual value may be higher

C = Carcinogenic

C\* = N screening level < 100x C screening level, therefore

N screening value/10 used as screening level

 $C^{\star\star}$  = N screening level < 10x C screening level, therefore

N screening value/10 used as screening level

MG/KG = Milligrams per kilogram

N = Noncarcinogenic

N/A = Not available

ND = Non-detect

NL = Noncarcinogenic lead residential soil RSL not adjusted by dividing by 10.

 $\mbox{NS} = \mbox{Concentration exceeds Csat (soil saturation concentration)},$ 

Csat used as screening level.

### TABLE 2.12a

Risk Ratio Screening for Surface and Subsurface Soil, Maximum Detected Concentration Camp Johnson Site 85 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Maximum Detected Concentration (Qualifier) | Sample Location of<br>Maximum Detected<br>Concentration | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ           |
|----------------------------------------------------|------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|------------------------|
| Metals (mg/kg)                                     |                        |                                            |                                                         |                         |                          |                                            |                                           |                        |
| Aluminum                                           | 23 / 23                | 1.2E+04                                    | IR85-SB09-2-7-09C                                       | 7.7E+04                 | 1                        | 0.2                                        | NA                                        | Neurological           |
| Antimony                                           | 1 / 23                 | 5.9E+00 J-                                 | IR85-SS18-00-01-09C                                     | 3.1E+01                 | 1                        | 0.2                                        | NA                                        | Longevity, Blood       |
| Arsenic                                            | 23 / 23                | 9.9E+00 J                                  | IR85-SS17-00-01-09C                                     | 3.9E-01                 | 1E-06                    | NA                                         | 3E-05                                     | NA NA                  |
| Chromium                                           | 22 / 23                | 1.3E+01                                    | IR85-SB09-2-7-09C                                       | 2.9E-01                 | 1E-06                    | NA                                         | 4E-05                                     | NA                     |
| Cobalt                                             | 15 / 23                | 2.4E+00 J                                  | IR85-SS17-00-01-09C                                     | 2.3E+01                 | 1                        | 0.1                                        | NA                                        | Thyroid                |
| Iron                                               | 23 / 23                | 1.2E+04                                    | IR85-SS18-00-01-09C                                     | 5.5E+04                 | 1                        | 0.2                                        | NA                                        | Gastrointestinal       |
| Lead                                               | 23 / 23                | 6.1E+02                                    | IR85-SS18-00-01-09C                                     | NA                      | NA                       | NA                                         | NA                                        | NA                     |
| Manganese                                          | 23 / 23                | 1.1E+04                                    | IR85-SS17-00-01-09C                                     | 1.8E+03                 | 1                        | 5.9                                        | NA                                        | Central Nervous System |
| Mercury                                            | 13 / 23                | 8.8E+00                                    | IR85-SS18-00-01-09C                                     | 2.4E+01                 | 1                        | 0.4                                        | NA                                        | Autoimmune             |
| Zinc                                               | 17 / 23                | 5.6E+03                                    | IR85-SS17-00-01-09C                                     | 2.3E+04                 | 1                        | 0.2                                        | NA                                        | Blood                  |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |                                            |                                                         |                         |                          | 7.2                                        |                                           | •                      |
| Cumulative Corresponding Cancer Risk <sup>d</sup>  |                        |                                            |                                                         |                         |                          |                                            | 7E-05                                     |                        |

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index

J = Estimated Value

J- = Analyte present, value may be biased low, actual value may be higher

mg/kg = milligrams per kilogram

NA = Not available/not applicable

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

### TABLE 2.12b

Risk Ratio Screening for Surface and Subsurface Soil, 95% UCL Concentration Camp Johnson Site 85
MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | 95% UCL             | 95% UCL<br>Rationale | Residential Soil<br>RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ           |
|----------------------------------------------------|------------------------|---------------------|----------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------------------|------------------------|
| Metals (mg/kg)                                     |                        |                     |                      |                         |                          |                                            |                                           |                        |
| Aluminum                                           | 23 / 23                | 5.8E+03 1, 3        | 95% App-G            | 7.7E+04                 | 1                        | 0.1                                        | NA                                        | Neurological           |
| Arsenic                                            | 23 / 23                | 3.3E+00 4           | 95% Cheb-m           | 3.9E-01                 | 1E-06                    | NA                                         | 8E-06                                     | NA                     |
| Chromium                                           | 22 / 23                | 5.9E+00 <b>1, 3</b> | 95% KM-BCA           | 2.9E-01                 | 1E-06                    | NA                                         | 2E-05                                     | NA                     |
| Lead                                               | 23 / 23                | 4.3E+01 6           | Mean                 | NA                      | NA                       | NA                                         | NA                                        | NA                     |
| Manganese                                          | 23 / 23                | 3.5E+03 4           | 97.5% Cheb-m         | 1.8E+03                 | 1                        | 1.9                                        | NA                                        | Central Nervous System |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |                     |                      |                         |                          | 2.0                                        |                                           |                        |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |                     |                      |                         |                          |                                            | 3E-05                                     |                        |
|                                                    |                        |                     |                      |                         |                          | Total N                                    | Jervous System HI =                       | 2.0                    |

#### Notes:

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern mg/kg = milligrams per kilogram HI = Hazard Index NA = Not available/not applicable

ProUCL, Version 4.00.05 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. May 2010. ProUCL, Version 4.0. Prepared by Lockheed Martin Environmental Services).

Options: 95% Approximate Gamma UCL (95% App-G); 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m); 95% Kaplan-Meier (BCA) UCL (95% KM-BCA); 97.5% Chebyshev (Mean, Sd) UCL (97.5% Cheb-m)

Upper Confidence Limit (UCL) Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Test indicates data are gamma distributed.
- (4) Distribution tests are inconclusive
- (5) Max value used because 95% UCL greater than max.
- (6) Lead evaluated using arithmetic mean concentration in lead models, therefore, arithmetic mean concentration presented here.

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals 95% UCL concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals 95% UCL concentration divided by the RSL divided by the acceptable risk level

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

| Exposure<br>Point | CAS<br>Number      | Chemical                                         | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units  | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|--------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|--------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
| Site 85           | 71-55-6            | 1,1,1-Trichloroethane                            | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 9.1E+02 N                       | 2.0E+02                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                               |
| Oile 65           | 79-34-5            | 1,1,2,2-Tetrachloroethane                        | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 2.4                         | 2.4E+00                              | N/A                     | 6.7E-02 C                       | 2.0E-01                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 76-13-1            | 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 5.9E+03 N                       | 2.0E+05                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 79-00-5            | 1.1.2-Trichloroethane                            | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1-1                             | 1.0E+00                              | N/A                     | 2.4E-01 C                       | 5.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   | 75-34-3            | 1,1-Dichloroethane                               | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 2.4E+00 C                       | 6.0E+00                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 75-35-4            | 1,1-Dichloroethene                               | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 3.4E+01 N                       | 7.0E+00                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                               |
|                   | 120-82-1           | 1,2,4-Trichlorobenzene                           | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 4.1E-01 C**                     | 7.0E+01                        | MCL, 15A NCAC 2L                | YES          | DLASL                                               |
|                   | 96-12-8            | 1,2-Dibromo-3-chloropropane                      | ND                                        | ND                                        | UG/L   |                                         | 0/6                    | 2 - 2                           | 2.0E+00                              | N/A                     | 3.2E-04 C                       | 2.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   | 106-93-4           | 1,2-Dibromoethane                                | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 6.5E-03 C                       | 4.0E-02<br>5.0E-02             | 15A NCAC 2L<br>MCL              | YES          | DLASL                                               |
|                   |                    |                                                  |                                           |                                           |        |                                         |                        |                                 |                                      |                         |                                 | 2.0E-02                        | 15A NCAC 2L                     |              |                                                     |
|                   | 95-50-1            | 1,2-Dichlorobenzene                              | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 3.7E+01 N                       | 6.0E+02                        | MCL                             | NO           | DLBSL                                               |
|                   | 107-06-2           | 1,2-Dichloroethane                               | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 1.5E-01 C                       | 2.0E+01<br>5.0E+00             | 15A NCAC 2L<br>MCL              | YES          | DLASL                                               |
|                   |                    |                                                  |                                           |                                           |        |                                         |                        |                                 |                                      |                         |                                 | 4.0E-01                        | 15A NCAC 2L                     |              |                                                     |
|                   | 78-87-5            | 1,2-Dichloropropane                              | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 3.9E-01 C*                      | 5.0E+00<br>6.0E-01             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |
|                   | 541-73-1           | 1.3-Dichlorobenzene                              | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 4.3E-01 C                       | 2.0E+02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 106-46-7           | 1.4-Dichlorobenzene                              | ND                                        | ND ND                                     | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 4.3E-01 C                       | 7.5E+01                        | MCL                             | YES          | DLASL                                               |
|                   |                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          |                                           |                                           | 0.07.2 |                                         | -,-                    |                                 |                                      |                         |                                 | 6.0E+00                        | 15A NCAC 2L                     |              |                                                     |
|                   | 78-93-3            | 2-Butanone                                       | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 5 - 5                           | 5.0E+00                              | N/A                     | 7.1E+02 N                       | 4.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 591-78-6           | 2-Hexanone                                       | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 5 - 5                           | 5.0E+00                              | N/A                     | 4.7E+00 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 108-10-1           | 4-Methyl-2-pentanone                             | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 5 - 5                           | 5.0E+00                              | N/A                     | 2.0E+02 N                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 67-64-1            | Acetone                                          | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 5 - 5                           | 5.0E+00                              | N/A                     | 2.2E+03 N                       | 6.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 71-43-2            | Benzene                                          | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 4.1E-01 C                       | 5.0E+00<br>1.0E+00             | MCL<br>15A NCAC 2L              | YES          | DLASL                                               |
|                   | 75-27-4            | Bromodichloromethane                             | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 1.2E-01 C                       | 8.0E+01                        | MCL                             | YES          | DLASL                                               |
|                   |                    |                                                  |                                           |                                           |        |                                         |                        |                                 |                                      |                         |                                 | 6.0E-01                        | 15A NCAC 2L                     |              |                                                     |
| ľ                 | 75-25-2            | Bromoform                                        | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 8.5E+00 C*                      | 8.0E+01                        | MCL                             | NO           | DLBSL                                               |
|                   | 74-83-9            | Bromomethane                                     | ND                                        | ND                                        | UG/L   |                                         | 0/8                    | 1 - 1.1                         | 1.1E+00                              | N/A                     | 8.7E-01 N                       | 4.0E+00<br>N/A                 | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 74-83-9<br>75-15-0 | Carbon disulfide                                 | ND<br>ND                                  | ND<br>ND                                  | UG/L   |                                         | 0/8                    | 1 - 1.1                         | 1.1E+00<br>1.0E+00                   | N/A<br>N/A              | 1.0E+02 N                       | 7.0E+02                        | 15A NCAC 2L                     | NO           | DLASL                                               |
|                   | 56-23-5            | Carbon distillide  Carbon tetrachloride          | ND<br>ND                                  | ND<br>ND                                  | UG/L   |                                         | 0/9                    | 1-1                             | 1.0E+00<br>1.0E+00                   | N/A<br>N/A              | 4.4E-01 C                       | 5.0E+02                        | MCL                             | YES          | DLASL                                               |
|                   | 55-25-5            | Saradi tottadillorido                            | l III                                     | 140                                       | 30,2   |                                         | 0,3                    | 1-1                             | 1.02.100                             | 14/73                   | 4.42-01 0                       | 3.0E-01                        | 15A NCAC 2L                     | 123          | SEAGE                                               |
|                   | 108-90-7           | Chlorobenzene                                    | ND                                        | ND                                        | UG/L   |                                         | 0/9                    | 1 - 1                           | 1.0E+00                              | N/A                     | 9.1E+00 N                       | 1.0E+02<br>5.0E+01             | MCL<br>15A NCAC 2L              | NO           | DLBSL                                               |

| Exposure<br>Point | CAS<br>Number              | Chemical                                | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units        | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5]<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|----------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|--------------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|--------------------------------------------------------------|
|                   | 75-00-3                    | Chloroethane                            | ND                                        | ND                                        | UG/L         |                                         | 0/8                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 2.1E+03 N                       | 3.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 67-66-3                    | Chloroform                              | 6.2E+00                                   | 1.1E+01 J                                 | UG/L         | IR85-MW05-09C                           | 2/9                    | 1 - 1                           | 1.1E+01                                    | N/A                     | 1.9E-01 C                       | 8.0E+01                        | MCL                             | YES          | ASL                                                          |
|                   |                            |                                         |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 7.0E+01                        | 15A NCAC 2L                     |              |                                                              |
|                   | 74-87-3                    | Chloromethane                           | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.9E+01 N                       | 3.0E+00                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 156-59-2                   | cis-1,2-Dichloroethene                  | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 3.7E+01 N                       | 7.0E+01                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                                        |
|                   | 10061-01-5                 | cis-1,3-Dichloropropene                 | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 4.3E-01 C*                      | 4.0E-01                        | 15A NCAC 2L                     | YES          | DLASL                                                        |
|                   | 110-82-7                   | Cyclohexane                             | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.3E+03 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 124-48-1                   | Dibromochloromethane                    | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.5E-01 C                       | 6.0E+01                        | MCL                             | YES          | DLASL                                                        |
|                   |                            | L                                       |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 4.0E-01                        | 15A NCAC 2L                     |              |                                                              |
|                   | 75-71-8                    | Dichlorodifluoromethane (Freon-12)      | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 3.9E+01 N                       | 1.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 100-41-4                   | Ethylbenzene                            | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.5E+00 C                       | 7.0E+02                        | MCL                             | NO           | DLBSL                                                        |
|                   |                            |                                         |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 6.0E+02                        | 15A NCAC 2L                     |              |                                                              |
|                   | 98-82-8                    | Isopropylbenzene                        | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 6.8E+01 N                       | 7.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 79-20-9                    | Methyl acetate                          | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 3.7E+03 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 108-87-2<br><b>75-09-2</b> | Methylcyclohexane<br>Methylene chloride | ND<br><b>1.4E+01</b> J                    | ND<br>1.9E+02                             | UG/L<br>UG/L | IR85-TW06-09C                           | 0/9<br><b>2/9</b>      | 1 - 1<br><b>1 - 1</b>           | 1.0E+00<br>1.9E+02                         | N/A<br>N/A              | 8.8E+01 N<br>4.8E+00 C          | N/A<br>5.0E+00                 | MCL, 15A NCAC 2L                | NO<br>YES    | DLBSL<br>ASL                                                 |
|                   | 1634-04-4                  | Methyl-tert-butyl ether (MTBE)          | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.2E+01 C                       | 2.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 100-42-5                   | Styrene                                 | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.6E+02 N                       | 1.0E+02                        | MCL                             | NO           | DLBSL                                                        |
|                   |                            |                                         |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 7.0E+01                        | 15A NCAC 2L                     |              |                                                              |
|                   | 127-18-4                   | Tetrachloroethene                       | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1.1                         | 1.1E+00                                    | N/A                     | 1.1E-01 C                       | 5.0E+00                        | MCL                             | YES          | DLASL                                                        |
|                   |                            |                                         |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 7.0E-01                        | 15A NCAC 2L                     |              |                                                              |
|                   | 108-88-3                   | Toluene                                 | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 2.3E+02 N                       | 1.0E+03                        | MCL                             | NO           | DLBSL                                                        |
|                   |                            |                                         |                                           |                                           |              |                                         |                        |                                 |                                            |                         |                                 | 6.0E+02                        | 15A NCAC 2L                     |              |                                                              |
|                   | 156-60-5                   | trans-1,2-Dichloroethene                | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.1E+01 N                       | 1.0E+02                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                                        |
|                   | 10061-02-6                 | trans-1,3-Dichloropropene               | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 4.3E-01 C*                      | 4.0E-01                        | 15A NCAC 2L                     | YES          | DLASL                                                        |
|                   | 79-01-6                    | Trichloroethene                         | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 5.1                         | 5.1E+00                                    | N/A                     | 2.0E+00 C                       | 5.0E+00                        | MCL                             | YES          | DLASL                                                        |
|                   |                            |                                         |                                           |                                           |              |                                         |                        |                                 |                                            | 1                       |                                 | 3.0E+00                        | 15A NCAC 2L                     |              |                                                              |
|                   | 75-69-4                    | Trichlorofluoromethane(Freon-11)        | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.3E+02 N                       | 2.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 75-01-4                    | Vinyl chloride                          | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1                           | 1.0E+00                                    | N/A                     | 1.6E-02 C                       | 2.0E+00                        | MCL                             | YES          | DLASL                                                        |
|                   |                            |                                         |                                           |                                           |              |                                         |                        |                                 |                                            | 1                       |                                 | 3.0E-02                        | 15A NCAC 2L                     |              |                                                              |
| 1                 | 1330-20-7                  | Xylene, total                           | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 1 - 1.2                         | 1.2E+00                                    | N/A                     | 2.0E+01 N                       | 1.0E+04                        | MCL                             | NO           | DLBSL                                                        |
|                   |                            |                                         |                                           |                                           |              |                                         |                        |                                 |                                            | 1                       |                                 | 5.0E+02                        | 15A NCAC 2L                     |              |                                                              |
|                   | 92-52-4                    | 1,1-Biphenyl                            | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+02 N                       | 4.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 108-60-1                   | 2,2'-Oxybis(1-chloropropane)            | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.2E-01 C                       | N/A                            |                                 | YES          | DLASL                                                        |
|                   | 95-95-4                    | 2,4,5-Trichlorophenol                   | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 120-83-2                   | 2,4-Dichlorophenol                      | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+01 N                       | N/A                            |                                 | YES          | DLASL                                                        |
|                   | 105-67-9                   | 2,4-Dimethylphenol                      | ND                                        | ND                                        | UG/L         |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 7.3E+01 N                       | 1.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |

| Exposure<br>Point | CAS<br>Number | Chemical                   | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5]<br>Contaminant<br>Deletion<br>or Selection |
|-------------------|---------------|----------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|--------------------------------------------------------------|
|                   | 51-28-5       | 2,4-Dinitrophenol          | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 20 - 21                         | 2.1E+01                                    | N/A                     | 7.3E+00 N                       | N/A                            |                                 | YES          | DLASL                                                        |
|                   | 121-14-2      | 2,4-Dinitrotoluene         | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.2E-01 C                       | N/A                            |                                 | YES          | DLASL                                                        |
|                   | 606-20-2      | 2,6-Dinitrotoluene         | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+00 N                       | N/A                            |                                 | YES          | DLASL                                                        |
|                   | 91-58-7       | 2-Chloronaphthalene        | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.9E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 95-57-8       | 2-Chlorophenol             | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+01 N                       | 4.0E-01                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 91-57-6       | 2-Methylnaphthalene        | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.5E+01 N                       | 3.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 95-48-7       | 2-Methylphenol             | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 88-74-4       | 2-Nitroaniline             | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 88-75-5       | 2-Nitrophenol              | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 91-94-1       | 3,3'-Dichlorobenzidine     | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 20 - 21                         | 2.1E+01                                    | N/A                     | 1.5E-01 C                       | N/A                            |                                 | YES          | DLASL                                                        |
|                   | 99-09-2       | 3-Nitroaniline             | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 534-52-1      | 4,6-Dinitro-2-methylphenol | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 20 - 21                         | 2.1E+01                                    | N/A                     | 2.9E-01 N                       | N/A                            |                                 | YES          | DLASL                                                        |
|                   | 101-55-3      | 4-Bromophenyl-phenylether  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                          |
|                   | 59-50-7       | 4-Chloro-3-methylphenol    | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 106-47-8      | 4-Chloroaniline            | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.4E-01 C                       | N/A                            |                                 | YES          | DLASL                                                        |
|                   | 7005-72-3     | 4-Chlorophenyl-phenylether | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+01 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 106-44-5      | 4-Methylphenol             | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 20 - 21                         | 2.1E+01                                    | N/A                     | 1.8E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | YES          | DLASL                                                        |
|                   | 100-01-6      | 4-Nitroaniline             | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.4E+00 C*                      | N/A                            |                                 | YES          | DLASL                                                        |
|                   | 100-02-7      | 4-Nitrophenol              | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 20 - 21                         | 2.1E+01                                    | N/A                     | 1.2E-01 C                       | N/A                            |                                 | YES          | DLASL                                                        |
|                   | 83-32-9       | Acenaphthene               | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.2E+02 N                       | 8.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 208-96-8      | Acenaphthylene             | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.2E+02 N                       | 2.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 98-86-2       | Acetophenone               | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 120-12-7      | Anthracene                 | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+03 N                       | 2.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 1912-24-9     | Atrazine                   | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 20 - 21                         | 2.1E+01                                    | N/A                     | 2.9E-01 C                       | 3.0E+00                        | MCL, 15A NCAC 2L                | YES          | DLASL                                                        |
|                   | 100-52-7      | Benzaldehyde               | ND                                        | ND                                        | UG/L  |                                         | 0/4                    | 10 - 10                         | 1.0E+01                                    | N/A                     | 3.7E+02 N                       | N/A                            |                                 | NO           | DLBSL                                                        |
|                   | 56-55-3       | Benzo(a)anthracene         | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.9E-02 C                       | 5.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                                        |
|                   | 50-32-8       | Benzo(a)pyrene             | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.9E-03 C                       | 2.0E-01                        | MCL                             | YES          | DLASL                                                        |
|                   |               |                            |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 5.0E-03                        | 15A NCAC 2L                     |              |                                                              |
|                   | 205-99-2      | Benzo(b)fluoranthene       | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.9E-02 C                       | 5.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                                        |
|                   | 191-24-2      | Benzo(g,h,i)perylene       | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+02 N                       | 2.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 207-08-9      | Benzo(k)fluoranthene       | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.9E-01 C                       | 5.0E-01                        | 15A NCAC 2L                     | YES          | DLASL                                                        |
|                   | 111-91-1      | bis(2-Chloroethoxy)methane | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+01 N                       | N/A                            |                                 | YES          | DLASL                                                        |
|                   | 111-44-4      | bis(2-Chloroethyl)ether    | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.2E-02 C                       | 3.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                                        |
|                   | 117-81-7      | bis(2-Ethylhexyl)phthalate | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 4.8E+00 C                       | 6.0E+00                        | MCL                             | YES          | DLASL                                                        |
|                   |               |                            |                                           |                                           |       |                                         |                        |                                 |                                            | 1                       |                                 | 3.0E+00                        | 15A NCAC 2L                     |              |                                                              |
|                   | 85-68-7       | Butylbenzylphthalate       | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.5E+01 C                       | 1.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
| I                 | 105-60-2      | Caprolactam                | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.8E+03 N                       | 4.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                                        |
|                   | 86-74-8       | Carbazole                  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                          |

| Exposure<br>Point | CAS<br>Number | Chemical                                      | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 218-01-9      | Chrysene                                      | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.9E+00 C                       | 5.0E+00                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 53-70-3       | Dibenz(a,h)anthracene                         | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.9E-03 C                       | 5.0E-03                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 132-64-9      | Dibenzofuran                                  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 3.7E+00 N                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 84-66-2       | Diethylphthalate                              | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 2.9E+03 N                       | 6.0E+03                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 131-11-3      | Dimethyl phthalate                            | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | N/A                             | N/A                            |                                 | NO           | NTX                                                 |
|                   | 84-74-2       | Di-n-butylphthalate                           | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 20 - 21                         | 2.1E+01                                    | N/A                     | 3.7E+02 N                       | 7.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 117-84-0      | Di-n-octylphthalate                           | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 4.8E+00 C                       | 1.0E+02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 206-44-0      | Fluoranthene                                  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.5E+02 N                       | 3.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 86-73-7       | Fluorene                                      | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.5E+02 N                       | 3.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 118-74-1      | Hexachlorobenzene                             | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 4.2E-02 C                       | 1.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   | 87-68-3       | Have all least one discour                    | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 40.44                           | 4.45.04                                    | N//0                    | 8.6E-01 C*                      | 2.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 77-47-4       | Hexachlorobutadiene Hexachlorocyclopentadiene | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/9                    | 10 - 11<br>10 - 11              | 1.1E+01<br>1.1E+01                         | N/A<br>N/A              | 2.2E+01 N                       | 4.0E-01<br>5.0E+01             | 15A NCAC 2L<br>MCL              | NO           | DLASL                                               |
|                   | 67-72-1       | Hexachlorocyclopentaciene                     | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01<br>1.1E+01                         | N/A<br>N/A              | 3.7E+00 C**                     | 5.0E+01                        | IVICL                           | YES          | DLASL                                               |
|                   | 193-39-5      | Indeno(1,2,3-cd)pyrene                        | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01<br>1.1E+01                         | N/A<br>N/A              | 2.9E-02 C                       | 5.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 78-59-1       | Isophorone                                    | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01<br>1.1E+01                         | N/A<br>N/A              | 7.1E+01 C                       | 4.0E+01                        | 15A NCAC 2L<br>15A NCAC 2L      | NO           | DLASL                                               |
|                   | 91-20-3       | Naphthalene                                   | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01<br>1.1E+01                         | N/A<br>N/A              | 1.4E-01 C*                      | 6.0E+00                        | 15A NCAC 2L<br>15A NCAC 2L      | YES          | DLASL                                               |
|                   | 621-64-7      | n-Nitroso-di-n-propylamine                    | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01<br>1.1E+01                         | N/A<br>N/A              | 9.6E-03 C                       | 0.0E+00                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 86-30-6       | n-Nitrosodiphenylamine                        | ND                                        | ND<br>ND                                  | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.4E+01 C                       | N/A                            |                                 | NO           | DLASL                                               |
|                   | 98-95-3       | Nitrobenzene                                  | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.4E+01 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 87-86-5       | Pentachlorophenol                             | ND<br>ND                                  | ND<br>ND                                  | UG/L  |                                         | 0/9                    | 20 - 21                         | 2.1E+01                                    | N/A                     | 5.6E-01 C                       | 1.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   | 67-60-5       | Pentacino opneno                              | ND                                        | ND                                        | UG/L  |                                         | 0/3                    | 20-21                           | 2.12+01                                    | IN/A                    | 3.0L-01 C                       | 3.0E-01                        | 15A NCAC 2L                     | ILS          | DEAGE                                               |
|                   | 85-01-8       | Phenanthrene                                  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+03 N                       | 2.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 108-95-2      | Phenol                                        | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+03 N                       | 3.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 129-00-0      | Pyrene                                        | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 10 - 11                         | 1.1E+01                                    | N/A                     | 1.1E+02 N                       | 2.0E+02                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 72-54-8       | 4,4'-DDD                                      | 7.9E-02 J                                 | 7.9E-02 J                                 | UG/L  | IR85-TW06-09C                           | 1/9                    | 0.05 - 0.078                    | 7.9E-02                                    | N/A                     | 2.8E-01 C                       | 1.0E-01                        | 15A NCAC 2L                     | NO           | BSL                                                 |
|                   | 72-55-9       | 4,4'-DDE                                      | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                                    | N/A                     | 2.0E-01 C                       | N/A                            |                                 | NO           | DLBSL                                               |
|                   | 50-29-3       | 4,4'-DDT                                      | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                                    | N/A                     | 2.0E-01 C*                      | 1.0E-01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 309-00-2      | Aldrin                                        | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                                    | N/A                     | 4.0E-03 C                       | N/A                            |                                 | YES          | DLASL                                               |
|                   | 319-84-6      | alpha-BHC                                     | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                                    | N/A                     | 1.1E-02 C                       | 2.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 5103-71-9     | alpha-Chlordane                               | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                                    | N/A                     | 1.9E-01 C*                      | 2.0E+00                        | MCL                             | NO           | DLBSL                                               |
|                   |               |                                               |                                           |                                           |       |                                         |                        |                                 |                                            |                         | 1                               | 1.0E-01                        | 15A NCAC 2L                     |              |                                                     |
|                   | 12674-11-2    | Aroclor-1016                                  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.5 - 0.78                      | 7.8E-01                                    | N/A                     | 2.6E-01 C**                     | 5.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   | 11104-28-2    | Aroclor-1221                                  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.5 - 0.78                      | 7.8E-01                                    | N/A                     | 6.8E-03 C                       | 5.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   | 11141-16-5    | Aroclor-1232                                  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.5 - 0.78                      | 7.8E-01                                    | N/A                     | 6.8E-03 C                       | 5.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   | 53469-21-9    | Aroclor-1242                                  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.5 - 0.78                      | 7.8E-01                                    | N/A                     | 3.4E-02 C                       | 5.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   | 12672-29-6    | Aroclor-1248                                  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.5 - 0.78                      | 7.8E-01                                    | N/A                     | 3.4E-02 C                       | 5.0E-01                        | MCL                             | YES          | DLASL                                               |
| I                 | 11097-69-1    | Aroclor-1254                                  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.5 - 0.78                      | 7.8E-01                                    | N/A                     | 3.4E-02 C*                      | 5.0E-01                        | MCL                             | YES          | DLASL                                               |

| Exposure<br>Point | CAS<br>Number | Chemical            | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2] Used for Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source | COPC<br>Flag | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|---------------------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|--------------|-----------------------------------------------------|
|                   | 11096-82-5    | Aroclor-1260        | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.5 - 0.78                      | 7.8E-01                              | N/A                     | 3.4E-02 C                       | 5.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   | 319-85-7      | beta-BHC            | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 3.7E-02 C                       | 2.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 319-86-8      | delta-BHC           | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 3.7E-02 C                       | 2.0E-02                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 60-57-1       | Dieldrin            | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 4.2E-03 C                       | 2.0E-03                        | 15A NCAC 2L                     | YES          | DLASL                                               |
|                   | 959-98-8      | Endosulfan I        | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 2.2E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 33213-65-9    | Endosulfan II       | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 2.2E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 1031-07-8     | Endosulfan sulfate  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 2.2E+01 N                       | 4.0E+01                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 72-20-8       | Endrin              | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 1.1E+00 N                       | 2.0E+00                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                               |
|                   | 7421-93-4     | Endrin aldehyde     | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 1.1E+00 N                       | 2.0E+00                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 53494-70-5    | Endrin ketone       | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 1.1E+00 N                       | 2.0E+00                        | 15A NCAC 2L                     | NO           | DLBSL                                               |
|                   | 58-89-9       | gamma-BHC (Lindane) | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 6.1E-02 C                       | 2.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                      |                         |                                 | 3.0E-02                        | 15A NCAC 2L                     |              |                                                     |
|                   | 5103-74-2     | gamma-Chlordane     | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 1.9E-01 C*                      | 2.0E+00                        | MCL                             | NO           | DLBSL                                               |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                      |                         |                                 | 1.0E-01                        | 15A NCAC 2L                     |              |                                                     |
|                   | 76-44-8       | Heptachlor          | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 1.5E-02 C                       | 4.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                      |                         |                                 | 8.0E-03                        | 15A NCAC 2L                     |              |                                                     |
|                   | 1024-57-3     | Heptachlor epoxide  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 7.4E-03 C*                      | 2.0E-01                        | MCL                             | YES          | DLASL                                               |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                      |                         |                                 | 4.0E-03                        | 15A NCAC 2L                     |              |                                                     |
|                   | 72-43-5       | Methoxychlor        | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 0.05 - 0.078                    | 7.8E-02                              | N/A                     | 1.8E+01 N                       | 4.0E+01                        | MCL, 15A NCAC 2L                | NO           | DLBSL                                               |
|                   | 8001-35-2     | Toxaphene           | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 1 - 1.6                         | 1.6E+00                              | N/A                     | 6.1E-02 C                       | 3.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                      |                         |                                 | 3.0E-02                        | 15A NCAC 2L                     |              |                                                     |
|                   | 7429-90-5     | Aluminum            | 1.1E+02 J                                 | 1.5E+04                                   | UG/L  | IR85-TW06-09C                           | 9/9                    | 1000 - 1000                     | 1.5E+04                              | 1.9E+03                 | 3.7E+03 N                       | 50 - 200                       | SMCL                            | YES          | ASL                                                 |
|                   | 7440-36-0     | Antimony            | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 20 - 40                         | 4.0E+01                              | 3.3E+00                 | 1.5E+00 N                       | 6.0E+00                        | MCL                             | YES          | DLASL                                               |
|                   | 7440-38-2     | Arsenic             | 2.0E+00 J                                 | 2.0E+00 J                                 | UG/L  | IR85-MW02-09C                           | 1/9                    | 20 - 20                         | 2.0E+00                              | 5.8E+00                 | 4.5E-02 C                       | 1.0E+01                        | MCL, 15A NCAC 2L                | NO           | BBK                                                 |
|                   | 7440-39-3     | Barium              | 2.4E+01 J                                 | 5.7E+01                                   | UG/L  | IR85-MW02-09C                           | 5/9                    | 50 - 50                         | 5.7E+01                              | 8.6E+01                 | 7.3E+02 N                       | 2.0E+03                        | MCL                             | NO           | BSL, BBK                                            |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                      |                         |                                 | 7.0E+02                        | 15A NCAC 2L                     |              |                                                     |
|                   | 7440-41-7     | Beryllium           | 9.8E-02 J                                 | 2.7E-01 J                                 | UG/L  | IR85-MW02-09C                           | 5/9                    | 2 - 2                           | 2.7E-01                              | 3.1E-01                 | 7.3E+00 N                       | 4.0E+00                        | MCL                             | NO           | BSL, BBK                                            |
|                   | 7440-43-9     | Cadmium             | 1.4E-01 J                                 | 2.8E-01 J                                 | UG/L  | IR85-TW08-09C                           | 3/9                    | 6 - 6                           | 2.8E-01                              | 3.6E-01                 | 1.8E+00 N                       | 5.0E+00                        | MCL                             | NO           | BSL, BBK                                            |
|                   |               |                     |                                           |                                           |       |                                         |                        |                                 |                                      |                         |                                 | 2.0E+00                        | 15A NCAC 2L                     |              |                                                     |
| 1                 | 7440-70-2     | Calcium             | 5.7E+02 J                                 | 3.2E+03                                   | UG/L  | IR85-TW06-09C                           | 9/9                    | 1000 - 1000                     | 3.2E+03                              | 6.9E+04                 | N/A                             | N/A                            |                                 | NO           | NUT, BSL                                            |
| 1                 | 7440-47-3     | Chromium            | 1.8E+00 J                                 | 1.9E+01 J                                 | UG/L  | IR85-TW06-09C                           | 2/9                    | 20 - 20                         | 1.9E+01                              | 3.1E+00                 | 4.3E-02 C                       | 1.0E+02                        | MCL                             | YES          | ASL                                                 |
| 1                 |               |                     |                                           |                                           |       |                                         |                        |                                 |                                      |                         |                                 | 1.0E+01                        | 15A NCAC 2L                     |              |                                                     |
| 1                 | 7440-48-4     | Cobalt              | 6.4E-01 J                                 | 1.2E+00 J                                 | UG/L  | IR85-TW05-09C                           | 5/9                    | 5 - 5                           | 1.2E+00                              | 3.4E+00                 | 1.1E+00 N                       | N/A                            |                                 | NO           | BBK                                                 |
| 1                 | 7440-50-8     | Copper              | 2.4E+00 J                                 | 6.8E+00 J                                 | UG/L  | IR85-TW06-09C                           | 5/9                    | 20 - 40                         | 6.8E+00                              | 2.8E+00                 | 1.5E+02 N                       | 1.3E+03                        | MCL                             | NO           | BSL                                                 |
| 1                 |               |                     |                                           |                                           |       |                                         |                        |                                 |                                      |                         |                                 | 1.0E+03                        | 15A NCAC 2L                     |              |                                                     |
| 1                 | 7439-89-6     | Iron                | 1.1E+02 J                                 | 6.9E+03                                   | UG/L  | IR85-TW06-09C                           | 9/9                    | 150 - 150                       | 6.9E+03                              | 6.0E+03                 | 2.6E+03 N                       | 3.0E+02                        | SMCL, 15A NCAC 2L               | YES          | ASL                                                 |
| 1                 | 7439-92-1     | Lead                | 2.4E+00 J                                 | 1.6E+01 J                                 | UG/L  | IR85-TW06-09C                           | 3/9                    | 20 - 40                         | 1.6E+01                              | 2.8E+00                 | N/A                             | 1.5E+01                        | MCL, 15A NCAC 2L                | YES          | ASL                                                 |
|                   | 7439-95-4     | Magnesium           | 3.8E+02                                   | 2.5E+03                                   | UG/L  | IR85-TW05-09C                           | 9/9                    | 250 - 250                       | 2.5E+03                              | 6.4E+03                 | N/A                             | N/A                            |                                 | NO           | NUT, BSL                                            |

#### Table 2.12

#### OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN

Camp Johnson Site 85 MCB Camp Lejeune, North Carolina

Scenario Timeframe: Future
Medium: Groundwater
Exosure Medium: Groundwater

| Exposure<br>Point | CAS<br>Number | Chemical  | Minimum [1]<br>Concentration<br>Qualifier | Maximum [1]<br>Concentration<br>Qualifier | Units | Location<br>of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Detection<br>Limits | Concentration [2]<br>Used for<br>Screening | Background [3]<br>Value | Screening [4]<br>Toxicity Value | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source |     | Rationale for [5] Contaminant Deletion or Selection |
|-------------------|---------------|-----------|-------------------------------------------|-------------------------------------------|-------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|---------------------------------|-----|-----------------------------------------------------|
|                   | 7439-96-5     | Manganese | 4.2E+00 J                                 | 7.3E+01                                   | UG/L  | IR85-TW05-09C                           | 9/9                    | 5 - 5                           | 7.3E+01                                    | 2.1E+02                 | 8.8E+01 N                       | 5.0E+01                        | SMCL, 15A NCAC 2L               | NO  | BSL, BBK                                            |
|                   | 7439-97-6     | Mercury   | 3.6E-02 J                                 | 8.5E-02 J                                 | UG/L  | IR85-MW02-09C                           | 2/9                    | 0.2 - 0.2                       | 8.5E-02                                    | 1.0E-01                 | 1.1E+00 N                       | 2.0E+00                        | MCL                             | NO  | BSL, BBK                                            |
|                   |               |           |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 1.0E+00                        | 15A NCAC 2L                     |     |                                                     |
|                   | 7440-02-0     | Nickel    | 1.2E+00 J                                 | 2.0E+01                                   | UG/L  | IR85-TW05-09C                           | 7/9                    | 10 - 10                         | 2.0E+01                                    | 8.0E+00                 | 7.3E+01 N                       | 1.0E+02                        | 15A NCAC 2L                     | NO  | BSL                                                 |
|                   | 7440-09-7     | Potassium | 5.0E+02 J                                 | 2.2E+03                                   | UG/L  | IR85-MW02-09C                           | 9/9                    | 1000 - 1000                     | 2.2E+03                                    | 3.3E+03                 | N/A                             | N/A                            |                                 | NO  | NUT, BSL                                            |
|                   | 7782-49-2     | Selenium  | 4.3E+00 J                                 | 4.3E+00 J                                 | UG/L  | IR85-TW05-09C                           | 1/9                    | 20 - 20                         | 4.3E+00                                    | 3.1E+00                 | 1.8E+01 N                       | 5.0E+01                        | MCL                             | NO  | BSL                                                 |
|                   |               |           |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 2.0E+01                        | 15A NCAC 2L                     |     |                                                     |
|                   | 7440-22-4     | Silver    | 1.5E+00 J                                 | 1.5E+00 J                                 | UG/L  | IR85-TW04-09C                           | 1/9                    | 20 - 20                         | 1.5E+00                                    | 7.7E-01                 | 1.8E+01 N                       | 2.0E+01                        | 15A NCAC 2L                     | NO  | BSL                                                 |
|                   | 7440-23-5     | Sodium    | 2.8E+03                                   | 2.7E+04                                   | UG/L  | IR85-TW06-09C                           | 9/9                    | 2500 - 2500                     | 2.7E+04                                    | 2.3E+04                 | N/A                             | 1.0E+02<br>N/A                 | SMCL                            | NO  | NUT                                                 |
|                   |               |           |                                           | -                                         |       | IK05-1 WU0-09C                          |                        |                                 | _                                          |                         |                                 |                                | MOI                             |     | NTX                                                 |
|                   | 7440-28-0     | Thallium  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 30 - 30                         | 3.0E+01                                    | 3.8E+00                 | N/A                             | 2.0E+00                        | MCL                             | NO  |                                                     |
|                   | 7440-62-2     | Vanadium  | ND                                        | ND                                        | UG/L  |                                         | 0/9                    | 50 - 100                        | 1.0E+02                                    | 4.7E+00                 | 1.8E+01 N                       | N/A                            |                                 | YES | DLASL                                               |
|                   | 7440-66-6     | Zinc      | 4.4E+00 J                                 | 1.1E+02                                   | UG/L  | IR85-TW08-09C                           | 7/9                    | 50 - 100                        | 1.1E+02                                    | 4.2E+01                 | 1.1E+03 N                       | 1.0E+03                        | 15A NCAC 2L                     | NO  | BSL                                                 |
|                   |               |           |                                           |                                           |       |                                         |                        |                                 |                                            |                         |                                 | 5.0E+03                        | SMCL                            |     |                                                     |

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening. If the chemical was not detected, the maximum detection limit is used for screening.

[3] Background values are two times the arithmetic mean basewide background shallow groundwater concentrations. Background values are from Final Base Background Soil Study Report, Marine Corps Base Camp Lejeune, North Carolina, Baker Environmental, April 25, 2001.

Oak Ridge National Laboratory (ORNL). May 17, 2010. Regional Screening Levels for Chemical Contaminants at Superfund Sites.

http://epa-prgs.ornl.gov/chemicals/index.shtml. Adjusted (noncarcinogenic RSLs adjusted by dividing by 10) tap water RSLs.

RSL value for n-Hexane used as surrogate for Methylcyclohexane.

RSL value for 1,4-Dichlorobenzene used as a surrogate for 1,3-Dichlorobenzene

RSL value for 2-Nitroaniline used as surrogate for 3-Nitroaniline.

RSL value for methoxychlor used as surrogate for 4-chlorophenyl-phenylether.

RSL value for nitrobenzene used as surrogate for 4-nitrophenol.

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for technical chlordane used as surrogate for alpha-chlordane. RSL value for technical-HCH used as surrogate for delta-BHC.

RSL value for technical chlordane used as surrogate for gamma-chlordane.

RSL value for 1,3-dichloropropene used as a surrogate for cis-1,3-dichloropropene and trans-1,3-dichloropropene.

RSL value for endosulfan used as surrogate for endosulfan I, endosulfan II, and endosulfan sulfate.

RSL value for endrin used as surrogate for endrin aldehyde and endrin ketone.

RSL value for 2-chlorophenol used as surrogate for 4-chloro-3-methylphenol and 2-nitrophenol.

RSL value for chromium VI used for total chromium.

[5] Rationale Codes

[4]

Selection Reason: Above Screening Levels (ASL)

Detection Limit Above Screening Level (DLASL), not quantitatively evaluated in HHRA

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)
Below Screening Level (BSL)
Below Background (BBK)

Detection Limit Below Screening Level (DLBSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

MCL = Maximum Contaminant Level from EPA's National Primary Drinking Water Standards

SMCL = Secondary Maximum Contaminant Level

15A NCAC 2L = North Carolina Classifications and Groundwater Quality Standards,

January 2010.

J = Estimated Value

C\* = N screening level < 100x C screening level, therefore

N screening value/10 used as screening level

 $C^{**}$  = N screening level < 10x C screening level, therefore

N screening value/10 used as screening level

N = Noncarcinogenic

N/A = Not available/not applicable

ND = Not detected

UG/L = Micrograms per liter

### TABLE 2.13a

Risk Ratio Screening for Groundwater, Maximum Detected Concentration Camp Johnson Site 85 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | Detected  | Sample Location of<br>Maximum Detected<br>Concentration | Tap Water RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ     |
|----------------------------------------------------|------------------------|-----------|---------------------------------------------------------|---------------|--------------------------|--------------------------------------------|-------------------------------------------|------------------|
| Volatile Organic Compounds (ug/L)                  |                        |           |                                                         |               |                          |                                            |                                           |                  |
| Chloroform                                         | 2 / 9                  | 1.1E+01 J | IR85-MW05-09C                                           | 1.9E-01       | 1E-06                    | NA                                         | 6E-05                                     | NA               |
| Methylene Chloride                                 | 2 / 9                  | 1.9E+02   | IR85-TW06-09C                                           | 4.8E+00       | 1E-06                    | NA                                         | 4E-05                                     | NA               |
| Metals (ug/L)                                      |                        |           |                                                         |               |                          |                                            |                                           |                  |
| Aluminum                                           | 9 / 9                  | 1.5E+04   | IR85-TW06-09C                                           | 3.7E+04       | 1                        | 0.4                                        | NA                                        | Neurological     |
| Chromium                                           | 2 / 9                  | 1.9E+01 J | IR85-TW06-09C                                           | 4.3E-02       | 1E-06                    | NA                                         | 4E-04                                     | NA               |
| Iron                                               | 9 / 9                  | 6.9E+03   | IR85-TW06-09C                                           | 2.6E+04       | 1                        | 0.3                                        |                                           | Gastrointestinal |
| Lead                                               | 3 / 9                  | 1.6E+01 J | IR85-TW06-09C                                           | NA            | NA                       | NA                                         | NA                                        |                  |
| Cumulative Corresponding Hazard Index <sup>c</sup> |                        |           |                                                         |               |                          | 0.7                                        |                                           |                  |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |           |                                                         |               |                          |                                            | 5E-04                                     |                  |
|                                                    |                        | •         |                                                         |               |                          | Total                                      | Gastrointestinal HI =                     | 0.3              |
| Notes:                                             |                        |           |                                                         |               |                          | To                                         | otal Neurological HI =                    | 0.4              |

### Notes:

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index

J = Estimated Value

ug/L = micrograms per liter

NA = Not available/not applicable

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals maximum detected concentration divided by the RSL divided by the acceptable risk level.

 $<sup>^{\</sup>rm c} \ {\rm Cumulative} \ {\rm Corresponding} \ {\rm Hazard} \ {\rm Index} \ {\rm equals} \ {\rm sum} \ {\rm of} \ {\rm Corresponding} \ {\rm Hazard} \ {\rm Indices} \ {\rm for} \ {\rm each} \ {\rm constituent}.$ 

<sup>&</sup>lt;sup>d</sup> Cumulative Corresponding Cancer Risk equals sum of Corresponding Cancer Risks for each constituent.

### TABLE 2.13b

Risk Ratio Screening for Groundwater, 95% UCL Concentration Camp Johnson Site 85 MCB Camp Lejeune, North Carolina

| Analyte                                            | Detection<br>Frequency | 95%     | % UCL    | 95% UCL<br>Rationale | Tap Water RSL | Acceptable<br>Risk Level | Corresponding<br>Hazard Index <sup>a</sup> | Corresponding<br>Cancer Risk <sup>b</sup> | Target Organ     |
|----------------------------------------------------|------------------------|---------|----------|----------------------|---------------|--------------------------|--------------------------------------------|-------------------------------------------|------------------|
| Volatile Organic Compounds (ug/L)                  |                        |         |          |                      |               |                          |                                            |                                           |                  |
| Chloroform                                         | 2 / 9                  | 8.1E+00 | 95% KM-t | 4                    | 1.9E-01       | 1E-06                    | NA                                         | 4E-05                                     | NA               |
| Methylene Chloride                                 | 2 / 9                  | 1.9E+02 | Max      | 4, 5                 | 4.8E+00       | 1E-06                    | NA                                         | 4E-05                                     | NA               |
| Metals (ug/L)                                      |                        |         |          |                      |               |                          |                                            |                                           |                  |
| Chromium                                           | 2 / 9                  | 1.9E+01 | Max      | 4, 5                 | 4.3E-02       | 1E-06                    | NA                                         | 4E-04                                     | NA               |
| Lead                                               | 3 / 9                  | 1.0E+01 | Mean     | 6                    | NA            | NA                       | NA                                         | NA                                        | Gastrointestinal |
| Cumulative Corresponding Hazard Index <sup>c</sup> | •                      |         |          |                      |               |                          | 0.0                                        |                                           |                  |
| Cumulative Corresponding Cancer Risk <sup>a</sup>  |                        |         |          |                      |               |                          |                                            | 5E-04                                     |                  |
|                                                    |                        |         |          |                      |               |                          | Total                                      | Gastrointestinal HI =                     | NA               |

#### Notes:

Constituent selected as COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Corresponding Cancer Risk greater than 5E-05, otherwise, constituent not selected as COPC.

Constituents selected as COPCs are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index

NA = Not available/not applicable.

ug/L = micrograms per liter

ProUCL, Version 4.00.05 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. March 2010. ProUCL, Version 4.0. Prepared by Lockheed Martin Environmental Services).

Options: Maximum detected concentration (Max); 95% Kaplan-Meier (t) UCL (95% KM-t); Arithmetic Mean (Mean)

### Upper Confidence Limit (UCL) Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Test indicates data are gamma distributed.
- (4) Distribution tests are inconclusive
- (5) Max value used because 95% UCL greater than max.
- (6) Lead evaluated using arithmetic mean concentration in lead models, therefore, arithmetic mean concentration presented here.

<sup>&</sup>lt;sup>a</sup> Corresponding Hazard Index equals 95% UCL concentration divided by the RSL divided by the acceptable risk level.

<sup>&</sup>lt;sup>b</sup> Corresponding Cancer Risk equals 95% UCL concentration divided by the RSL divided by the acceptable risk level

<sup>&</sup>lt;sup>c</sup> Cumulative Corresponding Hazard Index equals sum of Corresponding Hazard Indices for each constituent.

 $<sup>^{\</sup>rm d}\, {\rm Cumulative}\, {\rm Corresponding}\, {\rm Cancer}\, {\rm Risk}\, {\rm equals}\, {\rm sum}\, {\rm of}\, {\rm Corresponding}\, {\rm Cancer}\, {\rm Risks}\, {\rm for}\, {\rm each}\, {\rm constituent}.$ 



Table F-1 ERS Surface Soil Screen for UXO-20 Camp Johnson Consutrcion Area Focused PA/SI

MCB Camp Lejeune, North Carolina

| Chemical           | Range of<br>Non-Detect<br>Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of<br>Maximum Detected<br>Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>HQ | Arithmetic Mean<br>Concentration | Mean HQ | 2 x Mean<br>Background | Exceeds 2 x<br>Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>HQ |    | Rationale                                                                        |
|--------------------|----------------------------------|------------------------|--------------------------------------|---------------------------------------------------|--------------------|--------------------------------------|---------------|----------------------------------|---------|------------------------|------------------------------------|---------------------------------|-------------------------------------------|---------------------------------------|----|----------------------------------------------------------------------------------|
| Inorganics (MG/KG) |                                  |                        |                                      |                                                   |                    |                                      |               |                                  |         |                        |                                    |                                 |                                           |                                       |    |                                                                                  |
| Antimony           | 1.50 - 17.8                      | 16 / 214               | 0.49                                 | CJCA-SS163-09C                                    | 0.27               | 3 / 214                              | 1.8           | 1.04                             | 3.85    | 0.447                  | Yes                                |                                 |                                           |                                       | No | Within range of background                                                       |
| Arsenic            | 1.60 - 17.8                      | 201 / 214              | 6.90                                 | CJCA-SS136-09C                                    | 18.0               | 0 / 214                              | 0.38          | 1.39                             | 0.08    | 0.626                  | Yes                                |                                 |                                           |                                       | No | HQ less than one, detected                                                       |
| Copper             | 0.83 - 8.90                      | 203 / 214              | 26.1                                 | CJCA-SS033-09C                                    | 28.0               | 0 / 214                              | 0.93          | 1.58                             | 0.06    | 4.83                   | Yes                                |                                 |                                           |                                       | No | HQ less than one, detected                                                       |
| Lead               |                                  | 214 / 214              | 115                                  | CJCA-SS033-09C                                    | 11.0               | 25 / 214                             | 10.5          | 7.86                             | 0.71    | 12.3                   | Yes                                | 50                              | Region 4 (EPA,<br>2001)                   | 2.3                                   |    | Low frequency and magnitude of exceedance based on supplemental screening value. |
| Zinc               | 1.70 - 17.1                      | 158 / 214              | 117                                  | CJCA-SS041-09C                                    | 46.0               | 3 / 214                              | 2.5           | 5.74                             | 0.12    | 10.8                   | Yes                                |                                 |                                           |                                       |    | Low frequency and magnitude of exceedance. Mean HQ less than one.                |

### NOTES

1 - Count of detected samples exceeding or equaling Screening Value

HQ - Hazard Quotient
MG/KG - Milligrams per kilogram NSV - No Screening Value Generated by: Sara Kent

Checked by: Kelly Taylor

Table F-2
ERS Subsurface Soil Screen for UXO-20
Camp Johnson Consutrcion Area
Focused PA/SI

MCB Camp Lejeune, North Carolina

| Chemical           | Range of<br>Non-Detect<br>Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Exceeds 2 x<br>Mean<br>Background? | Retain? | Rationale                                 |
|--------------------|----------------------------------|------------------------|--------------------------------------|------------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|------------------------------------|---------|-------------------------------------------|
| Inorganics (MG/KG) |                                  |                        |                                      |                                                |                    |                                      |                               |                                  |                         |                        |                                    |         |                                           |
| Antimony           | 1.50 - 3.50                      | 1 / 67                 | 0.21                                 | CJCA-SB02-2-6-09C                              | 0.27               | 0 / 67                               | 0.78                          | 0.88                             | 3.25                    | 0.36                   | No                                 | No      | Consistent with background                |
| Arsenic            | 1.50 - 3.00                      | 59 / 67                | 24.8                                 | CJCA-SB78-4-6-09C                              | 18.0               | 4 / 67                               | 1.38                          | 5.94                             | 0.33                    | 2.12                   | Yes                                | No      | Low magnitude and frequency of exceedance |
| Copper             | 1.50 - 2.70                      | 62 / 67                | 6.90                                 | CJCA-SB09-2-4-09C                              | 28.0               | 0 / 67                               | 0.25                          | 2.10                             | 0.08                    | 2.56                   | Yes                                | No      | HQ less than one, detected                |
| Lead               |                                  | 67 / 67                | 17.3                                 | CJCA-SB60-4-6-09C                              | 11.0               | 24 / 67                              | 1.57                          | 8.34                             | 0.76                    | 8.49                   | Yes                                | No      | Within background range                   |
| Zinc               | 3.70 - 4.80                      | 39 / 67                | 49.0                                 | CJCA-SB09-2-4-09C                              | 46.0               | 1 / 67                               | 1.07                          | 5.29                             | 0.11                    | 6.59                   | Yes                                | No      | Low magnitude and frequency of exceedance |

### NOTES

1 - Count of detected samples exceeding or equaling Screening Value

MG/KG - Milligrams per kilogram

HQ - Hazard Quotient

NSV - No Screening Value

Generated by: Sara Kent

Checked by: Kelly Taylor

**Table F-3**ERS Groundwater Screen for UXO-20
Camp Johnson Consutrcion Area
Focused PA/SI

MCB Camp Lejeune, North Carolina

| Chemical               | Range of<br>Non-Detect<br>Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of<br>Maximum Detected<br>Concentration | Screening<br>Value <sup>1</sup> | Frequency of Exceedance <sup>2</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain? | Rationale                     |
|------------------------|----------------------------------|------------------------|--------------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|---------|-------------------------------|
| Inorganics (UG/L)      |                                  |                        |                                      |                                                   |                                 |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                               |         |                               |
| Antimony               | 20.0 - 100                       | 0 / 37                 |                                      |                                                   | NSV                             | /                                    | NSV                           | 11.1                             | NSV                     | 3.28                   |                                            | 160                             | TCEQ, 2006 <sup>3</sup>                   | 0.625                                         | No      | Supplemental HQ less than one |
| Arsenic                | 20.0 - 20.0                      | 12 / 37                | 9.40                                 | CJCA-TW27-09C                                     | 36.0                            | 0 / 37                               | 0.26                          | 8.05                             | 0.22                    | 5.77                   | Yes                                        |                                 |                                           |                                               | No      | Within range of background    |
| Copper                 | 20.0 - 100                       | 12 / 37                | 10.4                                 | CJCA-TW17-09C                                     | 3.10                            | 10 / 37                              | 3.35                          | 9.58                             | 3.09                    | 2.76                   | Yes                                        |                                 |                                           |                                               | No      | Within range of background    |
| Lead                   | 20.0 - 20.0                      | 12 / 37                | 19.1                                 | CJCA-TW01-09C                                     | 8.10                            | 4 / 37                               | 2.36                          | 8.95                             | 1.10                    | 2.80                   | Yes                                        |                                 |                                           |                                               | No      | Within range of background    |
| Zinc                   | 250 - 250                        | 36 / 37                | 160                                  | CJCA-TW17-09C                                     | 81.0                            | 4 / 37                               | 1.98                          | 36.0                             | 0.44                    | 42.1                   | Yes                                        |                                 |                                           |                                               | No      | Within range of background    |
| Dissolved Metals (UG/L | _)                               |                        |                                      |                                                   |                                 |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                               |         |                               |
| Antimony, Dissolved    | 20.0 - 20.0                      | 0 / 12                 |                                      |                                                   | NSV                             | /                                    | NSV                           | 10.0                             | NSV                     | 3.28                   |                                            | 160                             | TCEQ, 2006 <sup>3</sup>                   | 0.125                                         | No      | Supplemental HQ less than one |
| Arsenic, Dissolved     | 20.0 - 20.0                      | 1 / 12                 | 4.90                                 | CJCA-TW36-09C                                     | 36.0                            | 0 / 12                               | 0.14                          | 9.58                             | 0.27                    | 5.77                   | No                                         |                                 |                                           |                                               | No      | Consistent with background    |
| Copper, Dissolved      | 20.0 - 20.0                      | 2 / 12                 | 3.60                                 | CJCA-TW28-09C                                     | 3.10                            | 2 / 12                               | 1.16                          | 8.89                             | 2.87                    | 2.76                   | Yes                                        |                                 |                                           |                                               | No      | Within range of background    |
| Lead, Dissolved        | 20.0 - 20.0                      | 2 / 12                 | 2.00                                 | CJCA-TW01-09C                                     | 8.10                            | 0 / 12                               | 0.25                          | 8.67                             | 1.07                    | 2.80                   | No                                         |                                 |                                           |                                               | No      | Within range of background    |
| Zinc, Dissolved        | 50.0 - 50.0                      | 9 / 12                 | 82.3                                 | CJCA-TW17-09C                                     | 81.0                            | 1 / 12                               | 1.0                           | 31.9                             | 0.4                     | 42.1                   | Yes                                        |                                 |                                           |                                               | No      | Within range of background    |

### NOTES

- 1 Marine screening values
- 2 Count of detected samples exceeding or equaling Screening Value
- 3 Based on freshwater
- HQ Hazard Quotient
- NSV No Screening Value
- UG/L Micrograms per liter
- Generated by: Sara Kent
- Checked by: Kelly Taylor

Table F-4
ERS Surface Soil Screen for Site 15
Camp Johnson Consutrcion Area
Focused PA/SI
MCB Camp Lejeune, North Carolina

| MCB Camp Lejeune, North Carolina                 | 1                              |         |                                      |                                             |                    |                                      |                               | T                                | 1 1                     |                        |                                         |                                 |                                           | T                                             | 1        | T                                                     |
|--------------------------------------------------|--------------------------------|---------|--------------------------------------|---------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|-----------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|----------|-------------------------------------------------------|
| Chemical                                         | Range of Non-<br>Detect Values |         | Maximum<br>Concentration<br>Detected | Sample ID of Maximum Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Maximum Exceeds 2 x<br>Mean Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain?  | Rationale                                             |
| Volatile Organic Compounds (UG/KG)               | <u> </u>                       |         |                                      | <u>l</u>                                    |                    |                                      |                               | <u> </u>                         |                         |                        |                                         |                                 |                                           | <u> </u>                                      |          |                                                       |
| 1,1,1-Trichloroethane                            | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 100                | /                                    | 0.091                         | 2.98                             | 0.03                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 1,1,2,2-Tetrachloroethane                        | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 100                | /                                    | 0.091                         | 2.98                             | 0.03                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| 1,1,2-Trichloroethane                            | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 100                | /                                    | 0.091                         | 2.98                             | 0.03                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 1,1-Dichloroethene                               | 4.20 - 9.10                    | 0 / 12  |                                      | +                                           | 100                | /                                    | 0.091                         | 2.98                             | 0.03                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 1,2,4-Trichlorobenzene                           | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 10.0               | /                                    | 0.091                         | 2.98                             | 0.03                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 1,2-Dibromo-3-chloropropane                      | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               |          | No screening value, not detected                      |
| 1,2-Dibromoethane                                | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                |                                      | NSV                           |                                  | NSV                     |                        |                                         |                                 |                                           |                                               | No<br>No | <b>y</b> ,                                            |
| ,                                                |                                |         |                                      |                                             |                    | /                                    |                               | 2.98<br>2.98                     |                         |                        |                                         |                                 |                                           |                                               | No<br>No | No screening value, not detected                      |
| 1,2-Dichlorobenzene                              | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 10.0               | /                                    | 0.91                          |                                  | 0.30                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 1,2-Dichloroethane                               | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 400                | /                                    | 0.023                         | 2.98                             | 0.007                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 1,2-Dichloropropane                              | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 700,000            | /                                    | 1.30E-05                      | 2.98                             | 4.250E-06               |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 1,3-Dichlorobenzene                              | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 10.0               | /                                    | 0.91                          | 2.98                             | 0.30                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 1,4-Dichlorobenzene                              | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 10.0               | /                                    | 0.91                          | 2.98                             | 0.30                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 2-Butanone                                       | 8.50 - 12.0                    | 7 / 12  | 40.0                                 | IR15-SS08-00-01-09C                         | NSV                | /                                    | NSV                           | 11.7                             | NSV                     |                        |                                         | 89,600                          | Buchman, 2008                             | 4.46E-04                                      | No       | Supplemental HQ less than one, common Lab contaminant |
| 2-Hexanone                                       | 8.50 - 18.0                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 6.00                             | NSV                     |                        |                                         | -                               |                                           |                                               | No       | No screening value, not detected                      |
| 4-Methyl-2-pentanone                             | 8.50 - 18.0                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 6.00                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Acetone                                          | 11.0 - 11.0                    | 12 / 13 | 1,700                                | IR15-SS08-00-01-09C                         | NSV                | /                                    | NSV                           | 285                              | NSV                     |                        |                                         | 2500                            | Buchman, 2008                             | 6.80E-01                                      | No       | Supplemental HQ less than one, common Lab contaminant |
| Benzene                                          | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 50.0               | /                                    | 0.18                          | 2.98                             | 0.06                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| Bromodichloromethane                             | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Bromoform                                        | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Bromomethane                                     | 5.40 - 12.0                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 4.30                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Carbon disulfide                                 | 4.20 - 9.10                    | 0 / 10  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Carbon tetrachloride                             | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 1,000,000          | /                                    | 9.10E-06                      | 2.98                             | 2.975E-06               |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| Chlorobenzene                                    | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 50.0               | /                                    | 0.18                          | 2.98                             | 0.06                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| Chloroethane                                     | 5.40 - 14.0                    | 0 / 12  |                                      |                                             | 100                | /                                    | 0.14                          | 4.63                             | 0.046                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| Chloroform                                       | 4.20 - 9.10                    | 1 / 12  | 5.20                                 | IR15-SS01-00-01-09C                         | 1.00               | 1 / 12                               | 5.20                          | 3.17                             | 3.17                    |                        |                                         |                                 |                                           |                                               | No       | Common lab contaminant, few VOCs detected             |
| Chloromethane                                    | 5.40 - 14.0                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 4.63                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| cis-1,2-Dichloroethene                           | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| cis-1,3-Dichloropropene                          | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Cyclohexane                                      | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 100                | /                                    | 0.091                         | 2.98                             | 0.03                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| Dibromochloromethane                             | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Dichlorodifluoromethane (Freon-12)               | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Ethylbenzene                                     | 4.20 - 9.10                    |         |                                      |                                             | 50.0               | /                                    | 0.18                          | 2.98                             | 0.06                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| Isopropylbenzene                                 | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Methyl acetate                                   | 4.20 - 9.10                    | 5 / 13  | 2,100                                | IR15-SS08-00-01-09C                         | NSV                | /                                    | NSV                           | 167                              | NSV                     |                        |                                         |                                 |                                           |                                               | No       | Uncertainty, No screening value                       |
| Methylcyclohexane                                | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Methylene chloride                               | 5.40 - 14.0                    | 0 / 12  |                                      |                                             | 2,000              | /                                    | 0.0070                        | 4.63                             | 0.002                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| Methyl-tert-butyl ether (MTBE)                   | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Styrene                                          | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 100                | /                                    | 0.091                         | 2.98                             | 0.03                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| Tetrachloroethene                                | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 10.0               | /                                    | 0.91                          | 2.98                             | 0.30                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| Toluene                                          | 4.20 - 9.10                    | 1 / 12  | 10.0                                 | IR15-SS08-00-01-09C                         | 50.0               | 0 / 12                               | 0.20                          | 3.52                             | 0.07                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, detected                            |
| trans-1,2-Dichloroethene                         | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 100                | /                                    | 0.091                         | 2.98                             | 0.07                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| trans-1,3-Dichloropropene                        | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Trichloroethene                                  | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 1.00               | /                                    | 9.10                          | 2.98                             | 2.98                    |                        |                                         |                                 |                                           |                                               | No       | Not detected                                          |
| Trichlorofluoromethane(Freon-11)                 | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | NSV                | /                                    | NSV                           | 2.98                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| Vinyl chloride                                   | 5.40 - 14.0                    | 0 / 12  |                                      |                                             | 10.0               | /                                    | 1.40                          | 4.63                             | 0.46                    |                        |                                         |                                 |                                           |                                               | No       | Not detected                                          |
| Xylene, total                                    | 4.20 - 9.10                    | 0 / 12  |                                      |                                             | 50.0               | /                                    | 0.18                          | 2.98                             | 0.06                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| Semivolatile Organic Compounds (UG/KG)           |                                |         |                                      |                                             |                    | <u> </u>                             | 2.10                          |                                  | 2,00                    |                        | 1                                       |                                 |                                           | I                                             |          |                                                       |
| 1,1-Biphenyl                                     | 170 - 400                      | 0 / 15  |                                      |                                             | 60,000             | /                                    | 0.0067                        | 125                              | 0.002                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 2,2'-Oxybis(1-chloropropane)                     | 170 - 400                      | 0 / 15  |                                      |                                             | NSV                | /                                    | NSV                           | 125                              | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                      |
| 2,4,5-Trichlorophenol                            | 170 - 400                      | 0 / 15  |                                      |                                             | 4,000              | /                                    | 0.10                          | 125                              | 0.031                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                        |
| 2, 40 monorophonor                               | 1,0 400                        | 0 / 10  |                                      |                                             | 1,000              | '                                    | 0.10                          | 120                              | 0.001                   |                        | 1                                       |                                 |                                           | İ                                             | 140      | The 1000 than one, not detected                       |

Table F-4
ERS Surface Soil Screen for Site 15
Camp Johnson Consutrcion Area
Focused PA/SI

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Focused PA/SI  MCB Camp Lejeune, North Carolina |             |        |               |                     |         |        |        |      |           |      |     |                 |                 |         |                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------|--------|---------------|---------------------|---------|--------|--------|------|-----------|------|-----|-----------------|-----------------|---------|-------------------------------------------|
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , , .                                           | 3           |        | Concentration |                     |         |        | Hazard |      |           |      | 1.1 | Screening Value | Screening Value | Retain? | Rationale                                 |
| Comparison   15 - 98   277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,4,6-Trichlorophenol                           | 360 - 400   | 0 / 5  |               |                     | 10,000  | /      | 0.040  | 189  | 0.019     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| A Segretary   17   100   1   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,4-Dichlorophenol                              | 170 - 400   | 0 / 15 |               |                     | 3.00    | /      | 133    | 125  | 42        | <br> |     |                 |                 | No      | Not detected                              |
| Additional color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,4-Dimethylphenol                              | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| 25-Processor   170   60   67   71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,4-Dinitrophenol                               | 170 - 1,000 | 0 / 15 |               |                     | 20,000  | /      | 0.050  | 220  | 0.011     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Company   Comp | 2,4-Dinitrotoluene                              | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,6-Dinitrotoluene                              | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Mathemptories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Chloronaphthalene                             | 170 - 400   | 0 / 15 |               |                     | 1,000   | /      | 0.40   | 125  | 0.12      | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Abbigrose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-Chlorophenol                                  | 170 - 400   | 0 / 15 |               |                     | 10.0    | /      | 40.0   | 125  | 12        | <br> |     |                 |                 | No      | Not detected                              |
| Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-Methylnaphthalene                             | 170 - 400   | 0 / 15 |               |                     | 29,000  | /      | 0.014  | 125  | 0.004     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| 2 Non-Colombigness   196   60   9   9   9   9   90   90   90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-Methylphenol                                  | 170 - 400   | 0 / 15 |               |                     | 500     | /      | 0.80   | 125  | 0.25      | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Sept Supplement   Ground   G | 2-Nitroaniline                                  | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| 15-21 Contendent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-Nitrophenol                                   | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Mineral   Mine | 3- and 4-Methylphenol                           | 730 - 800   | 0 / 5  |               |                     | NSV     | /      | NSV    | 384  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Edition Contemplated   173 - 1000   17   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,3'-Dichlorobenzidine                          | 170 - 1,000 | 0 / 15 |               |                     | NSV     | /      | NSV    | 220  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Education of the Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-Nitroaniline                                  | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Colora descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,6-Dinitro-2-methylphenol                      | 170 - 1,000 | 0 / 15 |               |                     | NSV     | /      | NSV    | 220  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Bromophenyl-phenylether                       | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Childrophysis   10 - 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Chloro-3-methylphenol                         | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| EAR-Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-Chloroaniline                                 | 170 - 400   | 0 / 15 |               |                     | 20,000  | /      | 0.020  | 125  | 0.006     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Fig.    | 4-Chlorophenyl-phenylether                      | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Hellingsheid   172 + 090   0 + 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ' ' '                                           |             | 0 / 10 |               |                     | 500     | /      | 0.42   | 92.5 | 0.19      | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| February   178 - 1790   0   7   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    |      | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Acceptations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-Nitrophenol                                   | 170 - 1,000 | 0 / 15 |               |                     | 7,000   | /      | 0.14   |      | 0.031     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Recognization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acenaphthene                                    | 170 - 400   | 0 / 15 |               |                     | 29,000  | /      | 0.014  | 125  | 0.004     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Accordance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acenaphthylene                                  | 170 - 400   | 0 / 15 |               |                     | 29,000  | /      | 0.014  | 125  | 0.004     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Parameter   170   -0.00   0   1/15                       No   Mode declared   Parameter   170   -1.00   0   1/15       No   Mode declared   Parameter   170       No   Mode declared   Parameter   170     No   Mode declared   Parameter   170       No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   Parameter   170     No   Mode declared   170     No   Mode declared   170     No   Mode declared                                                                                                                                                                                                                                               | Acetophenone                                    | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Recrustlyphysearch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Anthracene                                      | 170 - 400   | 0 / 15 |               |                     | 29,000  | /      | 0.014  | 125  | 0.004     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Secret September   Secret September   Secret September   Secret September   Secret Se | Atrazine                                        | 170 - 400   | 0 / 15 |               |                     | 0.050   | /      | 8,000  | 125  | 2493      | <br> |     |                 |                 | No      | Not detected                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Benzaldehyde                                    | 170 - 1,000 | 0 / 15 |               |                     | NSV     | /      | NSV    | 220  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Betrack[h]Justrathere   35 0 - 400   0 / 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(a)anthracene                              | 35.0 - 400  | 0 / 15 |               |                     | 1,100   | /      | 0.36   | 75.4 | 0.069     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Betros(ght Sperylene   170 - 400   1 / 15   95.0   IR15 SS03 00-01-09C   1,100   0 / 15   0.086   125   0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benzo(a)pyrene                                  | 35.0 - 400  | 0 / 15 |               |                     | 1,100   | /      | 0.36   | 75.4 | 0.069     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Bestros(photes)   170 - 400   0 / 15       1.100       0.36   125   0.11                 No   HO less than one, not date bis/2-Chloredrhy/methane   170 - 400   0 / 15         NSV       NSV   125   NSV           No   No screening value, not de bis/2-Chloredrhy/methane   170 - 400   0 / 15         NSV             NSV             No   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzo(b)fluoranthene                            | 35.0 - 400  | 0 / 15 |               |                     | 1,100   | /      | 0.36   | 75.4 | 0.069     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Disc/2-Chloroethylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzo(g,h,i)perylene                            | 170 - 400   | 1 / 15 | 95.0          | IR15-SS03-00-01-09C | 1,100   | 0 / 15 | 0.086  | 125  | 0.11      | <br> |     |                 |                 | No      | HQ less than one, detected                |
| bisQ2-Chloroethylether   170 - 400   0 / 15         NSV       NSV   125   NSV             No No screening value, not de bisQ2-Chloroethylether   170 - 400   3 / 15   180   IR15-SS01-00-10-9C   100   2 / 15   1.80   132   1.32               No Low frequency and magnital buylbenzy/phthalate   170 - 400   1 / 15   190   IR15-SS01-00-10-9C   100   1 / 15   1.90   131   1.31                 No Low frequency and magnital buylbenzy/phthalate   170 - 400   0 / 14     NSV       NSV     NSV   230   NSV             No No screening value, not de Carbazole   240 - 380   0 / 15     NSV     NSV     NSV   112   NSV         No No screening value, not de Chrysene   170 - 380   2 / 15   220   SWMU46-SM01-0-1   1,100   0 / 15   0.020   101   0.092           No HO less than one, detecte   Dibenzofaran   170 - 400   0 / 15     NSV     NSV       NSV         No HO less than one, detecte   Din-butylphthalate   170 - 400   0 / 15     NSV     NSV     NSV         No HO less than one, detecte   Din-butylphthalate   170 - 400   0 / 15     NSV     NSV     NSV       NSV       No HO less than one, detected   Din-butylphthalate   170 - 400   0 / 15     NSV     NSV     NSV       NSV       No HO less than one, detected   Din-butylphthalate   170 - 400   0 / 15     NSV     NSV     NSV       NSV       No HO less than one, detected   Din-butylphthalate   170 - 400   0 / 15     NSV     NSV     NSV       NO NO detected   Din-butylphthalate   170 - 400   0 / 15     NSV     NSS   NSV       NO NO detected   Din-butylphthalate   170 - 400   0 / 15     NSV     NSV     NSV       NSV       NO NO detected   NSS than one, not detected   NSS than one, not detected   NSS than one, not detected   NSS                                                                                                                                                                                                                                                                                                                                                                                 | Benzo(k)fluoranthene                            | 170 - 400   | 0 / 15 |               |                     | 1,100   | /      | 0.36   | 125  | 0.11      | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Dis(2-Ehrythexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bis(2-Chloroethoxy)methane                      | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Butylbenzylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bis(2-Chloroethyl)ether                         | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Caprolaciam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bis(2-Ethylhexyl)phthalate                      | 180 - 400   | 3 / 15 | 180           | IR15-SS01-00-01-09C | 100     | 2 / 15 | 1.80   | 132  | 1.32      | <br> |     |                 |                 | No      | Low frequency and magnitude of exceedance |
| Carbazole 24.0 - 380 0 / 15 NSV / NSV 112 NSV No No Screening value, not de Chrysene 170 - 380 2 / 15 22.0 SWMU46-SM01-0-1 1,100 0 / 15 0.020 101 0.092 No HO less than one, detecte Dibenz(a,h)anthracene 35.0 - 400 1 / 15 64.0 IR15-SS03-0-01-0PC 1,100 0 / 15 0.058 78.4 0.071 No HO less than one, detecte Dibenzofuran 170 - 400 0 / 15 NSV NSV NSV 125 NSV No No No screening value, not de Dienzofuran 170 - 400 0 / 15 100,000 0.0040 125 0.001 NO HO less than one, detecte Dibenzofuran 170 - 400 0 / 15 100,000 0.0040 125 0.001 NO HO less than one, detecte Dibenzofuran 170 - 400 0 / 15 100,000 0.0040 125 0.001 NO HO less than one, not detecte Di-n-butylphthalate 170 - 400 0 / 15 200,000 0.0020 125 0.001 NO HO less than one, not detecte Di-n-butylphthalate 170 - 400 0 / 15 200,000 0 / 15 7.50E-04 99.9 4.997E-04 NO HO less than one, not detecte Di-n-butylphthalate 170 - 400 0 / 15 100 0.015 100 0.012 125 0.001 NO HO less than one, not detecte Fluorenie 170 - 400 0 / 15 1,100 4.00 125 1.25 NO NO HO less than one, not detected Fluorene 170 - 400 0 / 15 25.00 1.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Butylbenzylphthalate                            | 170 - 400   | 1 / 15 | 190           | IR15-SS01-00-01-09C | 100     | 1 / 15 | 1.90   | 131  | 1.31      | <br> |     |                 |                 | No      | Low frequency and magnitude of exceedance |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Caprolactam                                     | 170 - 1,000 | 0 / 14 |               |                     | NSV     | /      | NSV    | 230  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Dibenzofuran   35.0 - 400   1 / 15   64.0   IR15-SS03-00-01-OPC   1,100   0 / 15   0.058   78.4   0.071               No   HO less than one, detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carbazole                                       | 24.0 - 380  | 0 / 15 |               |                     | NSV     | /      | NSV    | 112  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Dibenzofuran   170 - 400   0 / 15       NSV     NSV     NSV   125   NSV             No No screening value, not determined by the product of the production of the product of the p                                     | Chrysene                                        | 170 - 380   | 2 / 15 | 22.0          | SWMU46-SM01-0-1     | 1,100   | 0 / 15 | 0.020  | 101  | 0.092     | <br> |     |                 |                 | No      | HQ less than one, detected                |
| Diethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dibenz(a,h)anthracene                           | 35.0 - 400  | 1 / 15 | 64.0          | IR15-SS03-00-01-09C | 1,100   | 0 / 15 | 0.058  | 78.4 | 0.071     | <br> |     |                 |                 | No      | HQ less than one, detected                |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dibenzofuran                                    | 170 - 400   | 0 / 15 |               |                     | NSV     | /      | NSV    | 125  | NSV       | <br> |     |                 |                 | No      | No screening value, not detected          |
| Di-n-butyliphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Diethylphthalate                                | 170 - 400   | 0 / 15 |               |                     | 100,000 | /      | 0.0040 | 125  | 0.001     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Di-n-octylphthalate         170 - 400         0 / 15          100         /         4.00         125         1.25            No         Not detected           Fluoranthene         24.0 - 380         0 / 15           1,100         /         0.35         112         0.10           No         HQ less than one, not detected           Fluorene         170 - 400         0 / 15           29,000         /         0.014         125         0.004            No         HQ less than one, not detected           Hexachlorobenzene         170 - 400         0 / 15           160         125         50            No         No Not detected           Hexachlorobutadiene         170 - 400         0 / 15           150         125         NSV            No         No No screening value, not detected           Hexachlorocyclopentadiene         170 - 1,000         0 / 15           NSV         125         NSV            No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dimethyl phthalate                              | 170 - 400   | 0 / 15 |               |                     | 200,000 | /      | 0.0020 | 125  | 0.001     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Di-noctylphthalate         170 - 400         0 / 15          100          4.00         125         1.25            No         Not detected           Fluoranthene         24.0 - 380         0 / 15           1,100         /         0.35         112         0.10            No         HQ less than one, not detected           Fluorene         170 - 400         0 / 15           29,000         /         0.014         125         0.004            No         HQ less than one, not detected           Hexachlorobenzene         170 - 400         0 / 15           2.50         /         NSV            No         Not detected           Hexachlorobutadiene         170 - 400         0 / 15           NSV          NSV           NSV            No         No detected           Hexachlorobutadiene         170 - 400         0 / 15           NSV          NSV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Di-n-butylphthalate                             |             |        | 150           | IR15-SS10-00-01-09C | 200,000 | 0 / 15 |        |      | 4.997E-04 | <br> |     |                 |                 | No      | HQ less than one, detected                |
| Fluoranthene 24.0 - 380 0 / 15 1,100 / 0.35 112 0.10 No HQ less than one, not determined Hexachlorobenzene 170 - 400 0 / 15 No No HQ less than one, not determined Hexachlorobenzene 170 - 400 0 / 15 No No Not detected Hexachlorobutadiene 170 - 400 0 / 15 NSV / NSV 125 NSV NO No No screening value, not determined HQ less than one, not determi                                                     | Di-n-octylphthalate                             |             |        |               |                     | 100     |        |        |      |           | <br> |     |                 |                 | No      |                                           |
| Hexachlorobenzene         170 - 400         0 / 15           2.50         /         160         125         50            No         Not detected           Hexachlorobutadiene         170 - 400         0 / 15           NSV           NSV           NSV           No         No screening value, not detected           Hexachlorocyclopentadiene         170 - 1,000         0 / 15           NSV         125         NSV            No         No screening value, not detected           Hexachlorocyclopentadiene         170 - 1,000         0 / 15           0.10         220         0.022             No         HQ less than one, not detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fluoranthene                                    | 24.0 - 380  | 0 / 15 |               |                     | 1,100   | /      | 0.35   | 112  | 0.10      | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Hexachlorobenzene         170 - 400         0 / 15           2.50         /         160         125         50            No         Not detected           Hexachlorobutadiene         170 - 400         0 / 15           NSV           NSV           NSV           No         No screening value, not detected           Hexachlorocyclopentadiene         170 - 1,000         0 / 15           10,000           0.10         220         0.022            No         HQ less than one, not detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fluorene                                        |             |        |               |                     |         | /      | 0.014  | 125  | 0.004     | <br> |     |                 |                 | No      | HQ less than one, not detected            |
| Hexachlorobutadiene         170 - 400         0 / 15           NSV            NSV           NSV           NSV           NSV           NSV            NSV           NSV            NSV             NSV             NSV             NSV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hexachlorobenzene                               |             |        |               |                     | 2.50    | /      | 160    | 125  | 50        | <br> |     |                 |                 | No      | -                                         |
| Hexachlorocyclopentadiene 170 - 1,000 0 / 15 10,000 / 0.10 220 0.022 No HQ less than one, not determined the support of the suppo                          |                                                 |             |        |               |                     |         |        |        |      | NSV       | <br> |     |                 |                 | ł       | No screening value, not detected          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |             |        | 1             |                     |         |        | 1      |      | +         | <br> |     |                 |                 |         | HQ less than one, not detected            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |             |        |               |                     |         |        |        |      |           | <br> |     |                 |                 | ł       | -                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |             |        | 52.0          | IR15-SS03-00-01-09C |         | 0 / 15 |        |      |           | <br> |     |                 |                 | No      | HQ less than one, detected                |

Table F-4
ERS Surface Soil Screen for Site 15
Camp Johnson Consutrcion Area
Focused PA/SI
MCR Camp Leieune North Carolina

| MCB Camp Lejeune, North Carolina       |                                |                           | Г                                    |                                                |                    |                                      |                               |                                  | 1 1                     |                        | 1                                       | T                               | 1                                         | 1                                             | Т        | 1                                                                                |
|----------------------------------------|--------------------------------|---------------------------|--------------------------------------|------------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|-----------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|----------|----------------------------------------------------------------------------------|
| Chemical                               | Range of Non-<br>Detect Values | Frequency of<br>Detection | Maximum<br>Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Maximum Exceeds 2 x<br>Mean Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain?  | Rationale                                                                        |
| Isophorone                             | 35.0 - 400                     | 0 / 15                    |                                      |                                                | NSV                | /                                    | NSV                           | 75.4                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                                                 |
| Naphthalene                            | 170 - 400                      | 0 / 15                    |                                      |                                                | 29,000             | /                                    | 0.014                         | 125                              | 0.004                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| n-Nitroso-di-n-propylamine             | 35.0 - 400                     | 0 / 15                    |                                      |                                                | NSV                | /                                    | NSV                           | 75.4                             | NSV                     |                        |                                         |                                 |                                           |                                               | No       | No screening value, not detected                                                 |
| n-Nitrosodiphenylamine                 | 170 - 400                      | 0 / 15                    |                                      |                                                | 20,000             | /                                    | 0.020                         | 125                              | 0.006                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| Nitrobenzene                           | 170 - 400                      | 0 / 15                    |                                      |                                                | 40,000             | /                                    | 0.010                         | 125                              | 0.003                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| Pentachlorophenol                      | 170 - 1,000                    | 0 / 15                    |                                      |                                                | 2,100              | /                                    | 0.48                          | 220                              | 0.10                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| Phenanthrene                           | 170 - 400                      | 0 / 15                    |                                      |                                                | 29,000             | /                                    | 0.014                         | 125                              | 0.004                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| Phenol                                 | 170 - 400                      | 0 / 15                    |                                      |                                                | 50.0               | /                                    | 8.00                          | 125                              | 2.49                    |                        |                                         |                                 |                                           |                                               | No       | Not detected                                                                     |
| Pyrene                                 | 28.0 - 380                     | 0 / 15                    |                                      |                                                | 1,100              | /                                    | 0.35                          | 112                              | 0.10                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| Pesticide/Polychlorinated Biphenyls (U | G/KG)                          | ·L                        |                                      |                                                | -                  |                                      |                               |                                  |                         |                        |                                         |                                 |                                           | l                                             | ı        | · ·                                                                              |
| 4,4'-DDD                               | 1.70 - 2.10                    | 4 / 15                    | 7.50                                 | IR15-SS01-00-01-09C                            | 21.0               | 0 / 15                               | 0.36                          | 1.70                             | 0.081                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| 4,4'-DDE                               | 1.80 - 2.00                    | 10 / 15                   | 25.0                                 | IR15-SS01-00-01-09C                            | 21.0               | 3 / 15                               | 1.19                          | 7.75                             | 0.37                    |                        |                                         |                                 |                                           |                                               | No       | Low magnitude of exceedance                                                      |
| 4,4'-DDT                               | 1.80 - 2.00                    | 9 / 15                    | 24.0                                 | IR15-SS10-00-01-09C                            | 21.0               | 2 / 15                               | 1.14                          | 6.39                             | 0.30                    |                        |                                         |                                 |                                           |                                               | No       | Low magnitude of exceedance                                                      |
| Aldrin                                 | 1.70 - 2.10                    | 0 / 15                    |                                      |                                                | 2.50               | /                                    | 0.84                          | 0.94                             | 0.38                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| alpha-BHC                              | 1.70 - 2.10                    | 0 / 15                    |                                      |                                                | 2.50               | /                                    | 0.84                          | 0.94                             | 0.38                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| alpha-Chlordane                        | 1.70 - 2.10                    | 3 / 15                    | 7.40                                 | IR15-SS01-00-01-09C                            | 100                | 0 / 15                               | 0.074                         | 1.39                             | 0.014                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| Aroclor-1016                           | 17.0 - 21.0                    | 0 / 15                    |                                      | 11(13-3301-00-01-07C                           | 20.0               | /                                    | 1.05                          | 9.30                             | 0.47                    |                        |                                         |                                 |                                           |                                               | No       | Not detected                                                                     |
| Aroclor-1010                           | 17.0 - 21.0                    | 0 / 15                    |                                      |                                                | 20.0               | /                                    | 1.05                          | 9.30                             | 0.47                    |                        |                                         |                                 |                                           |                                               | No       | Not detected                                                                     |
|                                        | 17.0 - 21.0                    | 0 / 15                    |                                      |                                                | 20.0               | /                                    | 1.05                          | 9.30                             | 0.47                    |                        |                                         |                                 |                                           |                                               | No       | Not detected                                                                     |
| Aroclor 1242                           |                                |                           |                                      |                                                |                    |                                      |                               |                                  | -                       |                        |                                         |                                 |                                           |                                               |          |                                                                                  |
| Aroclor-1242                           | 17.0 - 21.0                    | 0 / 15                    |                                      |                                                | 20.0               | /                                    | 1.05                          | 9.30                             | 0.47                    |                        |                                         |                                 |                                           |                                               | No<br>No | Not detected                                                                     |
| Aroclor-1248                           | 17.0 - 21.0                    | 0 / 15                    |                                      |                                                | 20.0               | /                                    | 1.05                          | 9.30                             | 0.47                    |                        |                                         |                                 |                                           |                                               | No       | Not detected                                                                     |
| Aroclor-1254                           | 17.0 - 21.0                    | 1 / 15                    | 360                                  | IR15-SS01-00-01-09C                            | 20.0               | 1 / 15                               | 18.0                          | 32.7                             | 1.63                    |                        |                                         |                                 |                                           |                                               | Yes      | Elevated HQ and undefined contamination                                          |
| Aroclor-1260                           | 17.0 - 21.0                    | 0 / 15                    |                                      |                                                | 20.0               | /                                    | 1.05                          | 9.30                             | 0.47                    |                        |                                         |                                 |                                           |                                               | No       | Not detected                                                                     |
| beta-BHC                               | 1.70 - 2.10                    | 0 / 15                    |                                      |                                                | 1.00               | /                                    | 2.10                          | 0.94                             | 0.94                    |                        |                                         |                                 |                                           |                                               | No       | Not detected                                                                     |
| delta-BHC                              | 1.70 - 2.10                    | 0 / 15                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.94                             | 0.009                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| Dieldrin                               | 1.70 - 2.10                    | 2 / 15                    | 1.70                                 | IR15-SS09-00-01-09C                            | 4.90               | 0 / 15                               | 0.35                          | 0.99                             | 0.20                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| Endosulfan I                           | 1.70 - 2.10                    | 0 / 15                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.94                             | 0.009                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| Endosulfan II                          | 1.70 - 2.10                    | 2 / 15                    | 1.20                                 | SWMU46-SM08-0-1                                | 100                | 0 / 15                               | 0.012                         | 0.96                             | 0.01                    |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| Endosulfan sulfate                     | 1.70 - 2.10                    | 4 / 15                    | 38.0                                 | SWMU46-SM03-0-1                                | 100                | 0 / 15                               | 0.38                          | 7.68                             | 0.077                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| Endrin                                 | 1.70 - 2.10                    | 1 / 15                    | 1.70                                 | SWMU46-SM01-0-1                                | 1.00               | 1 / 15                               | 1.70                          | 0.99                             | 0.99                    |                        |                                         |                                 |                                           |                                               | No       | Low frequency and magnitude of exceedance                                        |
| Endrin aldehyde                        | 1.70 - 2.10                    | 0 / 15                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.94                             | 0.009                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| Endrin ketone                          | 1.70 - 2.10                    | 4 / 15                    | 18.0                                 | SWMU46-SM05-0-1                                | 100                | 0 / 15                               | 0.18                          | 3.93                             | 0.039                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| gamma-BHC (Lindane)                    | 1.70 - 2.10                    | 0 / 15                    |                                      |                                                | 0.050              | /                                    | 42.0                          | 0.94                             | 19                      |                        |                                         |                                 |                                           |                                               | No       | Not detected                                                                     |
| gamma-Chlordane                        | 1.70 - 2.10                    | 3 / 15                    | 8.60                                 | IR15-SS01-00-01-09C                            | 100                | 0 / 15                               | 0.086                         | 1.42                             | 0.014                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| Heptachlor                             | 1.70 - 2.10                    | 0 / 15                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.94                             | 0.009                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| Heptachlor epoxide                     | 1.70 - 2.10                    | 0 / 15                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.94                             | 0.009                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, not detected                                                   |
| Methoxychlor                           | 1.70 - 7.80                    | 1 / 15                    | 4.60                                 | SWMU46-SM01-0-1                                | 100                | 0 / 15                               | 0.046                         | 1.94                             | 0.019                   |                        |                                         |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| Toxaphene                              | 35.0 - 100                     | 0 / 15                    |                                      |                                                | 100                | /                                    | 1.00                          | 28.3                             | 0.28                    |                        |                                         |                                 |                                           |                                               | No       | Not detected                                                                     |
| Inorganics (MG/KG)                     | L                              | ·L                        | l                                    |                                                |                    |                                      |                               |                                  |                         |                        |                                         | L                               |                                           | l                                             | I        | 1                                                                                |
| Aluminum                               |                                | 10 / 10                   | 12,500                               | IR15-SS03-00-01-09C                            | 50.0               | 10 / 10                              | 250                           | 4,866                            | 97                      | 5,487                  | Yes                                     |                                 |                                           |                                               | No       | Within background range                                                          |
| Antimony                               | 1.50 - 1.60                    | 4 / 10                    | 0.64                                 | IR15-SS01-00-01-09C                            | 0.27               | 4 / 10                               | 2.37                          | 0.62                             | 2.29                    | 0.447                  | Yes                                     |                                 |                                           |                                               | No       | Within background range                                                          |
| Arsenic                                |                                | 16 / 16                   | 4.70                                 | IR15-SS03-00-01-09C                            | 18.0               | 0 / 16                               | 0.26                          | 1.42                             | 0.079                   | 0.626                  | Yes                                     |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| Barium                                 |                                | 16 / 16                   | 34.3                                 | IR15-SS01-00-01-09C                            | 330                | 0 / 16                               | 0.10                          | 11.1                             | 0.077                   | 14.5                   | Yes                                     |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| Beryllium                              | 0.15 - 0.18                    | 5 / 10                    | 0.14                                 | IR15-SS03-00-01-09C                            | 21.0               | 0 / 10                               | 0.0067                        | 0.082                            | 0.004                   | 0.103                  | Yes                                     |                                 |                                           |                                               | No       | Within background range                                                          |
| Cadmium                                | 0.011 - 0.49                   | 9 / 16                    | 0.61                                 | IR15-SS01-00-01-09C                            | 0.36               | 1 / 16                               | 1.69                          | 0.062                            | 0.004                   | 0.103                  | Yes                                     |                                 |                                           |                                               | No       | Low frequency and magnitude of exceedance                                        |
| Calcium <sup>2</sup>                   |                                | 10 / 10                   |                                      | IR15-SS01-00-01-09C                            | NSV                | /                                    | NSV                           |                                  | 1                       | 6360                   |                                         |                                 |                                           |                                               | +        | · · · · · ·                                                                      |
|                                        |                                |                           | 36,500                               |                                                |                    |                                      |                               | 7,241                            | NSV                     |                        | Yes                                     |                                 |                                           |                                               | No       | Macronutrient                                                                    |
| Chromium                               |                                | 16 / 16                   | 17.2                                 | IR15-SS03-00-01-09C                            | 26.0               | 0 / 16                               | 0.66                          | 5.61                             | 0.22                    | 6.05                   | Yes                                     |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| Cobalt                                 | 0.38 - 0.45                    | 8 / 10                    | 0.57                                 | IR15-SS01-00-01-09C                            | 13.0               | 0 / 10                               | 0.044                         | 0.27                             | 0.021                   | 0.294                  | Yes                                     |                                 |                                           |                                               | No       | HQ less than one, detected                                                       |
| Copper                                 |                                | 10 / 10                   | 42.1                                 | IR15-SS01-00-01-09C                            | 28.0               | 1 / 10                               | 1.50                          | 7.61                             | 0.27                    | 4.83                   | Yes                                     |                                 |                                           |                                               | No       | Low frequency and magnitude of exceedance                                        |
| Iron                                   |                                | 10 / 10                   | 10,200                               | IR15-SS03-00-01-09C                            | 200                | 10 / 10                              | 51.0                          | 3,676                            | 18                      | 3245                   | Yes                                     |                                 |                                           |                                               | No       | Within background range                                                          |
|                                        |                                |                           |                                      |                                                |                    |                                      |                               |                                  |                         |                        |                                         |                                 |                                           |                                               |          | Low frequency (1/16) and magnitude of exceedance based on supplemental screening |
| Lead                                   |                                | 16 / 16                   | 70.3                                 | IR15-SS01-00-01-09C                            | 11.0               | 7 / 16                               | 6.39                          | 14.3                             | 1.30                    | 12.3                   | Yes                                     | 50                              | Region 4 (EPA, 2001)                      | 1.4                                           | No       | value                                                                            |

Table F-4

ERS Surface Soil Screen for Site 15 Camp Johnson Consutrcion Area Focused PA/SI

MCB Camp Lejeune, North Carolina

| Chemical               | Range of Non-<br>Detect Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Maximum Exceeds 2 x<br>Mean Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain? | Rationale                                                                                                             |
|------------------------|--------------------------------|------------------------|--------------------------------------|------------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|-----------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------|
| Magnesium <sup>2</sup> |                                | 10 / 10                | 796                                  | IR15-SS03-00-01-09C                            | NSV                | /                                    | NSV                           | 242                              | NSV                     | 238                    | Yes                                     |                                 |                                           |                                               | No      | Macronutrient                                                                                                         |
| Manganese              |                                | 10 / 10                | 22.2                                 | IR15-SS01-00-01-09C                            | 220                | 0 / 10                               | 0.10                          | 10.0                             | 0.045                   | 13.7                   | Yes                                     |                                 |                                           |                                               | No      | Within background range                                                                                               |
| Mercury                | 0.015 - 0.039                  | 7 / 16                 | 0.51                                 | IR15-SS01-00-01-09C                            | 0.10               | 1 / 16                               | 5.10                          | 0.053                            | 0.53                    | 0.081                  | Yes                                     |                                 |                                           |                                               | Yes     | Elevated HQ and undefined contamination                                                                               |
| Nickel                 |                                | 10 / 10                | 2.70                                 | IR15-SS01-00-01-09C                            | 38.0               | 0 / 10                               | 0.071                         | 1.31                             | 0.034                   | 1.21                   | Yes                                     |                                 |                                           |                                               | No      | HQ less than one, detected                                                                                            |
| Potassium <sup>2</sup> | 76.3 - 78.8                    | 7 / 10                 | 497                                  | IR15-SS03-00-01-09C                            | NSV                | /                                    | NSV                           | 203                              | NSV                     | 116                    | Yes                                     |                                 |                                           |                                               | No      | Macronutrient                                                                                                         |
| Selenium               | 1.50 - 1.80                    | 7 / 16                 | 0.56                                 | SWMU46-SM08-0-1                                | 0.52               | 1 / 16                               | 1.08                          | 0.61                             | 1.18                    | 0.563                  | No                                      |                                 |                                           |                                               | No      | Consistent with background                                                                                            |
| Silver                 | 0.046 - 1.80                   | 4 / 16                 | 0.17                                 | IR15-SS05-00-01-09C                            | 4.20               | 0 / 16                               | 0.040                         | 0.48                             | 0.11                    | 0.14                   | Yes                                     |                                 |                                           |                                               | No      | Within background range                                                                                               |
| Sodium <sup>2</sup>    | 188 - 202                      | 5 / 10                 | 68.7                                 | IR15-SS03-00-01-09C                            | NSV                | /                                    | NSV                           | 61.1                             | NSV                     | 80.9                   | No                                      |                                 |                                           |                                               | No      | Macronutrient                                                                                                         |
| Thallium               | 2.30 - 2.70                    | 0 / 10                 |                                      |                                                | 1.00               | /                                    | 2.70                          | 1.20                             | 1.20                    | 0.36                   |                                         |                                 |                                           |                                               | No      | Not detected                                                                                                          |
| Vanadium               |                                | 10 / 10                | 22.3                                 | IR15-SS03-00-01-09C                            | 7.80               | 4 / 10                               | 2.86                          | 8.98                             | 1.15                    | 8.9                    | Yes                                     |                                 |                                           |                                               | No      | Within background range                                                                                               |
| Zinc                   | 3.80 - 39.0                    | 7 / 10                 | 170                                  | IR15-SS01-00-01-09C                            | 46.0               | 1 / 10                               | 3.70                          | 27.6                             | 0.60                    | 10.8                   | Yes                                     |                                 |                                           |                                               | No      | Low frequency (1/10) and magnitude of exceedance. Mean HQ less than one. Only slightly greater than background range. |

### NOTES

1 - Count of detected samples exceeding or equaling Screening Value

2 - Macronutrient - Not considered to be a contaminant of potential concern (COPC)

HQ - Hazard Quotient

NSV - No Screening Value

MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

Generated by: Sara Kent

Checked by: Kelly Taylor

Table F-5
ERS Subsurface Soil Screen for Site 15
Camp Johnson Consutrcion Area
Focused PA/SI

| Focused PA/SI  MCB Camp Lejeune, North Carolina   |                            |              |               |                        |             |                         |                |                 |              |            |                  |                 |                                |                 |          |                                                                    |
|---------------------------------------------------|----------------------------|--------------|---------------|------------------------|-------------|-------------------------|----------------|-----------------|--------------|------------|------------------|-----------------|--------------------------------|-----------------|----------|--------------------------------------------------------------------|
| mes camp sejeane, nour carema                     |                            |              | Maximum       |                        |             |                         | Maximum        |                 |              |            | Maximum          |                 | Supplemental                   | Supplemental    |          |                                                                    |
|                                                   | Range of Non-              | Frequency of | Concentration | Sample ID of Maximum   | Screening   | Frequency of            | Hazard         | Arithmetic Mean | Mean Hazard  | 2 x Mean   | Exceeds 2 x Mean | Supplemental    | Screening Value                | Screening Value |          |                                                                    |
| Chemical                                          | Detect Values              | Detection    | Detected      | Detected Concentration | Value       | Exceedance <sup>1</sup> | Quotient       | Concentration   | Quotient     | Background | Background?      | Screening Value | Source                         | Maximum HQ      | Retain?  | Rationale                                                          |
| Volatile Organic Compounds (UG/KG)                |                            |              |               |                        |             |                         |                |                 |              |            |                  |                 |                                |                 |          |                                                                    |
| 1,1,1-Trichloroethane                             | 1.60 - 2.40                | 0 / 8        |               |                        | 100         | /                       | 0.024          | 0.93            | 0.009        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| 1,1,2,2-Tetrachloroethane                         | 1.60 - 2.40                | 0 / 8        |               |                        | 100         | /                       | 0.024          | 0.93            | 0.009        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113) | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| 1,1,2-Trichloroethane 1,1-Dichloroethane          | 1.60 - 2.40<br>1.60 - 2.40 | 0 / 8        |               |                        | 100<br>100  | /                       | 0.024          | 0.93<br>0.93    | 0.009        |            |                  |                 |                                |                 | No<br>No | HQ less than one, not detected HQ less than one, not detected      |
| 1,1-Dichloroethane                                | 1.60 - 2.40                | 0 / 8        |               |                        | 100         | /                       | 0.024          | 0.93            | 0.009        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| 1,2,4-Trichlorobenzene                            | 1.60 - 2.40                | 4 / 9        | 2.50          | IR15-SB07-2-4-09C      | 10.0        | 0 / 9                   | 0.25           | 1.54            | 0.15         |            |                  |                 |                                |                 | No       | HQ less than one, detected                                         |
| 1,2-Dibromo-3-chloropropane                       | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| 1,2-Dibromoethane                                 | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| 1,2-Dichlorobenzene                               | 1.60 - 2.40                | 0 / 8        |               |                        | 10.0        | /                       | 0.24           | 0.93            | 0.093        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| 1,2-Dichloroethane                                | 1.60 - 2.40                | 0 / 8        |               |                        | 400         | /                       | 0.0060         | 0.93            | 0.002        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| 1,2-Dichloropropane                               | 1.60 - 2.40                | 0 / 8        |               |                        | 700,000     | /                       | 3.43E-06       | 0.93            | 0.000        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| 1,3-Dichlorobenzene                               | 1.60 - 2.40                | 3 / 9        | 1.60          | IR15-SB07-2-4-09C      | 10.0        | 0 / 9                   | 0.16           | 1.08            | 0.108        |            |                  |                 |                                |                 | No       | HQ less than one, detected                                         |
| 1,4-Dichlorobenzene                               | 1.60 - 2.40                | 2 / 9        | 1.60          | IR15-SB07-2-4-09C      | 10.0        | 0 / 9                   | 0.16           | 1.04            | 0.104        |            |                  |                 |                                |                 | No       | HQ less than one, detected                                         |
|                                                   |                            | 0.40         | 04.0          | 1045 0007 0 4 000      |             | ,                       | 1101           | 5.04            | 1101         |            |                  | 00.400          |                                | 2245.04         |          | Supplemental HQ less than one, common Lab                          |
| 2-Butanone                                        | 3.10 - 4.80                | 3 / 9        | 21.0          | IR15-SB07-2-4-09C      | NSV         | /                       | NSV            | 5.94            | NSV          |            |                  | 89,600          | Buchman, 2008                  | 2.34E-04        | No<br>No | contaminant  Supplemental HO loss than one                         |
| 2-Hexanone                                        | 3.10 - 4.80                | 2 / 9        | 4.10          | IR15-SB07-2-4-09C      | NSV         | /                       | NSV            | 1.95            | NSV          |            |                  | 12,600          | Buchman, 2008<br>Buchman, 2008 | 3.25E-04        | No<br>No | Supplemental HQ less than one Supplemental HQ less than one        |
| 4-Methyl-2-pentanone                              | 3.10 - 4.80                | 1 / 9        | 1.70          | IR15-SB09-2-7-09C      | NSV         | /                       | NSV            | 1.85            | NSV          |            |                  | 443,000         | Buchman, 2008                  | 3.84E-06        | No       | • • • • • • • • • • • • • • • • • • • •                            |
| Acetone                                           | 3.40 - 3.40                | 9 / 10       | 180           | IR15-SB09-2-7-09C      | NSV         | /                       | NSV            | 49.3            | NSV          |            |                  | 2500            | Buchman, 2008                  | 7.20E-02        | No       | Supplemental HQ less than one, common Lab contaminant              |
| Benzene                                           | 1.60 - 2.40                | 2 / 9        | 0.97          | IR15-SB04-2-7-09C      | 50.0        | 0 / 9                   | 0.019          | 0.88            | 0.018        |            |                  | 255             | Buchman, 2008                  | 3.80E-03        | No       | Supplemental HQ less than one                                      |
| Bromodichloromethane                              | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| Bromoform                                         | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| Bromomethane                                      | 3.20 - 4.80                | 0 / 7        |               |                        | NSV         | /                       | NSV            | 1.91            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| Carbon disulfide                                  | 1.60 - 2.10                | 1 / 8        | 1.40          | IR15-SB02-2-7-09C      | NSV         | /                       | NSV            | 0.96            | NSV          |            |                  | 94.1            | Buchman, 2008                  | 1.49E-02        | No       | Supplemental HQ less than one                                      |
| Carbon tetrachloride                              | 1.60 - 2.40                | 0 / 8        |               |                        | 1,000,000   | /                       | 2.40E-06       | 0.93            | 9.313E-07    |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| Chlorobenzene                                     | 1.60 - 2.40                | 1 / 9        | 2.60          | IR15-SB09-2-7-09C      | 50.0        | 0 / 9                   | 0.052          | 1.12            | 0.022        |            |                  |                 |                                |                 | No       | HQ less than one, detected                                         |
| Chloroethane                                      | 3.20 - 4.80                | 0 / 7        |               |                        | 100         | /                       | 0.048          | 1.91            | 0.019        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| Chloroform                                        | 1.60 - 2.40                | 0 / 8        |               |                        | 1.00        | /                       | 2.40           | 0.93            | 0.93         |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| Chloromethane                                     | 3.10 - 4.80                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 1.87            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| cis-1,2-Dichloroethene                            | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| cis-1,3-Dichloropropene  Cyclohexane              | 1.60 - 2.40<br>1.60 - 2.40 | 0 / 8        |               |                        | NSV<br>100  | /                       | NSV<br>0.024   | 0.93            | NSV<br>0.009 |            |                  |                 |                                |                 | No<br>No | No screening value, not detected  HQ less than one, not detected   |
| Dibromochloromethane                              | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| Dichlorodifluoromethane (Freon-12)                | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| Ethylbenzene                                      | 1.60 - 2.40                | 0 / 8        |               |                        | 50.0        | /                       | 0.048          | 0.93            | 0.019        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| Isopropylbenzene                                  | 1.60 - 4.20                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 1.21            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| Methyl acetate                                    | 1.60 - 2.10                | 2 / 8        | 7.80          | IR15-SB05-2-7-09C      | NSV         | /                       | NSV            | 2.08            | NSV          | -          |                  |                 |                                |                 | No       | Uncertainty, no screening value                                    |
| Methylcyclohexane                                 | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          | -          |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| Methylene chloride                                | 3.10 - 3.60                | 4 / 8        | 8.90          | IR15-SB05-2-7-09C      | 2,000       | 0 / 8                   | 0.0045         | 3.11            | 0.002        |            |                  |                 |                                |                 | No       | HQ less than one, detected                                         |
| Methyl-tert-butyl ether (MTBE)                    | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| Styrene                                           | 1.60 - 3.90                | 2 / 9        | 2.90          | IR15-SB07-2-4-09C      | 100         | 0 / 9                   | 0.029          | 1.52            | 0.015        |            |                  |                 |                                |                 | No       | HQ less than one, detected                                         |
| Tetrachloroethene                                 | 1.60 - 2.40                | 1 / 9        | 1.50          | IR15-SB09-2-7-09C      | 10.0        | 0 / 9                   | 0.15           | 0.99            | 0.099        |            |                  |                 |                                |                 | No       | HQ less than one, detected                                         |
| Toluene<br>trans-1,2-Dichloroethene               | 1.60 - 2.40<br>1.60 - 2.40 | 3 / 9        | 2.90          | IR15-SB07-2-4-09C      | 50.0<br>100 | 0 / 9                   | 0.058<br>0.024 | 1.29<br>0.93    | 0.026        | -          |                  |                 |                                |                 | No<br>No | HQ less than one, detected HQ less than one, not detected          |
| trans-1,3-Dichloropropene                         | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| Trichloroethene                                   | 1.60 - 2.40                | 0 / 8        |               |                        | 1.00        | /                       | 2.40           | 0.93            | 0.93         |            |                  |                 |                                |                 | No       | Not detected                                                       |
| Trichlorofluoromethane(Freon-11)                  | 1.60 - 2.40                | 0 / 8        |               |                        | NSV         | /                       | NSV            | 0.93            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| Vinyl chloride                                    | 3.10 - 4.80                | 0 / 8        |               |                        | 10.0        | /                       | 0.48           | 1.87            | 0.19         |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| Xylene, total                                     | 1.60 - 8.30                | 0 / 8        |               |                        | 50.0        | /                       | 0.17           | 1.78            | 0.036        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| Semivolatile Organic Compounds (UG/KG)            | •                          |              | •             | •                      |             | •                       |                | •               |              |            |                  | •               | •                              |                 |          |                                                                    |
| 1,1-Biphenyl                                      | 180 - 210                  | 0 / 10       |               |                        | 60,000      | /                       | 0.0035         | 96.5            | 0.002        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| 2,2'-Oxybis(1-chloropropane)                      | 180 - 210                  | 0 / 10       |               |                        | NSV         | /                       | NSV            | 96.5            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| 2,4,5-Trichlorophenol                             | 180 - 210                  | 0 / 10       |               |                        | 4,000       | /                       | 0.053          | 96.5            | 0.024        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| 2,4-Dichlorophenol                                | 180 - 210                  | 0 / 10       |               |                        | 3.00        | /                       | 70.0           | 96.5            | 32           |            |                  |                 |                                |                 | No       | Not detected                                                       |
| 2,4-Dimethylphenol                                | 180 - 210                  | 0 / 10       |               |                        | NSV         | /                       | NSV            | 96.5            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
| 2,4-Dinitrophenol                                 | 180 - 210                  | 0 / 10       |               |                        | 20,000      | /                       | 0.011          | 96.5            | 0.005        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| 2,4-Dinitrotoluene 2,6-Dinitrotoluene             | 180 - 210<br>180 - 210     | 0 / 10       |               |                        | NSV<br>NSV  | /                       | NSV<br>NSV     | 96.5<br>96.5    | NSV<br>NSV   |            |                  |                 |                                |                 | No<br>No | No screening value, not detected  No screening value, not detected |
| 2,6-Dinitrotoluene 2-Chloronaphthalene            | 180 - 210                  | 0 / 10       |               |                        | 1,000       | /                       | 0.21           | 96.5            | 0.097        |            |                  |                 |                                |                 | No<br>No | HQ less than one, not detected                                     |
| 2-Chlorophenol                                    | 180 - 210                  | 0 / 10       |               |                        | 10.0        | /                       | 21.0           | 96.5            | 9.65         |            |                  |                 |                                |                 | No       | Not detected                                                       |
| 2-Methylnaphthalene                               | 180 - 210                  | 0 / 10       |               |                        | 29,000      | /                       | 0.0072         | 96.5            | 0.003        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| 2-Methylphenol                                    | 180 - 210                  | 0 / 10       |               |                        | 500         | /                       | 0.42           | 96.5            | 0.003        |            |                  |                 |                                |                 | No       | HQ less than one, not detected                                     |
| 2-Nitroaniline                                    | 180 - 210                  | 0 / 10       |               |                        | NSV         | /                       | NSV            | 96.5            | NSV          |            |                  |                 |                                |                 | No       | No screening value, not detected                                   |
|                                                   |                            |              | 1             | 1                      |             |                         |                |                 |              |            | 1                | 1               | 1                              | 1               |          | <u> </u>                                                           |

Table F-5
ERS Subsurface Soil Screen for Site 15
Camp Johnson Consutrcion Area
Focused PA/SI
MCB Camp Leieune. North Carolina

| MCB Camp Lejeune, North Carolina            |                                           |                  |               |                        |               | 1                       |               |                 | ,            |            |                  |                 |                 | T               |          |                                                                  |
|---------------------------------------------|-------------------------------------------|------------------|---------------|------------------------|---------------|-------------------------|---------------|-----------------|--------------|------------|------------------|-----------------|-----------------|-----------------|----------|------------------------------------------------------------------|
|                                             |                                           |                  | Maximum       |                        |               |                         | Maximum       |                 |              |            | Maximum          |                 | Supplemental    | Supplemental    |          |                                                                  |
| a                                           | Range of Non-                             | Frequency of     | Concentration | Sample ID of Maximum   | Screening     | Frequency of            | Hazard        | Arithmetic Mean | Mean Hazard  | 2 x Mean   | Exceeds 2 x Mean | Supplemental    | Screening Value | Screening Value |          |                                                                  |
| Chemical                                    | Detect Values                             | Detection        | Detected      | Detected Concentration | Value         | Exceedance <sup>1</sup> | Quotient      | Concentration   | Quotient     | Background | Background?      | Screening Value | Source          | Maximum HQ      | Retain?  | Rationale                                                        |
| 2-Nitrophenol                               | 180 - 210                                 | 0 / 10           | ***           |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| 3,3'-Dichlorobenzidine                      | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| 3-Nitroaniline                              | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| 4,6-Dinitro-2-methylphenol                  | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| 4-Bromophenyl-phenylether                   | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| 4-Chloro-3-methylphenol                     | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| 4-Chloroaniline                             | 180 - 210                                 | 0 / 10           |               |                        | 20,000        | /                       | 0.011         | 96.5            | 0.005        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| 4-Chlorophenyl-phenylether                  | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| 4-Methylphenol                              | 180 - 210                                 | 0 / 10           |               |                        | 500           | /                       | 0.42          | 96.5            | 0.19         |            |                  |                 |                 |                 | No<br>No | HQ less than one, not detected                                   |
| 4-Nitroaniline                              | 180 - 210<br>180 - 210                    | 0 / 10           |               |                        | NSV<br>7,000  | /                       | NSV<br>0.030  | 96.5<br>96.5    | NSV<br>0.014 |            |                  |                 |                 |                 | No<br>No | No screening value, not detected  HQ less than one, not detected |
| 4-Nitrophenol<br>Acenaphthene               | 180 - 210                                 | 0 / 10           |               |                        | 29,000        | /                       | 0.030         | 96.5            | 0.014        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Acenaphthylene                              | 180 - 210                                 | 0 / 10           |               |                        | 29,000        | /                       | 0.0072        | 96.5            | 0.003        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Acetophenone                                | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| Anthracene                                  | 180 - 210                                 | 0 / 10           |               |                        | 29,000        | /                       | 0.0072        | 96.5            | 0.003        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Atrazine                                    | 180 - 210                                 | 0 / 10           |               |                        | 0.050         | /                       | 4,200         | 96.5            | 1930         |            |                  |                 |                 |                 | No       | Not detected                                                     |
| Benzaldehyde                                | 190 - 190                                 | 0 / 1            |               |                        | NSV           | /                       | NSV           | 95.0            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| Benzo(a)anthracene                          | 36.0 - 42.0                               | 0 / 10           |               |                        | 1,100         | /                       | 0.038         | 19.2            | 0.017        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Benzo(a)pyrene                              | 36.0 - 42.0                               | 0 / 10           |               |                        | 1,100         | /                       | 0.038         | 19.2            | 0.017        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Benzo(b)fluoranthene                        | 36.0 - 42.0                               | 0 / 10           |               |                        | 1,100         | /                       | 0.038         | 19.2            | 0.017        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Benzo(g,h,i)perylene                        | 180 - 210                                 | 0 / 10           |               |                        | 1,100         | /                       | 0.19          | 96.5            | 0.088        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Benzo(k)fluoranthene                        | 180 - 210                                 | 0 / 10           |               |                        | 1,100         | /                       | 0.19          | 96.5            | 0.088        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| bis(2-Chloroethoxy)methane                  | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| bis(2-Chloroethyl)ether                     | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| bis(2-Ethylhexyl)phthalate                  | 180 - 360                                 | 3 / 10           | 37.0          | IR15-SB01-4-6-09C      | 100           | 0 / 10                  | 0.37          | 100             | 1            |            |                  |                 |                 |                 | No       | HQ less than one, detected                                       |
| Butylbenzylphthalate                        | 180 - 210                                 | 0 / 10           |               |                        | 100           | /                       | 2.10          | 96.5            | 0.97         |            |                  |                 |                 |                 | No       | Not detected                                                     |
| Caprolactam                                 | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| Carbazole                                   | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| Chrysene                                    | 180 - 210                                 | 0 / 10           |               |                        | 1,100         | /                       | 0.19          | 96.5            | 0.088        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Dibenz(a,h)anthracene                       | 36.0 - 42.0                               | 0 / 10           |               |                        | 1,100         | /                       | 0.038         | 19.2            | 0.017        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Dibenzofuran                                | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| Diethylphthalate                            | 180 - 210                                 | 0 / 10           |               |                        | 100,000       | /                       | 0.0021        | 96.5            | 0.001        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Dimethyl phthalate                          | 180 - 210                                 | 0 / 10           |               |                        | 200,000       | /                       | 0.0011        | 96.5            | 4.825E-04    |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Di-n-butylphthalate                         | 180 - 210                                 | 0 / 10           |               |                        | 200,000       | /                       | 0.0011        | 96.5            | 4.825E-04    |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Di-n-octylphthalate                         | 180 - 210                                 | 0 / 10           |               |                        | 100           | /                       | 2.10          | 96.5            | 0.97         |            |                  |                 |                 |                 | No       | Not detected                                                     |
| Fluoranthene                                | 180 - 210                                 | 0 / 10           |               |                        | 1,100         | /                       | 0.19          | 96.5            | 0.088        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Fluorene                                    | 180 - 210                                 | 0 / 10           |               |                        | 29,000        | /                       | 0.0072        | 96.5            | 0.003        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Hexachlorobenzene                           | 180 - 210                                 | 0 / 10           |               |                        | 2.50          | /                       | 84.0          | 96.5            | 39           |            |                  |                 |                 |                 | No       | Not detected                                                     |
| Hexachlorobutadiene                         | 180 - 210                                 | 0 / 10           |               |                        | NSV           | /                       | NSV           | 96.5            | NSV          |            |                  |                 |                 |                 | No       | No screening value, not detected                                 |
| Hexachlorocyclopentadiene                   | 180 - 210                                 | 0 / 10           |               |                        | 10,000        | /                       | 0.021         | 96.5            | 0.010        |            |                  |                 |                 |                 | No       | HQ less than one, not detected  Not detected                     |
| Hexachloroethane                            | 180 - 210                                 | 0 / 10           |               |                        | 100           | /                       | 2.10          | 96.5            | 0.97         |            |                  |                 |                 |                 | No       |                                                                  |
| Indeno(1,2,3-cd)pyrene                      | 36.0 - 42.0                               | 0 / 10           |               |                        | 1,100         | /                       | 0.038         | 19.2<br>19.2    | 0.017        |            |                  |                 |                 |                 | No<br>No | HQ less than one, not detected  No screening value, not detected |
| Isophorone<br>Naphthalene                   | 36.0 - 42.0<br>180 - 210                  | 0 / 10           |               |                        | NSV<br>29,000 | /                       | NSV<br>0.0072 | 96.5            | NSV<br>0.003 |            |                  |                 |                 |                 | No<br>No | HQ less than one, not detected                                   |
| n-Nitroso-di-n-propylamine                  | 36.0 - 42.0                               | 0 / 10           |               |                        | 29,000<br>NSV | /                       | 0.0072<br>NSV | 19.2            | 0.003<br>NSV |            |                  |                 |                 |                 | No<br>No | No screening value, not detected                                 |
| n-Nitrosodiphenylamine                      | 180 - 210                                 | 0 / 10           |               |                        | 20,000        | /                       | 0.011         | 96.5            | 0.005        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Nitrobenzene                                | 180 - 210                                 | 0 / 10           |               |                        | 40,000        | /                       | 0.0053        | 96.5            | 0.003        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Pentachlorophenol                           | 180 - 210                                 | 0 / 10           | -             |                        | 2,100         | /                       | 0.10          | 96.5            | 0.002        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Phenanthrene                                | 180 - 210                                 | 0 / 10           |               |                        | 29,000        | /                       | 0.0072        | 96.5            | 0.003        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Phenol                                      | 180 - 210                                 | 0 / 10           |               |                        | 50.0          | /                       | 4.20          | 96.5            | 1.93         |            |                  |                 |                 |                 | No       | Not detected                                                     |
| Pyrene                                      | 180 - 210                                 | 0 / 10           |               |                        | 1,100         | /                       | 0.19          | 96.5            | 0.088        |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| Pesticide/Polychlorinated Biphenyls (UG/KG) |                                           |                  |               | •                      |               | •                       |               | •               |              |            |                  |                 |                 | •               | •        | •                                                                |
|                                             |                                           |                  |               |                        |               |                         |               |                 |              |            |                  |                 |                 |                 |          | Low frequency and magnitude of exceedance. Mean                  |
| 4,4'-DDD                                    | 1.80 - 2.10                               | 5 / 10           | 46.0          | IR15-SB10-2-4-09C      | 21.0          | 1 / 10                  | 2.19          | 6.56            | 0.31         |            |                  |                 |                 |                 | No       | HQ less than one.                                                |
| 4,4'-DDE                                    | 1.80 - 1.90                               | 7 / 10           | 95.0          | IR15-SB10-2-4-09C      | 21.0          | 1 / 10                  | 4.52          | 11.8            | 0.56         |            |                  |                 |                 |                 | Yes      | HQ above 1 and undefined                                         |
| 4,4'-DDT                                    | 1.80 - 2.10                               | 5 / 10           | 180           | IR15-SB10-2-4-09C      | 21.0          | 2 / 10                  | 8.57          | 21.6            | 1.03         |            |                  |                 |                 |                 | Yes      | HQ above 1 and undefined                                         |
| Aldrin                                      | 1.80 - 2.10                               | 0 / 10           |               |                        | 2.50          | /                       | 0.84          | 0.97            | 0.39         |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
| alpha-BHC                                   | 1.80 - 2.10                               | 0 / 10           |               |                        | 2.50          | /                       | 0.84          | 0.97            | 0.39         |            |                  |                 |                 |                 | No       | HQ less than one, not detected                                   |
|                                             | 1.80 - 2.10                               | 2 / 10           | 9.90          | IR15-SB10-2-4-09C      | 100           | 0 / 10                  | 0.099         | 2.14            | 0.02         |            |                  |                 |                 |                 | No       | HQ less than one, detected                                       |
| alpha-Chlordane                             |                                           | 0 / 10           |               |                        | 20.0          | /                       | 1.05          | 9.65            | 0.48         |            |                  |                 |                 |                 | No       | Not detected                                                     |
| alpha-Chlordane<br>Aroclor-1016             | 18.0 - 21.0                               |                  |               |                        |               |                         |               | 1               | 0.40         |            |                  |                 |                 |                 |          | land and a second                                                |
|                                             | 18.0 - 21.0<br>18.0 - 21.0                | 0 / 10           |               |                        | 20.0          | /                       | 1.05          | 9.65            | 0.48         |            |                  |                 |                 |                 | No       | Not detected                                                     |
| Aroclor-1016                                |                                           |                  |               |                        | 20.0          | /                       | 1.05<br>1.05  | 9.65<br>9.65    | 0.48         |            |                  |                 |                 |                 | No<br>No | Not detected                                                     |
| Aroclor-1016<br>Aroclor-1221                | 18.0 - 21.0<br>18.0 - 21.0<br>18.0 - 21.0 | 0 / 10           |               |                        |               |                         |               |                 |              |            |                  |                 |                 |                 |          |                                                                  |
| Aroclor-1221<br>Aroclor-1232                | 18.0 - 21.0<br>18.0 - 21.0                | 0 / 10<br>0 / 10 |               |                        | 20.0          | /                       | 1.05          | 9.65            | 0.48         |            |                  |                 |                 |                 | No       | Not detected                                                     |

Table F-5
ERS Subsurface Soil Screen for Site 15
Camp Johnson Consutrcion Area
Focused PA/SI

MCB Camp Lejeune, North Carolina

| MCB Camp Lejeune, North Carolina |                                |                           |                                      |                                                |                    | 1                                    |                               | 1                                |                         | 1                      |                                            |                                 | 1                                         |                                               |         |                                                 |
|----------------------------------|--------------------------------|---------------------------|--------------------------------------|------------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|---------|-------------------------------------------------|
| Chemical                         | Range of Non-<br>Detect Values | Frequency of<br>Detection | Maximum<br>Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain? | Rationale                                       |
| Aroclor-1260                     | 18.0 - 21.0                    | 0 / 10                    |                                      |                                                | 20.0               | /                                    | 1.05                          | 9.65                             | 0.48                    |                        |                                            |                                 |                                           |                                               | No      | Not detected                                    |
| beta-BHC                         | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 1.00               | /                                    | 2.10                          | 0.97                             | 0.97                    |                        |                                            |                                 |                                           |                                               | No      | Not detected                                    |
| delta-BHC                        | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.97                             | 0.01                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                  |
| Dieldrin                         | 1.80 - 2.10                    | 1 / 10                    | 2.30                                 | IR15-SB05-2-7-09C                              | 4.90               | 0 / 10                               | 0.47                          | 1.10                             | 0.22                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, detected                      |
| Endosulfan I                     | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.97                             | 0.01                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                  |
| Endosulfan II                    | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.97                             | 0.01                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                  |
| Endosulfan sulfate               | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.97                             | 0.01                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                  |
| Endrin                           | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 1.00               | /                                    | 2.10                          | 0.97                             | 0.97                    |                        |                                            |                                 |                                           |                                               | No      | Not detected                                    |
| Endrin aldehyde                  | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.97                             | 0.01                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                  |
| Endrin ketone                    | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.97                             | 0.01                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                  |
| gamma-BHC (Lindane)              | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 0.050              | /                                    | 42.0                          | 0.97                             | 19                      |                        |                                            |                                 |                                           |                                               | No      | Not detected                                    |
| gamma-Chlordane                  | 1.80 - 2.10                    | 2 / 10                    | 7.40                                 | IR15-SB10-2-4-09C                              | 100                | 0 / 10                               | 0.074                         | 1.84                             | 0.02                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, detected                      |
| Heptachlor                       | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.97                             | 0.01                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                  |
| Heptachlor epoxide               | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.97                             | 0.01                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                  |
| Methoxychlor                     | 1.80 - 2.10                    | 0 / 10                    |                                      |                                                | 100                | /                                    | 0.021                         | 0.97                             | 0.01                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                  |
| Toxaphene                        | 36.0 - 42.0                    | 0 / 10                    |                                      |                                                | 100                | /                                    | 0.42                          | 19.2                             | 0.19                    |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                  |
| Inorganics (MG/KG)               | •                              |                           |                                      | •                                              |                    |                                      |                               |                                  | •                       | •                      |                                            |                                 | •                                         |                                               | •       |                                                 |
| Aluminum                         |                                | 10 / 10                   | 6,070                                | IR15-SB02-2-7-09C                              | 50.0               | 10 / 10                              | 121                           | 3,523                            | 70                      | 10,369                 | No                                         |                                 |                                           |                                               | No      | Consistent with background                      |
| Antimony                         | 1.50 - 8.60                    | 2 / 10                    | 0.82                                 | IR15-SB01-4-6-09C                              | 0.27               | 1 / 10                               | 3.04                          | 1.10                             | 4.09                    | 0.36                   | Yes                                        |                                 |                                           |                                               | Yes     | HQ above 1 and well above background range      |
| Arsenic                          | 1.60 - 1.60                    | 9 / 10                    | 16.6                                 | IR15-SB09-2-7-09C                              | 18.0               | 0 / 10                               | 0.92                          | 2.81                             | 0.16                    | 2.12                   | Yes                                        |                                 |                                           |                                               | No      | HQ less than one, detected                      |
| Barium                           | 4.10 - 21.5                    | 8 / 10                    | 32.3                                 | IR15-SB01-4-6-09C                              | 330                | 0 / 10                               | 0.098                         | 10.7                             | 0.032                   | 16.6                   | Yes                                        |                                 |                                           |                                               | No      | HQ less than one, detected                      |
| Beryllium                        | 0.15 - 0.18                    | 4 / 10                    | 0.071                                | IR15-SB09-2-7-09C                              | 21.0               | 0 / 10                               | 0.0034                        | 0.070                            | 0.003                   | 0.165                  | No                                         | 1                               |                                           |                                               | No      | Consistent with background                      |
|                                  |                                |                           |                                      |                                                |                    |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                               |         | Low magnitude of exceedance, mean HQ less than  |
| Cadmium                          | 0.46 - 0.54                    | 3 / 10                    | 0.82                                 | IR15-SB09-2-7-09C                              | 0.36               | 2 / 10                               | 2.28                          | 0.31                             | 0.86                    | 0.023                  | Yes                                        |                                 |                                           |                                               | No      | one                                             |
| Calcium <sup>2</sup>             | 76.9 - 82.1                    | 8 / 10                    | 20,000                               | IR15-SB01-4-6-09C                              | NSV                | /                                    | NSV                           | 2,490                            | NSV                     | 441                    | Yes                                        |                                 |                                           |                                               | No      | Macronutrient                                   |
|                                  |                                |                           |                                      |                                                |                    |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                               |         | Low frequency and magnitude of exceedance, mean |
| Chromium                         |                                | 10 / 10                   | 52.4                                 | IR15-SB09-2-7-09C                              | 26.0               | 1 / 10                               | 2.02                          | 10.0                             | 0.38                    | 14.5                   | Yes                                        |                                 |                                           |                                               | No      | HQ less than one                                |
| Cobalt                           | 0.41 - 0.41                    | 9 / 10                    | 9.30                                 | IR15-SB09-2-7-09C                              | 13.0               | 0 / 10                               | 0.72                          | 1.16                             | 0.089                   | 0.822                  | Yes                                        | -                               |                                           |                                               | No      | Mean HQ less than one                           |
|                                  |                                |                           |                                      |                                                |                    |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                               |         | Low frequency and magnitude of exceedance, mean |
| Copper                           | 1.60 - 1.60                    | 9 / 10                    | 31.7                                 | IR15-SB04-2-7-09C                              | 28.0               | 1 / 10                               | 1.13                          | 8.31                             | 0.30                    | 2.56                   | Yes                                        |                                 |                                           |                                               | No      | HQ less than one                                |
| Iron                             |                                | 10 / 10                   | 179,000                              | IR15-SB09-2-7-09C                              | 200                | 9 / 10                               | 895                           | 20,233                           | 101                     | 5,439                  | Yes                                        |                                 |                                           |                                               | Yes     | HQ above 1 and well above background range      |
|                                  |                                |                           |                                      |                                                |                    |                                      |                               |                                  |                         |                        |                                            |                                 | Region 4 (EPA,                            |                                               |         |                                                 |
| Lead                             |                                | 10 / 10                   | 483                                  | IR15-SB01-4-6-09C                              | 11.0               | 4 / 10                               | 43.9                          | 69.8                             | 6.35                    | 8.49                   | Yes                                        | 50                              | 2001)                                     | 9.66                                          | Yes     | HQ above 1 and well above background range      |
| Magnesium <sup>2</sup>           |                                | 10 / 10                   | 219                                  | IR15-SB01-4-6-09C                              | NSV                | /                                    | NSV                           | 138                              | NSV                     | 363                    | No                                         |                                 |                                           |                                               | No      | Macronutrient                                   |
|                                  |                                |                           |                                      |                                                |                    |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                               |         | Low frequency and magnitude of exceedance, mean |
| Manganese                        |                                | 10 / 10                   | 626                                  | IR15-SB09-2-7-09C                              | 220                | 1 / 10                               | 2.85                          | 76.1                             | 0.35                    | 9.25                   | Yes                                        |                                 |                                           |                                               | No      | HQ less than one                                |
| Mercury                          | 0.033 - 0.037                  | 6 / 10                    | 0.14                                 | IR15-SB01-4-6-09C                              | 0.10               | 1 / 10                               | 1.40                          | 0.036                            | 0.36                    | 0.071                  | Yes                                        |                                 |                                           |                                               | No      | Within background range                         |
| Nickel                           | 0.79 - 0.82                    | 8 / 10                    | 24.4                                 | IR15-SB09-2-7-09C                              | 38.0               | 0 / 10                               | 0.64                          | 3.57                             | 0.094                   | 2.27                   | Yes                                        |                                 |                                           |                                               | No      | HQ less than one, detected                      |
| Potassium <sup>2</sup>           |                                | 10 / 10                   | 236                                  | IR15-SB09-2-7-09C                              | NSV                | /                                    | NSV                           | 126                              | NSV                     | 361                    | No                                         |                                 |                                           |                                               | No      | Macronutrient                                   |
| Selenium                         | 1.50 - 8.60                    | 0 / 10                    |                                      |                                                | 0.52               | /                                    | 16.5                          | 1.16                             | 2.23                    | 0.505                  |                                            |                                 |                                           |                                               | No      | Not detected                                    |
| Silver                           | 1.50 - 8.60                    | 0 / 10                    |                                      |                                                | 4.20               | /                                    | 2.05                          | 1.16                             | 0.28                    | 0.129                  |                                            |                                 |                                           |                                               | No      | Not detected                                    |
| Sodium <sup>2</sup>              | 194 - 1,080                    | 6 / 10                    | 15.0                                 | IR15-SB04-2-7-09C                              | NSV                | /                                    | NSV                           | 89.0                             | NSV                     | 68.3                   | No                                         |                                 |                                           |                                               | No      | Macronutrient                                   |
| Thallium                         | 2.30 - 2.70                    | 1 / 10                    | 1.90                                 | IR15-SB09-2-7-09C                              | 1.00               | 1 / 10                               | 1.90                          | 1.30                             | 1.30                    | 0.38                   | Yes                                        |                                 |                                           |                                               | No      | Low frequency and magnitude of exceedance       |
| Vanadium                         | 4.10 - 21.5                    | 8 / 10                    | 10.4                                 | IR15-SB02-2-7-09C                              | 7.80               | 3 / 10                               | 1.33                          | 6.67                             | 0.86                    | 17.2                   | No                                         |                                 |                                           |                                               | No      | Consistent with background                      |
| Zinc                             | 3.90 - 8.00                    | 6 / 10                    | 345                                  | IR15-SB01-4-6-09C                              | 46.0               | 2 / 10                               | 7.50                          | 51.3                             | 1.12                    | 6.59                   | Yes                                        |                                 |                                           |                                               | Yes     | HQ above 1 and well above background range      |

### NOTES

1 - Count of detected samples exceeding or equaling Screening Value

2 - Macronutrient - Not considered to be a contaminant of potential concern (COPC)

HQ - Hazard Quotient

NSV - No Screening Value

MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

Generated by: Sara Kent

Checked by: Kelly Taylor

Table F-6
ERS Groundwater Screen for Site 15
Camp Johnson Consutrcion Area
Focused PA/SI

|                                                    | Range of Non-<br>Detect Values | Frequency of Detection | Maximum Concentration Detected | Sample ID of<br>Maximum Detected<br>Concentration | Screening<br>Value <sup>1</sup> | Frequency of Exceedance <sup>2</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Exceeds 2 x<br>Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain? | Rationale                         |
|----------------------------------------------------|--------------------------------|------------------------|--------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|---------|-----------------------------------|
|                                                    | Detect values                  | Detection              | Detected                       | Concentration                                     | value                           | Exceedance                           | Quotient                      | Concentration                    | Quotient                | Васкугоціц             | Background:                        | Screening value                 | Source                                    | Waxiiiiuiii HQ                                | Retains | Rationale                         |
| Volatile Organic Compounds (UG/L)                  | 100 100                        | 0.4.4                  |                                | Τ                                                 | 040                             | ,                                    | 2 2222                        | 1 0.50                           | 1 2 222                 | Τ                      | 1                                  | 1                               |                                           |                                               |         | Tuo                               |
| 1,1,1-Trichloroethane                              | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 312                             | /                                    | 0.0032                        | 0.50                             | 0.002                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| 1,1,2,2-Tetrachloroethane                          | 1.00 - 2.40                    | 0 / 4                  |                                |                                                   | 90.2                            | /                                    | 0.027                         | 0.68                             | 0.007                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113)   | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| 1,1,2-Trichloroethane                              | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| 1,1-Dichloroethane                                 | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| 1,1-Dichloroethene                                 | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 2,240                           | /                                    | 4.46E-04                      | 0.50                             | 2.232E-04               |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| 1,2,4-Trichlorobenzene                             | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 4.50                            | /                                    | 0.22                          | 0.50                             | 0.11                    |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| 1,2-Dibromoethane                                  | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| 1,2-Dichlorobenzene                                | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 19.7                            | /                                    | 0.051                         | 0.50                             | 0.025                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| 1,2-Dichloroethane                                 | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 1,130                           | /                                    | 8.85E-04                      | 0.50                             | 4.425E-04               |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| 1,2-Dichloropropane                                | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 2,400                           | /                                    | 4.17E-04                      | 0.50                             | 2.083E-04               |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| 1,3-Dichlorobenzene                                | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 28.5                            | /                                    | 0.035                         | 0.50                             | 0.018                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| 1,4-Dichlorobenzene                                | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 19.9                            | /                                    | 0.050                         | 0.50                             | 0.025                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| 2-Butanone                                         | 5.00 - 5.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 2.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| 2-Hexanone                                         | 5.00 - 5.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 2.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| 4-Methyl-2-pentanone                               | 5.00 - 5.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 2.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Acetone                                            | 5.00 - 5.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 2.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Benzene                                            | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 109                             | /                                    | 0.0092                        | 0.50                             | 0.005                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| Bromodichloromethane                               | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Bromoform                                          | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 640                             | /                                    | 0.0016                        | 0.50                             | 0.001                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| Bromomethane                                       | 1.10 - 1.10                    | 0 / 4                  |                                |                                                   | 120                             | /                                    | 0.0092                        | 0.55                             | 0.005                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| Carbon disulfide                                   | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Carbon tetrachloride                               | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 1,500                           | /                                    | 6.67E-04                      | 0.50                             | 3.333E-04               |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| Chlorobenzene                                      | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 105                             | /                                    | 0.0095                        | 0.50                             | 0.005                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| Chloroethane                                       | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Chloroform                                         | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 815                             | /                                    | 0.0012                        | 0.50                             | 0.001                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| Chloromethane                                      | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 2,700                           | /                                    | 3.70E-04                      | 0.50                             | 1.852E-04               |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| cis-1,2-Dichloroethene                             | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| cis-1,3-Dichloropropene                            | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 7.90                            | /                                    | 0.13                          | 0.50                             | 0.063                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| Cyclohexane                                        | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Dibromochloromethane                               | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Dichlorodifluoromethane (Freon-12)                 | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Ethylbenzene                                       | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 4.30                            | /                                    | 0.23                          | 0.50                             | 0.12                    |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| Isopropylbenzene                                   | 1.00 - 1.00                    | 1 / 4                  | 4.90                           | IR15-TW03D-09C                                    | NSV                             | /                                    | NSV                           | 1.60                             | NSV                     |                        |                                    | 255                             | TCEQ, 2006                                | 0.0192                                        | No      | Supplemental HQ less than one     |
| Methyl acetate                                     | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Methylcyclohexane                                  | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Methylene chloride                                 | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 2,560                           | /                                    | 3.91E-04                      | 0.50                             | 1.953E-04               |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| Methyl-tert-butyl ether (MTBE)                     | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Styrene (III 22)                                   | 1.00 - 1.00                    | 1 / 4                  | 5.90                           | IR15-TW03D-09C                                    | NSV                             | /                                    | NSV                           | 1.85                             | NSV                     |                        |                                    | 455                             | TCEQ, 2006                                | 0.0130                                        | No      | Supplemental HQ less than one     |
| Tetrachloroethene                                  | 1.10 - 1.10                    | 0 / 4                  |                                |                                                   | 45.0                            | /                                    | 0.024                         | 0.55                             | 0.012                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| Toluene                                            | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 37.0                            | /                                    | 0.027                         | 0.50                             | 0.014                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| trans-1,2-Dichloroethene                           | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| trans-1,3-Dichloropropene                          | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | 7.90                            | /                                    | 0.13                          | 0.50                             | 0.063                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected    |
| Trichloroethene                                    | 5.10 - 5.10                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 2.55                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Trichlorofluoromethane(Freon-11)                   | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Vinyl chloride                                     | 1.00 - 1.00                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Xylene, total                                      | 1.20 - 1.20                    | 0 / 4                  |                                |                                                   | NSV                             | /                                    | NSV                           | 0.60                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| Semivolatile Organic Compounds (UG/L)              | 1.20 - 1.20                    | 0 / 4                  |                                |                                                   | INOV                            | /                                    | IVOV                          | 0.00                             | IVOV                    |                        |                                    |                                 |                                           |                                               | NU      | INO Screening value, not detected |
| 1,1-Biphenyl                                       | 10.0 - 11.0                    | 0 / 3                  |                                | <u> </u>                                          | NSV                             | 1                                    | NSV                           | 5.33                             | NSV                     |                        | 1                                  | 1                               |                                           |                                               | No      | No screening value, not detected  |
|                                                    | 10.0 - 11.0                    |                        |                                |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               |         | 0 1                               |
| 2,2'-Oxybis(1-chloropropane) 2,4,5-Trichlorophenol |                                | 0 / 3                  |                                |                                                   |                                 | /                                    |                               |                                  |                         |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| / /L D- LCCDIOCODDODO                              | 10.0 - 11.0                    | 0 / 3                  |                                |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |
| 2,4-Dichlorophenol                                 | 10.0 - 11.0                    | 0 / 3                  |                                |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  |

Table F-6
ERS Groundwater Screen for Site 15
Camp Johnson Consutrcion Area
Focused PA/SI

| Chemical                               | Range of Non-<br>Detect Values | Frequency of<br>Detection | Maximum<br>Concentration<br>Detected | Sample ID of<br>Maximum Detected<br>Concentration | Screening<br>Value <sup>1</sup> | Frequency of Exceedance <sup>2</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Exceeds 2 x<br>Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain? | Rationale                                                          |
|----------------------------------------|--------------------------------|---------------------------|--------------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|---------|--------------------------------------------------------------------|
| 2,4-Dinitrophenol                      | 20.0 - 22.0                    | 0 / 3                     |                                      |                                                   | 48.5                            | /                                    | 0.45                          | 10.5                             | 0.22                    |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected                                     |
| 2,4-Dinitrotoluene                     | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 2,6-Dinitrotoluene                     | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 2-Chloronaphthalene                    | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 2-Chlorophenol                         | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 2-Methylnaphthalene                    | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 2-Methylphenol                         | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 2-Nitroaniline                         | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 2-Nitrophenol                          | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 3,3'-Dichlorobenzidine                 | 20.0 - 22.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 10.5                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 3-Nitroaniline                         | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 4,6-Dinitro-2-methylphenol             | 20.0 - 22.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 10.5                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 4-Bromophenyl-phenylether              | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 4-Chloro-3-methylphenol                | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 4-Chloroaniline                        | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 4-Chlorophenyl-phenylether             | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 4-Methylphenol                         | 20.0 - 22.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 10.5                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 4-Nitroaniline                         | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| 4-Nitrophenol                          | 20.0 - 22.0                    | 0 / 3                     |                                      |                                                   | 71.7                            | /                                    | 0.31                          | 10.5                             | 0.15                    |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected                                     |
| Acenaphthene                           | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | 9.70                            | /                                    | 1.13                          | 5.33                             | 0.55                    |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Acenaphthylene                         | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Acetophenone                           | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Anthracene                             | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Atrazine                               | 20.0 - 22.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 10.5                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Benzo(a)anthracene                     | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Benzo(a)pyrene                         | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Benzo(b)fluoranthene                   | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Benzo(g,h,i)perylene                   | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Benzo(k)fluoranthene                   | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| bis(2-Chloroethoxy)methane             | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| bis(2-Chloroethyl)ether                | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| bis(2-Ethylhexyl)phthalate             | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Butylbenzylphthalate                   | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | 29.4                            | /                                    | 0.37                          | 5.33                             | 0.18                    |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected                                     |
| Caprolactam                            | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Carbazole                              | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
|                                        |                                |                           |                                      |                                                   |                                 |                                      |                               |                                  |                         |                        |                                    |                                 |                                           |                                               |         |                                                                    |
| Chrysene Dibenz(a,h)anthracene         | 10.0 - 11.0<br>10.0 - 11.0     | 0 / 3                     |                                      |                                                   | NSV<br>NSV                      | /                                    | NSV<br>NSV                    | 5.33<br>5.33                     | NSV<br>NSV              |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Dibenzofuran                           | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected  No screening value, not detected |
|                                        |                                |                           |                                      |                                                   |                                 |                                      |                               |                                  |                         |                        |                                    |                                 |                                           |                                               | No      |                                                                    |
| Diethylphthalate                       | 10.0 - 11.0<br>10.0 - 11.0     | 0 / 3                     |                                      |                                                   | 759<br>580                      | /                                    | 0.014<br>0.019                | 5.33<br>5.33                     | 0.007                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected                                     |
| Dimethyl phthalate Di-n-butylphthalate |                                | 0 / 3                     |                                      |                                                   |                                 | /                                    |                               |                                  |                         |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected                                     |
| 71                                     | 20.0 - 22.0<br>10.0 - 11.0     | 0 / 3                     |                                      |                                                   | 3.40<br>NSV                     | /                                    | 6.47<br>NSV                   | 10.5                             | 3.09                    |                        |                                    |                                 |                                           |                                               | No      | Not detected                                                       |
| Di-n-octylphthalate                    |                                | 0 / 3                     |                                      |                                                   |                                 | /                                    |                               | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Fluoranthene                           | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | 1.60                            | /                                    | 6.88                          | 5.33                             | 3.33                    |                        |                                    |                                 |                                           |                                               | No      | Not detected                                                       |
| Fluorene                               | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Hexachlorobenzene                      | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Hexachlorobutadiene                    | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | 0.32                            | /                                    | 34.4                          | 5.33                             | 17                      |                        |                                    |                                 |                                           |                                               | No      | Not detected                                                       |
| Hexachlorocyclopentadiene              | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | 0.070                           | /                                    | 157                           | 5.33                             | 76                      |                        |                                    |                                 |                                           |                                               | No      | Not detected                                                       |
| Hexachloroethane                       | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | 9.40                            | /                                    | 1.17                          | 5.33                             | 0.57                    |                        |                                    |                                 |                                           |                                               | No      | Not detected                                                       |
| Indeno(1,2,3-cd)pyrene                 | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| Isophorone                             | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | 129                             | /                                    | 0.085                         | 5.33                             | 0.041                   |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected                                     |
| Naphthalene                            | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | 23.5                            | /                                    | 0.47                          | 5.33                             | 0.23                    |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected                                     |
| n-Nitroso-di-n-propylamine             | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.33                             | NSV                     |                        |                                    |                                 |                                           |                                               | No      | No screening value, not detected                                   |
| n-Nitrosodiphenylamine                 | 10.0 - 11.0                    | 0 / 3                     |                                      |                                                   | 33,000                          | /                                    | 3.33E-04                      | 5.33                             | 1.616E-04               |                        |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected                                     |

Table F-6
ERS Groundwater Screen for Site 15
Camp Johnson Consutrcion Area
Focused PA/SI

|                                     | Range of Non- | Frequency of | Maximum<br>Concentration | Sample ID of<br>Maximum Detected | Screening          | Frequency of            | Maximum<br>Hazard | Arithmetic Mean | Mean Hazard | 2 x Mean   | Exceeds 2 x<br>Mean | Supplemental    | Supplemental<br>Screening Value | Supplemental<br>Screening Value |         |                                  |
|-------------------------------------|---------------|--------------|--------------------------|----------------------------------|--------------------|-------------------------|-------------------|-----------------|-------------|------------|---------------------|-----------------|---------------------------------|---------------------------------|---------|----------------------------------|
| Chemical                            | Detect Values | Detection    | Detected                 | Concentration                    | Value <sup>1</sup> | Exceedance <sup>2</sup> | Quotient          | Concentration   | Quotient    | Background | Background?         | Screening Value | Source                          | Maximum HQ                      | Retain? | Rationale                        |
| Pentachlorophenol                   | 20.0 - 22.0   | 0 / 3        |                          |                                  | 7.90               | /                       | 2.78              | 10.5            | 1.33        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Phenanthrene                        | 10.0 - 11.0   | 0 / 3        |                          |                                  | NSV                | /                       | NSV               | 5.33            | NSV         |            |                     |                 |                                 |                                 | No      | No screening value, not detected |
| Phenol                              | 10.0 - 11.0   | 0 / 3        |                          |                                  | 58.0               | /                       | 0.19              | 5.33            | 0.092       |            |                     |                 |                                 |                                 | No      | HQ less than one, not detected   |
| Pyrene                              | 10.0 - 11.0   | 0 / 3        |                          |                                  | NSV                | /                       | NSV               | 5.33            | NSV         |            |                     |                 |                                 |                                 | No      | No screening value, not detected |
| Pesticide/Polychlorinated Biphenyls | (UG/L)        |              |                          |                                  |                    |                         |                   |                 |             |            | •                   |                 |                                 |                                 |         |                                  |
| 4,4'-DDD                            | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.025              | /                       | 2.12              | 0.026           | 1.04        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| 4,4'-DDE                            | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.14               | /                       | 0.38              | 0.026           | 0.19        |            |                     |                 |                                 |                                 | No      | HQ less than one, not detected   |
| 4,4'-DDT                            | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.0010             | /                       | 53.0              | 0.026           | 26          |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Aldrin                              | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.13               | /                       | 0.41              | 0.026           | 0.2         |            |                     |                 |                                 |                                 | No      | HQ less than one, not detected   |
| alpha-BHC                           | 0.051 - 0.053 | 0 / 3        |                          |                                  | 1,400              | /                       | 3.79E-05          | 0.026           | 1.857E-05   |            |                     |                 |                                 |                                 | No      | HQ less than one, not detected   |
| alpha-Chlordane                     | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.0040             | /                       | 13.3              | 0.026           | 6.5         |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Aroclor-1016                        | 0.51 - 0.53   | 0 / 3        |                          |                                  | 0.030              | /                       | 17.7              | 0.26            | 8.67        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Aroclor-1221                        | 0.51 - 0.53   | 0 / 3        |                          |                                  | 0.030              | /                       | 17.7              | 0.26            | 8.67        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Aroclor-1232                        | 0.51 - 0.53   | 0 / 3        |                          |                                  | 0.030              | /                       | 17.7              | 0.26            | 8.67        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Aroclor-1242                        | 0.51 - 0.53   | 0 / 3        |                          |                                  | 0.030              | /                       | 17.7              | 0.26            | 8.67        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Aroclor-1248                        | 0.51 - 0.53   | 0 / 3        |                          |                                  | 0.030              | /                       | 17.7              | 0.26            | 8.67        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Aroclor-1254                        | 0.51 - 0.53   | 0 / 3        |                          |                                  | 0.030              | /                       | 17.7              | 0.26            | 8.67        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Aroclor-1260                        | 0.51 - 0.53   | 0 / 3        |                          |                                  | 0.030              | /                       | 17.7              | 0.26            | 8.67        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| beta-BHC                            | 0.051 - 0.053 | 0 / 3        |                          |                                  | NSV                | /                       | NSV               | 0.026           | NSV         |            |                     |                 |                                 |                                 | No      | No screening value, not detected |
| delta-BHC                           | 0.051 - 0.053 | 0 / 3        |                          |                                  | NSV                | /                       | NSV               | 0.026           | NSV         |            |                     |                 |                                 |                                 | No      | No screening value, not detected |
| Dieldrin                            | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.0019             | /                       | 27.9              | 0.026           | 14          |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Endosulfan I                        | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.0087             | /                       | 6.09              | 0.026           | 2.99        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Endosulfan II                       | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.0087             | /                       | 6.09              | 0.026           | 2.99        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Endosulfan sulfate                  | 0.051 - 0.053 | 0 / 3        |                          |                                  | NSV                | /                       | NSV               | 0.026           | NSV         |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Endrin                              | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.0023             | /                       | 23.0              | 0.026           | 11          |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Endrin aldehyde                     | 0.051 - 0.053 | 0 / 3        |                          |                                  | NSV                | /                       | NSV               | 0.026           | NSV         |            |                     |                 |                                 |                                 | No      | No screening value, not detected |
| Endrin ketone                       | 0.051 - 0.053 | 0 / 3        |                          |                                  | NSV                | /                       | NSV               | 0.026           | NSV         |            |                     |                 |                                 |                                 | No      | No screening value, not detected |
| gamma-BHC (Lindane)                 | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.016              | /                       | 3.31              | 0.026           | 1.63        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| gamma-Chlordane                     | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.0040             | /                       | 13.3              | 0.026           | 6.50        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Heptachlor                          | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.0036             | /                       | 14.7              | 0.026           | 7.22        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Heptachlor epoxide                  | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.0036             | /                       | 14.7              | 0.026           | 7.22        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Methoxychlor                        | 0.051 - 0.053 | 0 / 3        |                          |                                  | 0.030              | /                       | 1.77              | 0.026           | 0.87        |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Toxaphene                           | 1.00 - 1.10   | 0 / 3        |                          |                                  | 0.0020             | /                       | 550               | 0.52            | 258         |            |                     |                 |                                 |                                 | No      | Not detected                     |
| Inorganics (UG/L)                   | 1.00 - 1.10   | 0 7 3        |                          |                                  | 0.0020             | /                       | 330               | 0.32            | 230         |            |                     |                 |                                 |                                 | 110     | Not actedica                     |
| Aluminum                            |               | 5 / 5        | 3,360                    | IR15-TW05-09C                    | NSV                | /                       | NSV               | 895             | NSV         | 1886       | Yes                 |                 |                                 |                                 | No      | Within background range          |
| Antimony                            | 20.0 - 20.0   | 0 / 5        |                          | 11(13-1 W03-07C                  | NSV                | /                       | NSV               | 10.0            | NSV         | 3.28       | 103                 |                 |                                 |                                 | No      | No screening value, not detected |
| Arsenic                             | 20.0 - 20.0   | 1 / 5        | 3.20                     | IR15-TW04-09C                    | 36.0               | 0 / 5                   | 0.089             | 8.64            | 0.24        | 5.77       | No                  |                 |                                 |                                 | No      | Consistent with background       |
| Barium                              | 20.0 - 20.0   | 5 / 5        | 95.0                     | IR15-TW03D-09C                   | NSV                | /                       | NSV               | 38.1            | NSV         | 86.2       | Yes                 |                 |                                 |                                 | No      | Within background range          |
| Beryllium                           | 2.00 - 2.00   | 1 / 5        | 0.18                     | IR15-TW03D-09C                   | NSV                | /                       | NSV               | 0.84            | NSV         | 0.308      | No                  |                 |                                 |                                 | No      | Consistent with background       |
| Cadmium                             | 6.00 - 6.00   | 0 / 5        | 0.16                     |                                  | 8.80               | /                       | 0.68              | 3.00            | 0.34        | 0.358      |                     |                 |                                 |                                 | No      | HQ less than one, not detected   |
| Calcium <sup>3</sup>                |               |              |                          |                                  |                    |                         |                   |                 | +           |            | +                   |                 |                                 |                                 |         |                                  |
|                                     | 20.0 20.0     | 5 / 5        | 45,500                   | IR15-TW04-09C                    | NSV                | /                       | NSV               | 24,638          | NSV         | 69078      | No<br>Yee           |                 |                                 |                                 | No      | Macronutrient                    |
| Chromium                            | 20.0 - 20.0   | 2 / 5        | 5.00                     | IR15-TW05-09C                    | 50.0               | 0 / 5                   | 0.10              | 7.34            | 0.15        | 3.13       | Yes                 |                 |                                 |                                 | No      | HQ less than one, detected       |
| Cobalt                              | 5.00 - 5.00   | 4 / 5        | 3.90                     | IR15-TW01-09C                    | NSV                | /                       | NSV               | 2.06            | NSV<br>1.00 | 3.4        | Yes                 |                 |                                 |                                 | No      | Within background range          |
| Copper                              | 20.0 - 20.0   | 3 / 5        | 3.80                     | IR15-TW05-09C                    | 3.10               | 1 / 5                   | 1.23              | 5.90            | 1.90        | 2.76       | Yes                 |                 |                                 |                                 | No      | Within background range          |
| Iron                                | 20.0 20.0     | 5 / 5        | 25,800                   | IR15-TW01-09C                    | NSV                | /                       | NSV               | 9,360           | NSV         | 5999       | Yes                 |                 |                                 |                                 | No      | Within background range          |
| Lead                                | 20.0 - 20.0   | 0 / 5        |                          |                                  | 8.10               | /                       | 2.47              | 10.0            | 1.23        | 2.80       |                     |                 |                                 |                                 | No      | Not detected                     |
| Magnesium <sup>3</sup>              |               | 5 / 5        | 4,620                    | IR15-TW03D-09C                   | NSV                | /                       | NSV               | 2,081           | NSV         | 6363       | No                  |                 |                                 |                                 | No      | Macronutrient                    |
| Manganese                           |               | 5 / 5        | 439                      | IR15-TW01-09C                    | NSV                | /                       | NSV               | 146             | NSV         | 214        | Yes                 |                 |                                 |                                 | No      | Within background range          |
| Mercury                             | 0.20 - 0.20   | 0 / 5        |                          |                                  | 0.94               | /                       | 0.21              | 0.10            | 0.11        | 0.1        |                     |                 |                                 |                                 | No      | HQ less than one, not detected   |
| Nickel                              | 10.0 - 10.0   | 4 / 5        | 30.0                     | IR15-TW01-09C                    | 8.20               | 3 / 5                   | 3.66              | 14.1            | 1.72        | 7.97       | Yes                 |                 |                                 |                                 | No      | Within background range          |
| Potassium <sup>3</sup>              |               | 5 / 5        | 2,540                    | IR15-TW02-09C                    | NSV                | /                       | NSV               | 1,370           | NSV         | 3277       | No                  |                 |                                 |                                 | No      | Macronutrient                    |
| Selenium                            | 20.0 - 20.0   | 0 / 5        |                          |                                  | 71.0               | /                       | 0.28              | 10.0            | 0.14        | 3.14       |                     |                 |                                 |                                 | No      | HQ less than one, not detected   |
| Silver                              | 20.0 - 20.0   | 0 / 5        |                          |                                  | 0.23               | /                       | 87.0              | 10.0            | 43          | 0.77       |                     |                 |                                 |                                 | No      | Not detected                     |

ERS Groundwater Screen for Site 15 Camp Johnson Consutrcion Area Focused PA/SI

MCB Camp Lejeune, North Carolina

| Chemical                          | Range of Non-<br>Detect Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of<br>Maximum Detected<br>Concentration | Screening<br>Value <sup>1</sup> | Frequency of Exceedance <sup>2</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Exceeds 2 x<br>Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain? | Rationale                        |
|-----------------------------------|--------------------------------|------------------------|--------------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|---------|----------------------------------|
| Sodium <sup>3</sup>               |                                | 5 / 5                  | 8,000                                | IR15-TW03D-09C                                    | NSV                             | /                                    | NSV                           | 4,426                            | NSV                     | 22508                  | No                                 |                                 |                                           |                                               | No      | Macronutrient                    |
| Thallium                          | 30.0 - 30.0                    | 1 / 5                  | 3.20                                 | IR15-TW04-09C                                     | 21.3                            | 0 / 5                                | 0.15                          | 12.6                             | 0.59                    | 3.78                   | No                                 |                                 |                                           |                                               | No      | Consistent with background       |
| Vanadium                          | 50.0 - 50.0                    | 0 / 5                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 25.0                             | NSV                     | 4.72                   |                                    |                                 |                                           |                                               | No      | No screening value, not detected |
| Zinc                              |                                | 5 / 5                  | 10.9                                 | IR15-TW03D-09C                                    | 81.0                            | 0 / 5                                | 0.13                          | 7.60                             | 0.09                    | 42.1                   | No                                 |                                 |                                           |                                               | No      | Consistent with background       |
| Dissolved Metals (UG/L)           |                                |                        |                                      |                                                   |                                 |                                      |                               |                                  |                         |                        |                                    |                                 |                                           |                                               |         |                                  |
| Aluminum, Dissolved               | 1,000 - 1,000                  | 2 / 5                  | 629                                  | IR15-TW03D-09C                                    | NSV                             | /                                    | NSV                           | 434                              | NSV                     | 1886                   | No                                 |                                 |                                           |                                               | No      | Consistent with background       |
| Antimony, Dissolved               | 20.0 - 20.0                    | 0 / 5                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 10.0                             | NSV                     | 3.28                   |                                    |                                 |                                           |                                               | No      | No screening value, not detected |
| Arsenic, Dissolved                | 20.0 - 20.0                    | 0 / 5                  |                                      |                                                   | 36.0                            | /                                    | 0.56                          | 10.0                             | 0.28                    | 5.77                   |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected   |
| Barium, Dissolved                 | 20.0 - 20.0                    | 4 / 5                  | 96.8                                 | IR15-TW03D-09C                                    | NSV                             | /                                    | NSV                           | 35.5                             | NSV                     | 86.2                   | Yes                                |                                 |                                           |                                               | No      | Within background range          |
| Beryllium, Dissolved              | 2.00 - 2.00                    | 2 / 5                  | 0.21                                 | IR15-TW03D-09C                                    | NSV                             | /                                    | NSV                           | 0.66                             | NSV                     | 0.308                  | No                                 |                                 |                                           |                                               | No      | Consistent with background       |
| Cadmium, Dissolved                | 6.00 - 6.00                    | 0 / 5                  |                                      |                                                   | 8.80                            | /                                    | 0.68                          | 3.00                             | 0.34                    | 0.358                  |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected   |
| Calcium, Dissolved <sup>3</sup>   |                                | 5 / 5                  | 44,100                               | IR15-TW04-09C                                     | NSV                             | /                                    | NSV                           | 23,938                           | NSV                     | 69078                  | No                                 |                                 |                                           |                                               | No      | Macronutrient                    |
| Chromium, Dissolved               | 20.0 - 20.0                    | 0 / 5                  |                                      |                                                   | 50.0                            | /                                    | 0.40                          | 10.0                             | 0.20                    | 3.13                   |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected   |
| Cobalt, Dissolved                 | 5.00 - 5.00                    | 4 / 5                  | 3.10                                 | IR15-TW01-09C                                     | NSV                             | /                                    | NSV                           | 1.58                             | NSV                     | 3.4                    | No                                 |                                 |                                           |                                               | No      | Consistent with background       |
| Copper, Dissolved                 | 20.0 - 20.0                    | 3 / 5                  | 4.60                                 | IR15-TW02-09C                                     | 3.10                            | 1 / 5                                | 1.48                          | 6.00                             | 1.94                    | 2.76                   | Yes                                |                                 |                                           |                                               | No      | Within background range          |
| Iron, Dissolved                   |                                | 5 / 5                  | 20,500                               | IR15-TW01-09C                                     | NSV                             | /                                    | NSV                           | 7,426                            | NSV                     | 5999                   | Yes                                |                                 |                                           |                                               | No      | Within background range          |
| Lead, Dissolved                   | 20.0 - 20.0                    | 0 / 5                  |                                      |                                                   | 8.10                            | /                                    | 2.47                          | 10.0                             | 1.23                    | 2.8                    |                                    |                                 |                                           |                                               | No      | Not detected                     |
| Magnesium, Dissolved <sup>3</sup> |                                | 5 / 5                  | 4,740                                | IR15-TW03D-09C                                    | NSV                             | /                                    | NSV                           | 2,042                            | NSV                     | 6363                   | No                                 |                                 |                                           |                                               | No      | Macronutrient                    |
| Manganese, Dissolved              |                                | 5 / 5                  | 236                                  | IR15-TW01-09C                                     | NSV                             | /                                    | NSV                           | 108                              | NSV                     | 214                    | Yes                                |                                 |                                           |                                               | No      | Within background range          |
| Mercury, Dissolved                | 0.20 - 0.20                    | 0 / 5                  |                                      |                                                   | 0.94                            | /                                    | 0.21                          | 0.10                             | 0.11                    | 0.1                    |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected   |
| Nickel, Dissolved                 | 10.0 - 10.0                    | 3 / 5                  | 25.0                                 | IR15-TW01-09C                                     | 8.20                            | /                                    | 1.22                          | 13.7                             | 1.67                    | 7.97                   | Yes                                |                                 |                                           |                                               | No      | Within background range          |
| Potassium, Dissolved <sup>3</sup> |                                | 5 / 5                  | 2,460                                | IR15-TW02-09C                                     | NSV                             | /                                    | NSV                           | 1,284                            | NSV                     | 3277                   | No                                 |                                 |                                           |                                               | No      | Macronutrient                    |
| Selenium, Dissolved               | 20.0 - 20.0                    | 0 / 5                  |                                      |                                                   | 71.0                            | /                                    | 0.28                          | 10.0                             | 0.14                    | 3.14                   |                                    |                                 |                                           |                                               | No      | HQ less than one, not detected   |
| Silver, Dissolved                 | 20.0 - 20.0                    | 0 / 5                  |                                      |                                                   | 0.23                            | /                                    | 86.96                         | 10.0                             | 43                      | 0.77                   |                                    |                                 |                                           |                                               | No      | Not detected                     |
| Sodium, Dissolved <sup>3</sup>    |                                | 5 / 5                  | 8,120                                | IR15-TW03D-09C                                    | NSV                             | /                                    | NSV                           | 4,380                            | NSV                     | 22508                  | No                                 |                                 |                                           |                                               | No      | Macronutrient                    |
| Thallium, Dissolved               | 30.0 - 30.0                    | 0 / 5                  |                                      |                                                   | 21.3                            | /                                    | 1.41                          | 15.0                             | 0.70                    | 3.78                   |                                    |                                 |                                           |                                               | No      | Not detected                     |
| Vanadium, Dissolved               | 50.0 - 50.0                    | 0 / 5                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 25.0                             | NSV                     | 4.72                   |                                    |                                 |                                           |                                               | No      | No screening value, not detected |
| Zinc, Dissolved                   | 50.0 - 50.0                    | 2 / 5                  | 12.1                                 | IR15-TW03D-09C                                    | 81.0                            | /                                    | 0.62                          | 19.4                             | 0.24                    | 42.1                   | No                                 |                                 |                                           |                                               | No      | Consistent with background       |

# NOTES

- 1 Marine screening values
- Count of detected samples exceeding or equaling Screening Value
   Macronutrient Not considered to be a contaminant of potential concern (COPC)

UG/L - Micrograms per liter NSV - No Screening Value Generated by: Sara Kent Checked by: Kelly Taylor

Table F-7
ERS Surface Soil Screen for Site 17
Camp Johnson Consutrcion Area
Focused PA/SI
MCB Camp Leieune. North Carolina

| MCB Camp Lejeune, North Carolina  Chemical                              | Range of Non-<br>Detect Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of Maximum Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>HQ | Arithmetic Mean<br>Concentration | Mean HQ   | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain? | Rationale                                                       |
|-------------------------------------------------------------------------|--------------------------------|------------------------|--------------------------------------|---------------------------------------------|--------------------|--------------------------------------|---------------|----------------------------------|-----------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|---------|-----------------------------------------------------------------|
| Volatile Organic Compounds (UG/KG)                                      | Detect values                  | Detection              | Dottodica                            | Dototou Concontitution                      | valuo              | Exceedance                           | 1.10          | Concontration                    | mountie   | Buonground             | Background:                                | Coroning value                  | 004100                                    | Tidzara Caotioni                                   | Rotairi | Tattonato                                                       |
| 1.1.1-Trichloroethane                                                   | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 100                | /                                    | 0.065         | 2.66                             | 0.027     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| 1,1,2,2-Tetrachloroethane                                               | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 100                | /                                    | 0.065         | 2.66                             | 0.027     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| , , ,                                                                   | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             |                    | · ·                                  | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    |         |                                                                 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113) 1,1,2-Trichloroethane | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV<br>100         | /                                    | 0.065         | 2.66                             | 0.027     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected HQ less than one, not detected |
| , ,                                                                     |                                |                        |                                      |                                             | 100                | /                                    |               |                                  |           |                        |                                            |                                 |                                           |                                                    | No      |                                                                 |
| 1,1-Dichloroethane                                                      | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 100                | /                                    | 0.065         | 2.66                             | 0.027     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| 1,1-Dichloroethene                                                      | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 100                | /                                    | 0.065         | 2.66                             | 0.027     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| 1,2,4-Trichlorobenzene                                                  | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 10.0               | /                                    | 0.65          | 2.66                             | 0.27      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| 1,2-Dibromo-3-chloropropane                                             | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| 1,2-Dibromoethane                                                       | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| 1,2-Dichlorobenzene                                                     | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 10.0               | /                                    | 0.65          | 2.66                             | 0.27      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| 1,2-Dichloroethane                                                      | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 400                | /                                    | 0.016         | 2.66                             | 0.007     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| 1,2-Dichloropropane                                                     | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 700,000            | /                                    | 9.29E-06      | 2.66                             | 0.000     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| 1,3-Dichlorobenzene                                                     | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 10.0               | /                                    | 0.65          | 2.66                             | 0.27      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| 1,4-Dichlorobenzene                                                     | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 10.0               | /                                    | 0.65          | 2.66                             | 0.27      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| 2-Butanone                                                              | 11.0 - 11.0                    | 4 / 5                  | 23.0                                 | IR17-SS04-00-01-09C                         | NSV                | /                                    | NSV           | 10.1                             | NSV       |                        |                                            | 89,600                          | Buchman, 2008                             | 8.48E-05                                           | No      | Supplemental HQ less than one, comm<br>Lab contaminant          |
| 2-Hexanone                                                              | 9.20 - 13.0                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 5.36                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| 4-Methyl-2-pentanone                                                    | 9.20 - 13.0                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 5.36                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Acetone                                                                 | 11.0 - 11.0                    | 4 / 5                  | 900                                  | IR17-SS04-00-01-09C                         | NSV                | /                                    | NSV           | 346                              | NSV       |                        |                                            | 2500                            | Buchman, 2008                             | 4.45E-02                                           | No      | Supplemental HQ less than one, comm lab contaminant             |
| Benzene                                                                 | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 50.0               | /                                    | 0.13          | 2.66                             | 0.053     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| Bromodichloromethane                                                    | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Bromoform                                                               | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Bromomethane                                                            | 9.20 - 11.0                    | 0 / 3                  |                                      |                                             | NSV                | /                                    | NSV           | 4.98                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Carbon disulfide                                                        | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Carbon tetrachloride                                                    | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 1,000,000          | /                                    | 6.50E-06      | 2.66                             | 2.663E-06 |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| Chlorobenzene                                                           | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 50.0               | /                                    | 0.13          | 2.66                             | 0.053     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| Chloroethane                                                            | 9.20 - 13.0                    | 0 / 4                  |                                      |                                             | 100                | /                                    | 0.13          | 5.36                             | 0.054     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| Chloroform                                                              | 4.80 - 6.50                    | 1 / 4                  | 13.0                                 | IR17-SS02-00-01-09C                         | 1.00               | 1 / 4                                | 13.0          | 5.34                             | 5.34      |                        |                                            |                                 |                                           |                                                    | No      | Common lab contaminant                                          |
| Chloromethane                                                           | 9.20 - 11.0                    | 1 / 4                  | 6.50                                 | IR17-SS01-00-01-09C                         | NSV                | /                                    | NSV           | 5.36                             | NSV       |                        |                                            | 10,400                          | Buchman, 2008                             | 5.11E-04                                           | No      | Supplemental HQ less than one                                   |
| cis-1,2-Dichloroethene                                                  | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| cis-1,3-Dichloropropene                                                 | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Cyclohexane                                                             | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 100                | /                                    | 0.065         | 2.66                             | 0.027     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| Dibromochloromethane                                                    | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Dichlorodifluoromethane (Freon-12)                                      | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Ethylbenzene                                                            | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 50.0               | /                                    | 0.13          | 2.66                             | 0.053     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| Isopropylbenzene                                                        | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Methyl acetate                                                          | 6.50 - 6.50                    | 4 / 5                  | 70.0                                 | IR17-SS04-00-01-09C                         | NSV                | /                                    | NSV           | 17.6                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | Uncertainty, no screening value                                 |
| Methylcyclohexane                                                       | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Methylene chloride                                                      | 9.20 - 13.0                    | 0 / 4                  |                                      |                                             | 2,000              | /                                    | 0.0065        | 5.36                             | 0.003     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| Methyl-tert-butyl ether (MTBE)                                          | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Styrene                                                                 | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 100                | /                                    | 0.065         | 2.66                             | 0.027     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| Tetrachloroethene                                                       | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 10.0               | /                                    | 0.65          | 2.66                             | 0.27      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| Toluene                                                                 | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 50.0               | /                                    | 0.13          | 2.66                             | 0.053     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| trans-1,2-Dichloroethene                                                | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 100                | /                                    | 0.065         | 2.66                             | 0.027     |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                  |
| trans-1,3-Dichloropropene                                               | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |
| Trichloroethene                                                         | 4.60 - 6.50                    | 0 / 4                  |                                      |                                             | 1.00               | /                                    | 6.50          | 2.66                             | 2.66      |                        |                                            |                                 |                                           |                                                    | No      | Not detected                                                    |
| Trichlorofluoromethane(Freon-11)                                        | 4.60 - 6.50                    | 0 / 4                  |                                      | +                                           | NSV                | /                                    | NSV           | 2.66                             | NSV       |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                                |

Table F-7
ERS Surface Soil Screen for Site 17
Camp Johnson Consutrcion Area
Focused PA/SI

| MCB Camp Lejeune, North Carolina       |                                |                           |                                |                                                |                    |                                      |               |                                  |         |                        |                                            |                                 |                                           |                                                    |         |                                  |
|----------------------------------------|--------------------------------|---------------------------|--------------------------------|------------------------------------------------|--------------------|--------------------------------------|---------------|----------------------------------|---------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|---------|----------------------------------|
| Chemical                               | Range of Non-<br>Detect Values | Frequency of<br>Detection | Maximum Concentration Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>HQ | Arithmetic Mean<br>Concentration | Mean HQ | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain? | Rationale                        |
| Vinyl chloride                         | 9.20 - 13.0                    | 0 / 4                     |                                |                                                | 10.0               | /                                    | 1.30          | 5.36                             | 0.54    |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| Xylene, total                          | 4.60 - 6.50                    | 0 / 4                     |                                |                                                | 50.0               | /                                    | 0.13          | 2.66                             | 0.053   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Semivolatile Organic Compounds (UG/KG) | <u> </u>                       | 1                         | <u> </u>                       |                                                | I                  |                                      | ı             | l .                              | I       | 1                      |                                            |                                 |                                           | <u> </u>                                           | l       | ·                                |
| 1,1-Biphenyl                           | 180 - 240                      | 0 / 5                     |                                |                                                | 60,000             | /                                    | 0.0040        | 96.0                             | 0.002   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| 2,2'-Oxybis(1-chloropropane)           | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 2,4,5-Trichlorophenol                  | 180 - 240                      | 0 / 5                     |                                |                                                | 4,000              | /                                    | 0.060         | 96.0                             | 0.024   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| 2,4-Dichlorophenol                     | 180 - 240                      | 0 / 5                     |                                |                                                | 3.00               | /                                    | 80.0          | 96.0                             | 32      |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| 2,4-Dimethylphenol                     | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 2,4-Dinitrophenol                      | 180 - 240                      | 0 / 5                     |                                |                                                | 20,000             | /                                    | 0.012         | 96.0                             | 0.005   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| 2,4-Dinitrotoluene                     | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 2,6-Dinitrotoluene                     | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 2-Chloronaphthalene                    | 180 - 240                      | 0 / 5                     |                                |                                                | 1,000              | /                                    | 0.24          | 96.0                             | 0.096   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| 2-Chlorophenol                         | 180 - 240                      | 0 / 5                     |                                |                                                | 10.0               | /                                    | 24.0          | 96.0                             | 9.6     |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| 2-Methylnaphthalene                    | 180 - 240                      | 0 / 5                     |                                |                                                | 29,000             | /                                    | 0.0083        | 96.0                             | 0.003   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| 2-Methylphenol                         | 180 - 240                      | 0 / 5                     |                                |                                                | 500                | /                                    | 0.48          | 96.0                             | 0.19    |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| 2-Nitroaniline                         | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 2-Nitrophenol                          | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 3,3'-Dichlorobenzidine                 | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 3-Nitroaniline                         | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 4,6-Dinitro-2-methylphenol             | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 4-Bromophenyl-phenylether              | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 4-Chloro-3-methylphenol                | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 4-Chloroaniline                        | 180 - 240                      | 0 / 5                     |                                |                                                | 20,000             | /                                    | 0.012         | 96.0                             | 0.005   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| 4-Chlorophenyl-phenylether             | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 4-Methylphenol                         | 180 - 240                      | 0 / 5                     |                                |                                                | 500                | /                                    | 0.48          | 96.0                             | 0.19    |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| 4-Nitroaniline                         | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 4-Nitrophenol                          | 180 - 240                      | 0 / 5                     |                                |                                                | 7,000              | /                                    | 0.034         | 96.0                             | 0.014   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Acenaphthene                           | 180 - 240                      | 0 / 5                     |                                |                                                | 29,000             | /                                    | 0.0083        | 96.0                             | 0.003   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Acenaphthylene                         | 180 - 240                      | 0 / 5                     |                                |                                                | 29,000             | /                                    | 0.0083        | 96.0                             | 0.003   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Acetophenone                           | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | Not detected, no screening value |
| Anthracene                             | 180 - 240                      | 0 / 5                     |                                |                                                | 29,000             | /                                    | 0.0083        | 96.0                             | 0.003   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Atrazine                               | 180 - 240                      | 0 / 5                     |                                |                                                | 0.050              | /                                    | 4,800         | 96.0                             | 1920    |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| Benzaldehyde                           | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| Benzo(a)anthracene                     | 35.0 - 49.0                    | 0 / 5                     |                                |                                                | 1,100              | /                                    | 0.045         | 19.1                             | 0.017   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Benzo(a)pyrene                         | 35.0 - 49.0                    | 0 / 5                     |                                |                                                | 1,100              | /                                    | 0.045         | 19.1                             | 0.017   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Benzo(b)fluoranthene                   | 35.0 - 49.0                    | 0 / 5                     |                                |                                                | 1,100              | /                                    | 0.045         | 19.1                             | 0.017   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Benzo(g,h,i)perylene                   | 180 - 240                      | 0 / 5                     |                                |                                                | 1,100              | /                                    | 0.22          | 96.0                             | 0.087   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Benzo(k)fluoranthene                   | 180 - 240                      | 0 / 5                     |                                |                                                | 1,100              | /                                    | 0.22          | 96.0                             | 0.087   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| bis(2-Chloroethoxy)methane             | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| bis(2-Chloroethyl)ether                | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| bis(2-Ethylhexyl)phthalate             | 180 - 180                      | 1 / 5                     | 96.0                           | IR17-SS01-00-01-09C                            | 100                | 0 / 5                                | 0.96          | 91.2                             | 0.912   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, detected       |
| Butylbenzylphthalate                   | 180 - 240                      | 0 / 5                     |                                |                                                | 100                | /                                    | 2.40          | 96.0                             | 0.96    |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| Caprolactam                            | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| Carbazole                              | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| Chrysene                               | 180 - 240                      | 0 / 5                     |                                |                                                | 1,100              | /                                    | 0.22          | 96.0                             | 0.087   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Dibenz(a,h)anthracene                  | 35.0 - 49.0                    | 0 / 5                     |                                |                                                | 1,100              | /                                    | 0.045         | 19.1                             | 0.017   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Dibenzofuran                           | 180 - 240                      | 0 / 5                     |                                |                                                | NSV                | /                                    | NSV           | 96.0                             | NSV     |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| Diethylphthalate                       | 180 - 240                      | 0 / 5                     |                                |                                                | 100,000            | /                                    | 0.0024        | 96.0                             | 0.001   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Dimethyl phthalate                     | 180 - 240                      | 0 / 5                     |                                |                                                | 200,000            | /                                    | 0.0024        | 96.0                             | 0.000   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Dimenty phinade                        | 100 - 240                      | 010                       |                                |                                                | 200,000            | /                                    | 0.0012        | 70.0                             | 0.000   |                        |                                            |                                 |                                           |                                                    | INU     | The 1633 than one, not detected  |

**Table F-7**ERS Surface Soil Screen for Site 17
Camp Johnson Consutrcion Area
Focused PA/SI

| MCB Camp Lejeune, Norti | h Carolina |
|-------------------------|------------|
|-------------------------|------------|

| мсв Camp Lejeune, North Carolina            |               |              | Maximum       |                        |           |                         |          |                 |         |                                       | Maximum          |                 | Supplemental    | Supplemental    |                                  |
|---------------------------------------------|---------------|--------------|---------------|------------------------|-----------|-------------------------|----------|-----------------|---------|---------------------------------------|------------------|-----------------|-----------------|-----------------|----------------------------------|
|                                             | Range of Non- | Frequency of | Concentration | Sample ID of Maximum   | Screening | Frequency of            | Maximum  | Arithmetic Mean |         | 2 x Mean                              | Exceeds 2 x Mean | Supplemental    | Screening Value | Screening Value |                                  |
| Chemical                                    | Detect Values | Detection    | Detected      | Detected Concentration | Value     | Exceedance <sup>1</sup> | HQ       | Concentration   | Mean HQ | Background                            | Background?      | Screening Value | Source          |                 | Rationale                        |
| Di-n-butylphthalate                         | 180 - 180     | 1 / 5        | 93.0          | IR17-SS01-00-01-09C    | 200,000   | 0 / 5                   | 4.65E-04 | 90.6            | 0.000   |                                       |                  |                 |                 | No              | HQ less than one, detected       |
| Di-n-octylphthalate                         | 180 - 240     | 0 / 5        |               |                        | 100       | /                       | 2.40     | 96.0            | 0.96    |                                       |                  |                 |                 | No              | Not detected                     |
| Fluoranthene                                | 180 - 240     | 0 / 5        |               |                        | 1,100     | /                       | 0.22     | 96.0            | 0.087   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Fluorene                                    | 180 - 240     | 0 / 5        |               |                        | 29,000    | /                       | 0.0083   | 96.0            | 0.003   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Hexachlorobenzene                           | 180 - 240     | 0 / 5        |               |                        | 2.50      | /                       | 96.0     | 96.0            | 38      |                                       |                  |                 |                 | No              | Not detected                     |
| Hexachlorobutadiene                         | 180 - 240     | 0 / 5        |               |                        | NSV       | /                       | NSV      | 96.0            | NSV     |                                       |                  |                 |                 | No              | No screening value, not detected |
| Hexachlorocyclopentadiene                   | 180 - 240     | 0 / 5        |               |                        | 10,000    | /                       | 0.024    | 96.0            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Hexachloroethane                            | 180 - 240     | 0 / 5        |               |                        | 100       | /                       | 2.40     | 96.0            | 0.96    |                                       |                  |                 |                 | No              | Not detected                     |
| Indeno(1,2,3-cd)pyrene                      | 35.0 - 49.0   | 0 / 5        |               |                        | 1,100     | /                       | 0.045    | 19.1            | 0.017   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Isophorone                                  | 35.0 - 49.0   | 0 / 5        |               |                        | NSV       | /                       | NSV      | 19.1            | NSV     |                                       |                  |                 |                 | No              | No screening value, not detected |
| Naphthalene                                 | 180 - 240     | 0 / 5        |               |                        | 29,000    | /                       | 0.0083   | 96.0            | 0.003   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| n-Nitroso-di-n-propylamine                  | 35.0 - 49.0   | 0 / 5        |               |                        | NSV       | /                       | NSV      | 19.1            | NSV     |                                       |                  |                 |                 | No              | No screening value, not detected |
| n-Nitrosodiphenylamine                      | 180 - 240     | 0 / 5        |               |                        | 20,000    | /                       | 0.012    | 96.0            | 0.005   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Nitrobenzene                                | 180 - 240     | 0 / 5        |               |                        | 40,000    | /                       | 0.0060   | 96.0            | 0.002   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Pentachlorophenol                           | 180 - 240     | 0 / 5        |               |                        | 2,100     | /                       | 0.11     | 96.0            | 0.046   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Phenanthrene                                | 180 - 240     | 0 / 5        |               |                        | 29,000    | /                       | 0.0083   | 96.0            | 0.003   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Phenol                                      | 180 - 240     | 0 / 5        |               |                        | 50.0      | /                       | 4.80     | 96.0            | 1.92    |                                       |                  |                 |                 | No              | Not detected                     |
| Pyrene                                      | 180 - 240     | 0 / 5        |               |                        | 1,100     | /                       | 0.22     | 96.0            | 0.087   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Pesticide/Polychlorinated Biphenyls (UG/KG) |               |              |               | <u> </u>               |           | I.                      | 1        | <u> </u>        |         |                                       |                  |                 |                 | <u>l</u>        |                                  |
| 4,4'-DDD                                    | 1.70 - 2.50   | 0 / 5        |               |                        | 21.0      | /                       | 0.12     | 0.96            | 0.046   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| 4,4'-DDE                                    | 1.80 - 1.80   | 4 / 5        | 2.20          | IR17-SS05-00-01-09C    | 21.0      | 0 / 5                   | 0.10     | 1.13            | 0.054   |                                       |                  |                 |                 | No              | HQ less than one, detected       |
| 4,4'-DDT                                    | 1.80 - 2.50   | 3 / 5        | 1.90          | IR17-SS02-00-01-09C    | 21.0      | 0 / 5                   | 0.090    | 1.19            | 0.057   |                                       |                  |                 |                 | No              | HQ less than one, detected       |
| Aldrin                                      | 1.70 - 2.50   | 0 / 5        |               |                        | 2.50      | /                       | 1.00     | 0.96            | 0.38    |                                       |                  |                 |                 | No              | HQ less than one, detected       |
| alpha-BHC                                   | 1.70 - 2.50   | 0 / 5        |               |                        | 2.50      | /                       | 1.00     | 0.96            | 0.38    |                                       |                  |                 |                 | No              | HQ less than one, detected       |
| alpha-Chlordane                             | 1.70 - 2.50   | 0 / 5        |               |                        | 100       | /                       | 0.025    | 0.96            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Aroclor-1016                                | 17.0 - 24.0   | 0 / 5        |               |                        | 20.0      | /                       | 1.20     | 9.20            | 0.46    |                                       |                  |                 |                 | No              | Not detected                     |
| Aroclor-1221                                | 17.0 - 24.0   | 0 / 5        |               |                        | 20.0      | /                       | 1.20     | 9.20            | 0.46    |                                       |                  |                 |                 | No              | Not detected                     |
| Aroclor-1232                                | 17.0 - 24.0   | 0 / 5        |               |                        | 20.0      | /                       | 1.20     | 9.20            | 0.46    |                                       |                  |                 |                 | No              | Not detected                     |
| Aroclor-1242                                | 17.0 - 24.0   | 0 / 5        |               |                        | 20.0      | /                       | 1.20     | 9.20            | 0.46    |                                       |                  |                 |                 | No              | Not detected                     |
| Aroclor-1248                                | 17.0 - 24.0   | 0 / 5        |               |                        | 20.0      | /                       | 1.20     | 9.20            | 0.46    |                                       |                  |                 |                 | No              | Not detected                     |
| Aroclor-1254                                | 17.0 - 24.0   | 0 / 5        |               |                        | 20.0      | /                       | 1.20     | 9.20            | 0.46    |                                       |                  |                 |                 | No              | Not detected                     |
| Aroclor-1260                                | 17.0 - 24.0   | 0 / 5        |               |                        | 20.0      | /                       | 1.20     | 9.20            | 0.46    |                                       |                  |                 |                 | No              | Not detected                     |
| beta-BHC                                    | 1.70 - 2.50   | 0 / 5        |               |                        | 1.00      | /                       | 2.50     | 0.96            | 0.96    |                                       |                  |                 |                 | No              | Not detected                     |
| delta-BHC                                   | 1.70 - 2.50   | 0 / 5        |               |                        | 100       | /                       | 0.025    | 0.96            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Dieldrin                                    | 1.70 - 2.50   | 0 / 5        |               |                        | 4.90      | /                       | 0.51     | 0.96            | 0.20    |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Endosulfan I                                | 1.70 - 2.50   | 0 / 5        |               |                        | 100       | /                       | 0.025    | 0.96            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Endosulfan II                               | 1.70 - 2.50   | 0 / 5        |               |                        | 100       | /                       | 0.025    | 0.96            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Endosulfan sulfate                          | 1.70 - 2.50   | 0 / 5        |               |                        | 100       | /                       | 0.025    | 0.96            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Endrin                                      | 1.70 - 2.50   | 0 / 5        |               |                        | 1.00      | /                       | 2.50     | 0.96            | 0.96    |                                       |                  |                 |                 | No              | Not detected                     |
| Endrin aldehyde                             | 1.70 - 2.50   | 0 / 5        |               |                        | 100       | /                       | 0.025    | 0.96            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Endrin ketone                               | 1.70 - 2.50   | 0 / 5        |               |                        | 100       | /                       | 0.025    | 0.96            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| gamma-BHC (Lindane)                         | 1.70 - 2.50   | 0 / 5        |               |                        | 0.050     | /                       | 50.0     | 0.96            | 19      |                                       |                  |                 |                 | No              | Not detected                     |
| gamma-Chlordane                             | 1.70 - 2.50   | 0 / 5        |               |                        | 100       | /                       | 0.025    | 0.96            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Heptachlor                                  | 1.70 - 2.50   | 0 / 5        |               |                        | 100       | /                       | 0.025    | 0.96            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Heptachlor epoxide                          | 1.70 - 2.50   | 0 / 5        |               |                        | 100       | /                       | 0.025    | 0.96            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Methoxychlor                                | 1.70 - 2.50   | 0 / 5        |               |                        | 100       | /                       | 0.025    | 0.96            | 0.010   |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Toxaphene                                   | 35.0 - 49.0   | 0 / 5        |               |                        | 100       | /                       | 0.49     | 19.1            | 0.19    |                                       |                  |                 |                 | No              | HQ less than one, not detected   |
| Inorganics (MG/KG)                          | L             | 1            |               | 1                      |           |                         | 1        |                 |         |                                       | •                |                 |                 |                 | - <del>-</del>                   |
| Aluminum                                    |               | 5 / 5        | 7,580         | IR17-SS01-00-01-09C    | 50.0      | 5 / 5                   | 152      | 6,276           | 126     | 5,487                                 | Yes              |                 |                 | No              | Within background range          |
| Ш                                           |               | ı            |               | <u> </u>               |           | 1                       | 1        | 1               | l .     | · · · · · · · · · · · · · · · · · · · | I                | l .             |                 | 1 1             |                                  |

**Table F-7**ERS Surface Soil Screen for Site 17
Camp Johnson Consutrcion Area

MCB Camp Lejeune, North Carolina

Focused PA/SI

| Chemical               | Range of Non-<br>Detect Values | Frequency of<br>Detection | Maximum<br>Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>HQ | Arithmetic Mean<br>Concentration | Mean HQ | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain? | Rationale                  |
|------------------------|--------------------------------|---------------------------|--------------------------------------|------------------------------------------------|--------------------|--------------------------------------|---------------|----------------------------------|---------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|---------|----------------------------|
| Antimony               | 1.50 - 2.10                    | 0 / 5                     |                                      |                                                | 0.27               | /                                    | 7.78          | 0.81                             | 3       | 0.447                  |                                            |                                 |                                           |                                                    | No      | Not detected               |
| Arsenic                |                                | 5 / 5                     | 4.90                                 | IR17-SS01-00-01-09C                            | 18.0               | 0 / 5                                | 0.27          | 2.20                             | 0.12    | 0.626                  | Yes                                        |                                 |                                           |                                                    | No      | HQ less than one, detected |
| Barium                 |                                | 5 / 5                     | 21.3                                 | IR17-SS02-00-01-09C                            | 330                | 0 / 5                                | 0.065         | 16.6                             | 0.050   | 14.5                   | Yes                                        |                                 |                                           |                                                    | No      | Wtithin background range   |
| Beryllium              | 0.15 - 0.21                    | 3 / 5                     | 0.16                                 | IR17-SS02-00-01-09C                            | 21.0               | 0 / 5                                | 0.0076        | 0.12                             | 0.006   | 0.10                   | Yes                                        |                                 |                                           |                                                    | No      | HQ less than one, detected |
| Cadmium                | 0.44 - 0.64                    | 1 / 5                     | 0.020                                | IR17-SS02-00-01-09C                            | 0.36               | 0 / 5                                | 0.056         | 0.20                             | 0.56    | 0.033                  | No                                         |                                 |                                           |                                                    | No      | Consistent with background |
| Calcium <sup>2</sup>   |                                | 5 / 5                     | 372                                  | IR17-SS01-00-01-09C                            | NSV                | /                                    | NSV           | 189                              | NSV     | 6360                   | No                                         |                                 |                                           |                                                    | No      | Consistent with background |
| Chromium               |                                | 5 / 5                     | 8.30                                 | IR17-SS01-00-01-09C                            | 26.0               | 0 / 5                                | 0.32          | 4.36                             | 0.17    | 6.05                   | Yes                                        |                                 |                                           |                                                    | No      | Within background range    |
| Cobalt                 | 0.54 - 0.54                    | 4 / 5                     | 0.33                                 | IR17-SS04-00-01-09C                            | 13.0               | 0 / 5                                | 0.025         | 0.28                             | 0.022   | 0.29                   | Yes                                        |                                 |                                           |                                                    | No      | Within background range    |
| Copper                 |                                | 5 / 5                     | 1.00                                 | IR17-SS01-00-01-09C                            | 28.0               | 0 / 5                                | 0.036         | 0.87                             | 0.031   | 4.83                   | No                                         |                                 |                                           |                                                    | No      | Consistent with background |
| Iron                   |                                | 5 / 5                     | 7,640                                | IR17-SS01-00-01-09C                            | 200                | 5 / 5                                | 38.2          | 3,036                            | 15      | 3245                   | Yes                                        |                                 |                                           |                                                    | No      | Within background range    |
| Lead                   |                                | 5 / 5                     | 17.1                                 | IR17-SS01-00-01-09C                            | 11.0               | 1 / 5                                | 1.55          | 10.4                             | 0.94    | 12.3                   | Yes                                        |                                 |                                           |                                                    | No      | Within background range    |
| Magnesium <sup>2</sup> |                                | 5 / 5                     | 667                                  | IR17-SS01-00-01-09C                            | NSV                | /                                    | NSV           | 277                              | NSV     | 238                    | Yes                                        |                                 |                                           |                                                    | No      | Macronutrient              |
| Manganese              |                                | 5 / 5                     | 10.8                                 | IR17-SS04-00-01-09C                            | 220                | 0 / 5                                | 0.049         | 8.76                             | 0.040   | 13.7                   | No                                         |                                 |                                           |                                                    | No      | Consistent with background |
| Mercury                | 0.033 - 0.033                  | 2 / 5                     | 0.052                                | IR17-SS01-00-01-09C                            | 0.10               | 0 / 5                                | 0.52          | 0.029                            | 0.29    | 0.081                  | No                                         |                                 |                                           |                                                    | No      | Consistent with background |
| Nickel                 |                                | 5 / 5                     | 2.00                                 | IR17-SS02-00-01-09C                            | 38.0               | 0 / 5                                | 0.053         | 1.56                             | 0.041   | 1.21                   | Yes                                        |                                 |                                           |                                                    | No      | HQ less than one, detected |
| Potassium <sup>2</sup> |                                | 5 / 5                     | 495                                  | IR17-SS01-00-01-09C                            | NSV                | /                                    | NSV           | 195                              | NSV     | 116                    | Yes                                        |                                 |                                           |                                                    | No      | Macronutrient              |
| Selenium               | 1.50 - 1.50                    | 1 / 5                     | 0.69                                 | IR17-SS01-00-01-09C                            | 0.52               | 1 / 5                                | 1.33          | 0.74                             | 1.42    | 0.56                   | Yes                                        |                                 |                                           |                                                    | No      | Within background range    |
| Silver                 | 1.50 - 1.50                    | 1 / 5                     | 0.40                                 | IR17-SS01-00-01-09C                            | 4.20               | 0 / 5                                | 0.095         | 0.68                             | 0.16    | 0.14                   | Yes                                        |                                 |                                           |                                                    | No      | Within background range    |
| Sodium <sup>2</sup>    | 188 - 188                      | 4 / 5                     | 1,870                                | IR17-SS01-00-01-09C                            | NSV                | /                                    | NSV           | 404                              | NSV     | 80.9                   | Yes                                        |                                 |                                           |                                                    | No      | Macronutrient              |
| Thallium               | 2.20 - 3.20                    | 0 / 5                     |                                      |                                                | 1.00               | /                                    | 3.20          | 1.23                             | 1.23    | 0.4                    |                                            |                                 |                                           |                                                    | No      | Not detected               |
| Vanadium               |                                | 5 / 5                     | 20.8                                 | IR17-SS01-00-01-09C                            | 7.80               | 1 / 5                                | 2.67          | 9.16                             | 1.17    | 8.9                    | Yes                                        |                                 |                                           |                                                    | No      | Within background range    |
| Zinc                   | 5.40 - 5.40                    | 4 / 5                     | 5.20                                 | IR17-SS02-00-01-09C                            | 46.0               | 0 / 5                                | 0.11          | 4.34                             | 0.094   | 10.8                   | No                                         |                                 |                                           |                                                    | No      | Consistent with background |

# NOTES

1 - Count of detected samples exceeding or equaling Screening Value

2 - Macronutrient - Not considered to be a contaminant of potential concern (COPC)

HQ - Hazard Quotient

NSV - No Screening Value

MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram

Page 4 of 4

Table F-8
ERS Subsurface Soil Screen for Site 17
Camp Johnson Consutrcion Area
Focused PA/SI

|                                                  |               |           | Maximum       |                        |           |              | Maximum  |                 | Mean      |            | Maximum          |                 |                        | Supplemental    |         |                                           |
|--------------------------------------------------|---------------|-----------|---------------|------------------------|-----------|--------------|----------|-----------------|-----------|------------|------------------|-----------------|------------------------|-----------------|---------|-------------------------------------------|
| Chamical                                         | Range of Non- |           | Concentration | Sample ID of Maximum   | Screening | Frequency of | Hazard   | Arithmetic Mean | Hazard    | 2 x Mean   | Exceeds 2 x Mean |                 | Supplemental Screening | Screening Value | Dotoin? | Detionals                                 |
| Chemical                                         | Detect Values | Detection | Detected      | Detected Concentration | Value     | Exceedance'  | Quotient | Concentration   | Quotient  | Background | Background?      | Screening Value | Value Source           | Hazard Quotient | Retain? | Rationale                                 |
| Volatile Organic Compounds (UG/KG)               | 1             |           |               | 1                      |           |              | 1        |                 | 1         | T          | Т                | T               | 1                      |                 |         | Tue.                                      |
| 1,1,1-Trichloroethane                            | 1.40 - 2.20   | 0 / 5     |               |                        | 100       | /            | 0.022    | 0.91            | 0.009     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| 1,1,2,2-Tetrachloroethane                        | 1.40 - 2.20   | 0 / 5     |               |                        | 100       | /            | 0.022    | 0.91            | 0.009     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| 1,1,2-Trichloroethane                            | 1.40 - 2.20   | 0 / 5     |               |                        | 100       | /            | 0.022    | 0.91            | 0.009     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| 1,1-Dichloroethane                               | 1.40 - 2.20   | 0 / 5     |               |                        | 100       | /            | 0.022    | 0.91            | 0.009     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| 1,1-Dichloroethene                               | 1.40 - 2.20   | 0 / 5     |               |                        | 100       | /            | 0.022    | 0.91            | 0.009     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| 1,2,4-Trichlorobenzene                           | 1.40 - 2.00   | 1 / 5     | 1.10          | IR17-SB01-2-4-09C      | 10.0      | 0 / 5        | 0.11     | 0.91            | 0.09      |            |                  |                 |                        |                 | No      | HQ less than one, detected                |
| 1,2-Dibromo-3-chloropropane                      | 1.40 - 2.00   | 1 / 5     | 1.60          | IR17-SB01-2-4-09C      | NSV       | /            | NSV      | 1.01            | NSV       |            |                  |                 |                        |                 | No      | Uncertainty, no screening value           |
| 1,2-Dibromoethane                                | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| 1,2-Dichlorobenzene                              | 1.40 - 2.20   | 0 / 5     |               |                        | 10.0      | /            | 0.22     | 0.91            | 0.091     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| 1,2-Dichloroethane                               | 1.40 - 2.20   | 0 / 5     |               |                        | 400       | /            | 0.0055   | 0.91            | 0.002     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| 1,2-Dichloropropane                              | 1.40 - 2.20   | 0 / 5     |               |                        | 700,000   | /            | 3.14E-06 | 0.91            | 1.300E-06 |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| 1,3-Dichlorobenzene                              | 1.40 - 2.20   | 0 / 5     |               |                        | 10.0      | /            | 0.22     | 0.91            | 0.091     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
|                                                  |               |           |               |                        |           |              |          |                 |           |            |                  |                 |                        |                 |         | HQ less than one, not detected            |
| 1,4-Dichlorobenzene                              | 1.40 - 2.20   | 0 / 5     |               |                        | 10.0      | /            | 0.22     | 0.91            | 0.091     |            |                  |                 |                        |                 | No      |                                           |
| 0.5.1                                            | 0.00          | 0 : -     |               | ID47 6500 0            |           |              |          |                 |           | 1          |                  |                 | D /                    | F               |         | Supplemental HQ less than one, common lab |
| 2-Butanone                                       | 2.90 - 3.50   | 2 / 5     | 2.60          | IR17-SB03-2-7-09C      | NSV       | /            | NSV      | 1.77            | NSV       |            |                  | 89,600          | Buchman, 2008          | 5.42E-06        | No      | contaminant                               |
| 2-Hexanone                                       | 2.90 - 4.40   | 0 / 5     |               |                        | NSV       | /            | NSV      | 1.80            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| 4-Methyl-2-pentanone                             | 2.90 - 4.40   | 0 / 5     |               |                        | NSV       | /            | NSV      | 1.80            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
|                                                  |               |           |               |                        |           |              |          |                 |           |            |                  |                 |                        |                 |         | Supplemental HQ less than one, common lab |
| Acetone                                          | 2.90 - 3.50   | 2 / 5     | 99.0          | IR17-SB03-2-7-09C      | NSV       | /            | NSV      | 34.8            | NSV       |            |                  | 2500            | Buchman, 2008          | 1.86E-02        | No      | contaminant                               |
| Benzene                                          | 1.40 - 2.20   | 0 / 5     |               |                        | 50.0      | /            | 0.044    | 0.91            | 0.018     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| Bromodichloromethane                             | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| Bromoform                                        | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| Bromomethane                                     | 2.90 - 4.40   | 0 / 5     |               |                        | NSV       | /            | NSV      | 1.80            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| Carbon disulfide                                 | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
|                                                  |               |           |               |                        |           |              |          |                 |           |            |                  |                 |                        |                 |         | HQ less than one, not detected            |
| Carbon tetrachloride                             | 1.40 - 2.20   | 0 / 5     |               |                        | 1,000,000 | /            | 2.20E-06 | 0.91            | 9.100E-07 |            |                  |                 |                        |                 | No      |                                           |
| Chlorobenzene                                    | 1.40 - 2.20   | 0 / 5     |               |                        | 50.0      | /            | 0.044    | 0.91            | 0.018     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| Chloroethane                                     | 2.90 - 4.40   | 0 / 5     |               |                        | 100       | /            | 0.044    | 1.80            | 0.018     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| Chloroform                                       | 1.70 - 2.00   | 2 / 5     | 4.90          | IR17-SB01-2-4-09C      | 1.00      | 2 / 5        | 4.90     | 1.99            | 1.99      |            |                  |                 |                        |                 | No      | Common lab contaminant                    |
| Chloromethane                                    | 2.90 - 4.40   | 0 / 5     |               |                        | NSV       | /            | NSV      | 1.80            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| cis-1,2-Dichloroethene                           | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| cis-1,3-Dichloropropene                          | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| Cyclohexane                                      | 1.40 - 2.20   | 0 / 5     |               |                        | 100       | /            | 0.022    | 0.91            | 0.009     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| Dibromochloromethane                             | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| Dichlorodifluoromethane (Freon-12)               | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| Ethylbenzene                                     | 1.40 - 2.20   | 0 / 5     |               |                        | 50.0      | /            | 0.044    | 0.91            | 0.018     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| Isopropylbenzene                                 | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| Methyl acetate                                   | 1.40 - 1.40   | 4 / 5     | 96.0          | IR17-SB03-2-7-09C      | NSV       | /            | NSV      | 20.9            | NSV       |            |                  |                 |                        |                 | No      | Uncertainty, no screening value           |
| Methylcyclohexane                                | 1.40 - 1.40   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
|                                                  |               |           | <br>1 E0      | <br>ID17 CD02 2 7 00C  |           |              |          |                 |           |            |                  |                 |                        |                 |         | *                                         |
| Methylene chloride                               | 1.40 - 3.30   | 1 / 5     | 1.50          | IR17-SB03-2-7-09C      | 2,000     | 0 / 5        | 7.50E-04 | 1.17            | 0.001     |            |                  |                 |                        |                 | No      | HQ less than one, detected                |
| Methyl-tert-butyl ether (MTBE)                   | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| Styrene                                          | 1.40 - 2.20   | 0 / 5     |               |                        | 100       | /            | 0.022    | 0.91            | 0.009     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| Tetrachloroethene                                | 1.40 - 2.20   | 0 / 5     |               |                        | 10.0      | /            | 0.22     | 0.91            | 0.091     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| Toluene                                          | 1.40 - 2.20   | 0 / 5     |               |                        | 50.0      | /            | 0.044    | 0.91            | 0.018     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| trans-1,2-Dichloroethene                         | 1.40 - 2.20   | 0 / 5     |               |                        | 100       | /            | 0.022    | 0.91            | 0.009     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| trans-1,3-Dichloropropene                        | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| Trichloroethene                                  | 1.40 - 2.20   | 0 / 5     |               |                        | 1.00      | /            | 2.20     | 0.91            | 0.91      |            |                  |                 |                        |                 | No      | Not detected                              |
| Frichlorofluoromethane(Freon-11)                 | 1.40 - 2.20   | 0 / 5     |               |                        | NSV       | /            | NSV      | 0.91            | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| /inyl chloride                                   | 2.90 - 3.50   | 0 / 4     |               |                        | 10.0      | /            | 0.35     | 1.65            | 0.17      |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| Xylene, total                                    | 1.40 - 2.20   | 0 / 5     |               |                        | 50.0      | /            | 0.044    | 0.91            | 0.018     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| Semivolatile Organic Compounds (UG/KG)           | 1.10 2.20     | 010       |               | <u> </u>               | 50.0      | 1 , -        | J.UT#    | 0.71            | 0.010     | 1          | 1                | 1               | <u> </u>               |                 | 140     |                                           |
| • • • • •                                        | 100 220       | 0 / 5     |               |                        | 60,000    | 1            | 0.004    | 101             | 0.002     | 1          |                  | 1               | <u> </u>               | 1               | No      | HQ less than one, not detected            |
| ,1-Biphenyl                                      | 190 - 220     | 0 / 5     |               |                        | 60,000    | /            | 0.004    | 101             | 0.002     |            |                  |                 |                        |                 | No      |                                           |
| 2,2'-Oxybis(1-chloropropane)                     | 190 - 220     | 0 / 5     |               |                        | NSV       | /            | NSV      | 101             | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| 2,4,5-Trichlorophenol                            | 190 - 220     | 0 / 5     |               |                        | 4,000     | /            | 0.055    | 101             | 0.025     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |
| 2,4-Dichlorophenol                               | 190 - 220     | 0 / 5     |               |                        | 3.00      | /            | 73       | 101             | 34        |            |                  |                 |                        |                 | No      | Not detected                              |
| 2,4-Dimethylphenol                               | 190 - 220     | 0 / 5     |               |                        | NSV       | /            | NSV      | 101             | NSV       |            |                  |                 |                        |                 | No      | No screening value, not detected          |
| 2,4-Dinitrophenol                                | 190 - 220     | 0 / 5     |               |                        | 20,000    | /            | 0.011    | 101             | 0.005     |            |                  |                 |                        |                 | No      | HQ less than one, not detected            |

Table F-8
ERS Subsurface Soil Screen for Site 17
Camp Johnson Consutrcion Area
Focused PA/SI

|                                                       |           |                         | Maximum                   |                                             |                    |                                         | Maximum            |                                  | Mean               |                        | Maximum                         |                              |                                        | Supplemental                       |          |                                                                  |
|-------------------------------------------------------|-----------|-------------------------|---------------------------|---------------------------------------------|--------------------|-----------------------------------------|--------------------|----------------------------------|--------------------|------------------------|---------------------------------|------------------------------|----------------------------------------|------------------------------------|----------|------------------------------------------------------------------|
| Chemical                                              |           | equency of<br>Detection | Concentration<br>Detected | Sample ID of Maximum Detected Concentration | Screening<br>Value | Frequency of<br>Exceedance <sup>1</sup> | Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Hazard<br>Quotient | 2 x Mean<br>Background | Exceeds 2 x Mear<br>Background? | Supplemental Screening Value | Supplemental Screening<br>Value Source | Screening Value<br>Hazard Quotient | Retain?  | Rationale                                                        |
| 2.4-Dinitrotoluene                                    |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              | value Source                           |                                    | No       | No screening value, not detected                                 |
| 2,6-Dinitrotoluene                                    |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| 2-Chloronaphthalene                                   |           | 0 / 5                   |                           |                                             | 1,000              | /                                       | 0.22               | 101                              | 0.10               |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| 2-Chlorophenol                                        |           | 0 / 5                   |                           |                                             | 10.0               | /                                       | 22                 | 101                              | 10.1               |                        |                                 |                              |                                        |                                    | No       | Not detected                                                     |
| 2-Methylnaphthalene                                   |           | 0 / 5                   |                           |                                             | 29,000             | /                                       | 0.0076             | 101                              | 0.003              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| 2-Methylphenol                                        |           | 0 / 5                   |                           |                                             | 500                | /                                       | 0.44               | 101                              | 0.20               |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| 2-Nitroaniline                                        |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| 2-Nitrophenol                                         |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| 3,3'-Dichlorobenzidine                                |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| 3-Nitroaniline                                        |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| 4,6-Dinitro-2-methylphenol                            |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| 4-Bromophenyl-phenylether                             |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| 4-Chloro-3-methylphenol                               |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| 4-Chloroaniline                                       |           | 0 / 5                   |                           |                                             | 20,000             | /                                       | 0.011              | 101                              | 0.005              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| 4-Chlorophenyl-phenylether                            |           | 0 / 5                   |                           |                                             | 20,000<br>NSV      | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| 4-Methylphenol                                        |           | 0 / 5                   |                           |                                             | 500                | /                                       | 0.44               | 101                              | 0.20               |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| 4-Nitroaniline                                        |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| 4-Nitrophenol                                         |           | 0 / 5                   |                           |                                             | 7,000              | /                                       | 0.031              | 101                              | 0.014              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| 4-Nilropnenoi<br>Acenaphthene                         |           | 0 / 5                   |                           |                                             | 29,000             | /                                       | 0.0076             | 101                              | 0.014              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Acenaphthylene                                        |           | 0 / 5                   |                           |                                             | 29,000             | /                                       | 0.0076             | 101                              | 0.003              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
|                                                       |           |                         |                           |                                             | NSV                |                                         | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    |          | No screening value, not detected                                 |
| Acetophenone                                          |           | 0 / 5                   |                           |                                             | 29,000             | /                                       | 0.0076             | 101                              | 0.003              |                        |                                 |                              |                                        |                                    | No<br>No | HQ less than one, not detected                                   |
| Anthracene<br>Atrazine                                |           | 0 / 5                   |                           |                                             | 0.050              | /                                       | 4,400              | 101                              | 2020               |                        |                                 |                              |                                        |                                    | No       | Not detected                                                     |
|                                                       |           | 0 / 5                   |                           |                                             | 1,100              | /                                       | 0.040              | 20.1                             | 0.018              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Benzo(a)anthracene                                    |           | 0 / 5                   |                           |                                             | 1,100              | /                                       | 0.040              | 20.1                             | 0.018              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Benzo(a)pyrene                                        |           | 0 / 5                   |                           |                                             | 1,100              | /                                       | 0.040              | 20.1                             | 0.018              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Benzo(b)fluoranthene                                  |           | 0 / 5                   |                           |                                             | 1,100              | /                                       |                    | 101                              | 0.018              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Benzo(g,h,i)perylene                                  |           | 0 / 5                   |                           |                                             | 1,100              | /                                       | 0.20               | 101                              | 0.092              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Benzo(k)fluoranthene                                  |           | 0 / 5                   |                           |                                             | NSV                | /                                       | 0.20<br>NSV        | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| bis(2-Chloroethoxy)methane<br>bis(2-Chloroethyl)ether |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| ` ,,                                                  |           | 0 / 5                   |                           |                                             | 100                | /                                       | 2.20               | 101                              | 1.01               |                        |                                 |                              |                                        |                                    | No       | Not detected                                                     |
| bis(2-Ethylhexyl)phthalate                            |           | 0 / 5                   |                           |                                             | 100                | /                                       | 2.20               | 101                              | 1.01               |                        |                                 |                              |                                        |                                    |          | Not detected                                                     |
| Butylbenzylphthalate                                  |           |                         |                           |                                             |                    | /                                       | NSV                |                                  |                    |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| Caprolactam                                           |           | 0 / 5                   |                           |                                             | NSV                |                                         |                    | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       |                                                                  |
| Carbazole                                             |           | 0 / 5                   |                           |                                             | NSV<br>1 100       | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected  HQ less than one, not detected |
| Chrysene Dihanz(a h)anthrasana                        |           | 0 / 5                   |                           |                                             | 1,100              | /                                       | 0.20               | 101                              | 0.092              |                        |                                 |                              |                                        |                                    | No       |                                                                  |
| Dibenz(a,h)anthracene                                 |           | 0 / 5                   |                           |                                             | 1,100              | /                                       | 0.040              | 20.1                             | 0.018              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Dibenzofuran                                          |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 101                              | NSV<br>0.001       |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected  HQ less than one, not detected |
| Diethylphthalate                                      |           | 0 / 5                   |                           |                                             | 100,000            | /                                       | 0.0022             | 101                              | 0.001              |                        |                                 |                              |                                        |                                    | No<br>No | · ·                                                              |
| Dimethyl phthalate                                    |           | 0 / 5                   |                           |                                             | 200,000            | /                                       | 0.0011             | 101                              | 0.001              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Di-n-butylphthalate                                   |           | 0 / 5                   |                           |                                             | 200,000            | /                                       | 0.0011             | 101                              | 0.001              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected  Not detected                     |
| Di-n-octylphthalate                                   |           | 0 / 5                   |                           |                                             | 100                | /                                       | 2.20               | 101                              | 1.01               |                        |                                 |                              |                                        |                                    | No<br>No |                                                                  |
| Fluoranthene                                          |           | 0 / 5                   |                           |                                             | 1,100              | /                                       | 0.20               | 101                              | 0.092              |                        |                                 |                              |                                        |                                    | No<br>No | HQ less than one, not detected                                   |
| Fluorene                                              |           | 0 / 5                   |                           |                                             | 29,000             | /                                       | 0.0076             | 101                              | 0.003              |                        |                                 |                              |                                        |                                    | No<br>No | HQ less than one, not detected                                   |
| Hexachlorobenzene                                     |           | 0 / 5                   |                           |                                             | 2.50               | /                                       | 88<br>NCV          | 101                              | 40<br>NCV          |                        |                                 |                              |                                        |                                    | No       | Not detected  No screening value, not detected                   |
| Hexachlorobutadiene                                   |           | 0 / 5                   |                           |                                             | NSV<br>10.000      | /                                       | NSV                | 101                              | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| Hexachlorocyclopentadiene                             |           | 0 / 5                   |                           |                                             | 10,000             | /                                       | 0.022              | 101                              | 0.010              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Hexachloroethane                                      |           | 0 / 5                   |                           |                                             | 100                | /                                       | 2.20               | 101                              | 1.01               |                        |                                 |                              |                                        |                                    | No       | Not detected  HO loss than ano not detected                      |
| Indeno(1,2,3-cd)pyrene                                |           | 0 / 5                   |                           |                                             | 1,100              | /                                       | 0.040              | 20.1                             | 0.018              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Isophorone                                            |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV<br>0.0074      | 20.1                             | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| Naphthalene                                           |           | 0 / 5                   |                           |                                             | 29,000             | /                                       | 0.0076             | 101                              | 0.003              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| n-Nitroso-di-n-propylamine                            |           | 0 / 5                   |                           |                                             | NSV                | /                                       | NSV                | 20.1                             | NSV                |                        |                                 |                              |                                        |                                    | No       | No screening value, not detected                                 |
| n-Nitrosodiphenylamine                                |           | 0 / 5                   |                           |                                             | 20,000             | /                                       | 0.011              | 101                              | 0.005              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Nitrobenzene                                          |           | 0 / 5                   |                           |                                             | 40,000             | /                                       | 0.0055             | 101                              | 0.003              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Pentachlorophenol                                     |           | 0 / 5                   |                           |                                             | 2,100              | /                                       | 0.10               | 101                              | 0.048              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Phenanthrene                                          |           | 0 / 5                   |                           |                                             | 29,000             | /                                       | 0.0076             | 101                              | 0.003              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |
| Phenol                                                |           | 0 / 5                   |                           |                                             | 50.0               | /                                       | 4.40               | 101                              | 2.02               |                        |                                 |                              |                                        |                                    | No       | Not detected                                                     |
| Pyrene                                                | 190 - 220 | 0 / 5                   |                           |                                             | 1,100              | /                                       | 0.20               | 101                              | 0.092              |                        |                                 |                              |                                        |                                    | No       | HQ less than one, not detected                                   |

**Table F-8**ERS Subsurface Soil Screen for Site 17
Camp Johnson Consutrcion Area
Focused PA/SI

| Chemical                            | Range of Non-<br>Detect Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of Maximum Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean<br>Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental Screening<br>Value Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain? | Rationale                                                                                  |
|-------------------------------------|--------------------------------|------------------------|--------------------------------------|---------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|----------------------------|------------------------|--------------------------------------------|---------------------------------|----------------------------------------|----------------------------------------------------|---------|--------------------------------------------------------------------------------------------|
| 4,4'-DDD                            | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 21.0               | /                                    | 0.081                         | 0.85                             | 0.040                      |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| 4,4'-DDE                            | 1.70 - 1.70                    | 1 / 5                  | 0.41                                 | IR17-SB05-2-7-09C                           | 21.0               | 0 / 5                                | 0.020                         | 0.76                             | 0.036                      |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, detected                                                                 |
| 4,4'-DDT                            | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 21.0               | /                                    | 0.081                         | 0.85                             | 0.040                      |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| Aldrin                              | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 2.50               | /                                    | 0.68                          | 0.85                             | 0.34                       |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| alpha-BHC                           | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 2.50               | /                                    | 0.68                          | 0.85                             | 0.34                       |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| alpha-Chlordane                     | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 100                | /                                    | 0.007                         | 0.85                             | 0.009                      |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| Aroclor-1016                        | 19.0 - 22.0                    | 0 / 5                  |                                      |                                             | 20.0               | /                                    | 1.10                          | 10.1                             | 0.51                       |                        |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
| Aroclor-1221                        | 19.0 - 22.0                    | 0 / 5                  |                                      |                                             | 20.0               | /                                    | 1.10                          | 10.1                             | 0.51                       |                        |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
| Aroclor-1232                        | 19.0 - 22.0                    | 0 / 5                  |                                      |                                             | 20.0               | /                                    | 1.10                          | 10.1                             | 0.51                       |                        |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
| Aroclor-1242                        | 19.0 - 22.0                    | 0 / 5                  |                                      |                                             | 20.0               | /                                    | 1.10                          | 10.1                             | 0.51                       |                        |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
| Aroclor-1248                        | 19.0 - 22.0                    | 0 / 5                  |                                      |                                             | 20.0               | /                                    | 1.10                          | 10.1                             | 0.51                       |                        |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
| Aroclor-1254                        | 19.0 - 22.0                    | 0 / 5                  |                                      |                                             | 20.0               | /                                    | 1.10                          | 10.1                             | 0.51                       |                        |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
| Aroclor-1260                        | 19.0 - 22.0                    | 0 / 5                  |                                      |                                             | 20.0               | /                                    | 1.10                          | 10.1                             | 0.51                       |                        |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
| beta-BHC                            | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 1.00               | /                                    | 1.70                          | 0.85                             | 0.85                       |                        |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
|                                     | 1.70 - 1.70                    | 0 / 5                  |                                      | +                                           | 100                | /                                    | 0.017                         | 0.85                             | 0.009                      |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| delta-BHC<br>Dieldrin               | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 4.90               | /                                    | 0.017                         | 0.85                             | 0.009                      |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| Endosulfan I                        | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 100                | /                                    | 0.35                          | 0.85                             | 0.17                       |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
|                                     |                                |                        |                                      | +                                           | 100                | /                                    | 0.017                         | 0.85                             | 0.009                      |                        |                                            |                                 |                                        |                                                    |         | HQ less than one, not detected                                                             |
| Endosulfan II<br>Endosulfan sulfate | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             |                    |                                      |                               |                                  | +                          |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
|                                     | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 100                | /                                    | 0.017                         | 0.85                             | 0.009                      |                        |                                            |                                 |                                        |                                                    | No      |                                                                                            |
| Endrin                              | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 1.00               | /                                    | 1.70                          | 0.85                             | 0.85                       |                        |                                            |                                 |                                        |                                                    | No      | Not detected  HQ less than one, not detected                                               |
| Endrin aldehyde                     | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 100                | /                                    | 0.017                         | 0.85                             | 0.009                      |                        |                                            |                                 |                                        |                                                    | No      | · ·                                                                                        |
| Endrin ketone                       | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 100                | /                                    | 0.017                         | 0.85                             | 0.009                      |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| gamma-BHC (Lindane)                 | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 0.050              | /                                    | 34.0                          | 0.85                             | 17                         |                        |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
| gamma-Chlordane                     | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 100                | /                                    | 0.017                         | 0.85                             | 0.009                      |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| Heptachlor                          | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 100                | /                                    | 0.017                         | 0.85                             | 0.009                      |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| Heptachlor epoxide                  | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 100                | /                                    | 0.017                         | 0.85                             | 0.009                      |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| Methoxychlor                        | 1.70 - 1.70                    | 0 / 5                  |                                      |                                             | 100                | /                                    | 0.017                         | 0.85                             | 0.009                      |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| Toxaphene                           | 33.0 - 33.0                    | 0 / 5                  |                                      |                                             | 100                | /                                    | 0.33                          | 16.5                             | 0.17                       |                        |                                            |                                 |                                        |                                                    | No      | HQ less than one, not detected                                                             |
| Inorganics (MG/KG)                  | 1                              |                        |                                      |                                             |                    |                                      |                               |                                  |                            |                        | T                                          | T                               | Τ                                      |                                                    | T       | Contact the contact                                                                        |
| Aluminum                            |                                | 5 / 5                  | 20,000                               | IR17-SB03-2-7-09C                           | 50.0               | 5 / 5                                | 400                           | 11,018                           | 220                        | 10,369                 | Yes                                        |                                 |                                        |                                                    | No      | See text discussion                                                                        |
| Antimony                            | 1.60 - 1.80                    | 1 / 5                  | 0.93                                 | IR17-SB01-2-4-09C                           | 0.27               | 1 / 5                                | 3.44                          | 0.86                             | 3.17                       | 0.36                   | Yes                                        |                                 |                                        |                                                    | No      | Low magnitude of exceedance                                                                |
| Arsenic                             |                                | 5 / 5                  | 14.6                                 | IR17-SB03-2-7-09C                           | 18.0               | 0 / 5                                | 0.81                          | 5.31                             | 0.30                       | 2.12                   | Yes                                        |                                 |                                        |                                                    | No      | HQ less than one, detected                                                                 |
| Barium                              |                                | 5 / 5                  | 21.8                                 | IR17-SB03-2-7-09C                           | 330                | 0 / 5                                | 0.066                         | 15.3                             | 0.046                      | 16.6                   | Yes                                        |                                 |                                        |                                                    | No      | Within background range                                                                    |
| Beryllium                           |                                | 5 / 5                  | 0.31                                 | IR17-SB03-2-7-09C                           | 21.0               | 0 / 5                                | 0.015                         | 0.16                             | 0.007                      | 0.165                  | Yes                                        |                                 |                                        |                                                    | No      | Within background range                                                                    |
| Cadmium                             | 0.47 - 0.55                    | 0 / 5                  |                                      |                                             | 0.36               | /                                    | 1.53                          | 0.26                             | 0.71                       | 0.023                  |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
| Calcium <sup>2</sup>                | 84.6 - 92.0                    | 2 / 5                  | 227                                  | IR17-SB04-2-7-09C                           | NSV                | /                                    | NSV                           | 91.5                             | NSV                        | 441                    | No                                         |                                 |                                        |                                                    | No      | Consistent with background                                                                 |
|                                     |                                |                        |                                      |                                             |                    |                                      |                               |                                  |                            |                        |                                            |                                 |                                        |                                                    |         | Low magnitude of exceedance, mean HQ less th                                               |
| Chromium                            |                                | 5 / 5                  | 35.8                                 | IR17-SB03-2-7-09C                           | 26.0               | 2 / 5                                | 1.38                          | 16.2                             | 0.62                       | 14.5                   | Yes                                        |                                 |                                        |                                                    | No      | one                                                                                        |
| Cobalt                              |                                | 5 / 5                  | 1.10                                 | IR17-SB03-2-7-09C                           | 13.0               | 0 / 5                                | 0.085                         | 0.58                             | 0.044                      | 0.822                  | Yes                                        |                                 |                                        |                                                    | No      | HQ less than one, detected                                                                 |
| Copper                              |                                | 5 / 5                  | 5.00                                 | IR17-SB03-2-7-09C                           | 28.0               | 0 / 5                                | 0.18                          | 2.30                             | 0.082                      | 2.56                   | Yes                                        |                                 |                                        |                                                    | No      | HQ less than one, detected                                                                 |
| Iron                                |                                | 5 / 5                  | 28,400                               | IR17-SB03-2-7-09C                           | 200                | 5 / 5                                | 142                           | 11,154                           | 56                         | 5,439                  | Yes                                        |                                 |                                        |                                                    | No      | Micronutrient                                                                              |
|                                     |                                |                        |                                      |                                             |                    |                                      |                               |                                  |                            |                        |                                            |                                 |                                        |                                                    |         | Low magnitude of exceedance, HQ less than one                                              |
| Lead                                |                                | 5 / 5                  | 15.9                                 | IR17-SB03-2-7-09C                           | 11.0               | 1 / 5                                | 1.45                          | 8.36                             | 0.76                       | 8.49                   | Yes                                        | 50                              | Region 4 (EPA, 2001)                   | 0.318                                              | No      | based on Region 4 screening value.                                                         |
| Magnesium <sup>2</sup>              |                                | 5 / 5                  | 1,020                                | IR17-SB03-2-7-09C                           | NSV                | /                                    | NSV                           | 492                              | NSV                        | 363                    | Yes                                        |                                 |                                        |                                                    | No      | Macronutrient                                                                              |
| Manganese                           |                                | 5 / 5                  | 13.3                                 | IR17-SB03-2-7-09C                           | 220                | 0 / 5                                | 0.060                         | 9.92                             | 0.045                      | 9.25                   | Yes                                        |                                 |                                        |                                                    | No      | Within background range                                                                    |
| Mercury                             | 0.033 - 0.041                  | 1 / 5                  | 0.049                                | IR17-SB05-2-7-09C                           | 0.10               | 0 / 5                                | 0.49                          | 0.025                            | 0.25                       | 0.071                  | No                                         |                                 |                                        |                                                    | No      | Consistent with background                                                                 |
| Nickel                              |                                | 5 / 5                  | 2.70                                 | IR17-SB03-2-7-09C                           | 38.0               | 0 / 5                                | 0.071                         | 1.84                             | 0.048                      | 2.27                   | Yes                                        |                                 |                                        |                                                    | No      | Within background range                                                                    |
| Potassium <sup>2</sup>              |                                | 5 / 5                  | 1,070                                | IR17-SB03-2-7-09C                           | NSV                | /                                    | NSV                           | 508                              | NSV                        | 361                    | Yes                                        |                                 |                                        |                                                    | No      | Macronutrient                                                                              |
|                                     |                                |                        |                                      |                                             |                    |                                      |                               |                                  |                            |                        |                                            |                                 |                                        |                                                    |         | Low magnitude of exceedance, mean HQ less th one, barely above maximum background value of |
| Selenium                            | 1.60 - 1.80                    | 1 / 5                  | 1.40                                 | IR17-SB03-2-7-09C                           | 0.52               | 1 / 5                                | 2.69                          | 0.95                             | 1.83                       | 0.505                  | Yes                                        |                                 |                                        |                                                    | No      | 1.3 mg/kg                                                                                  |
| Silver                              | 1.60 - 1.80                    | 0 / 5                  |                                      |                                             | 4.20               | /                                    | 0.43                          | 0.85                             | 0.20                       | 0.129                  |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
| Sodium <sup>2</sup>                 |                                | 5 / 5                  | 230                                  | IR17-SB01-2-4-09C                           | NSV                | /                                    | NSV                           | 77.0                             | NSV                        | 68.3                   | Yes                                        |                                 |                                        |                                                    | No      | Macronutrient                                                                              |
| Thallium                            | 2.40 - 2.80                    | 0 / 5                  |                                      |                                             | 1.00               | /                                    | 2.80                          | 1.28                             | 1.28                       | 0.38                   |                                            |                                 |                                        |                                                    | No      | Not detected                                                                               |
| Vanadium                            |                                | 5 / 5                  | 70.4                                 | IR17-SB03-2-7-09C                           | 7.80               | 3 / 5                                | 9.03                          | 27.1                             | 3.48                       | 17.2                   | Yes                                        |                                 |                                        |                                                    | No      | See text discussion                                                                        |
| Zinc                                |                                | 5 / 5                  | 8.90                                 | IR17-SB03-2-7-09C                           | 46.0               | 0 / 5                                | 0.19                          | 5.64                             | 0.12                       | 6.59                   | Yes                                        |                                 |                                        |                                                    | No      | Within background range                                                                    |

ERS Subsurface Soil Screen for Site 17 Camp Johnson Consutrcion Area

Focused PA/SI

MCB Camp Lejeune, North Carolina

|          |               |              | Maximum       |                        |           |                         | Maximum  |                 | Mean     |            | Maximum          |                 |                        | Supplemental    |                   |  |
|----------|---------------|--------------|---------------|------------------------|-----------|-------------------------|----------|-----------------|----------|------------|------------------|-----------------|------------------------|-----------------|-------------------|--|
|          | Range of Non- | Frequency of | Concentration | Sample ID of Maximum   | Screening | Frequency of            | Hazard   | Arithmetic Mean | Hazard   | 2 x Mean   | Exceeds 2 x Mean | Supplemental    | Supplemental Screening | Screening Value |                   |  |
| Chemical | Detect Values | Detection    | Detected      | Detected Concentration | Value     | Exceedance <sup>1</sup> | Quotient | Concentration   | Quotient | Background | Background?      | Screening Value | Value Source           | Hazard Quotient | Retain? Rationale |  |

# NOTES

- 1 Count of detected samples exceeding or equaling Screening Value
- 2 Macronutrient Not considered to be a contaminant of potential concern (COPC)
- HQ Hazard Quotient

NSV - No Screening Value

MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

Table F-9
ERS Groundwater Screen for Site 17
Camp Johnson Consutrcion Area
Focused PA/SI

| Focused PA/SI<br>MCB Camp Lejeune, North Carolina    |                                |       |                                      |                                                |                                 |                                      |                               |                 |                    |                        |                                            |                                 |                                           |                                                    |          |                                                                    |
|------------------------------------------------------|--------------------------------|-------|--------------------------------------|------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|-----------------|--------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|----------|--------------------------------------------------------------------|
| Chemical                                             | Range of Non-<br>Detect Values |       | Maximum<br>Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value <sup>1</sup> | Frequency of Exceedance <sup>2</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean |                    | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain?  | Rationale                                                          |
| Volatile Organic Compounds (UG/L)                    |                                |       | <u> </u>                             |                                                |                                 | <u> </u>                             |                               | <u> </u>        | <u> </u>           |                        | <u> </u>                                   | <u> </u>                        | <u> </u>                                  |                                                    |          |                                                                    |
| 1.1.1-Trichloroethane                                | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 312                             | /                                    | 0.0032                        | 0.50            | 0.002              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| 1,1,2,2-Tetrachloroethane                            | 1.00 - 2.40                    | 0 / 2 |                                      |                                                | 90.2                            | /                                    | 0.027                         | 0.85            | 0.009              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113      | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| 1,1,2-Trichloroethane                                | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| 1,1-Dichloroethane                                   | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| 1,1-Dichloroethene                                   | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 2,240                           | /                                    | 4.46E-04                      | 0.50            | 2.232E-04          |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| 1,2,4-Trichlorobenzene                               | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 4.50                            | /                                    | 0.22                          | 0.50            | 0.11               |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| 1,2-Dibromo-3-chloropropane                          | 2.00 - 2.00                    | 0 / 1 |                                      |                                                | NSV                             | /                                    | NSV                           | 1.00            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| 1,2-Dibromoethane                                    | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| 1,2-Dichlorobenzene                                  | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 19.7                            | /                                    | 0.051                         | 0.50            | 0.025              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| 1,2-Dichloroethane                                   | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 1,130                           | /                                    | 8.85E-04                      | 0.50            | 4.425E-04          |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| 1,2-Dichloropropane 1,3-Dichlorobenzene              | 1.00 - 1.00<br>1.00 - 1.00     | 0 / 2 |                                      |                                                | 2,400<br>28.5                   | /                                    | 4.17E-04<br>0.035             | 0.50<br>0.50    | 2.083E-04<br>0.018 |                        |                                            |                                 |                                           |                                                    | No<br>No | HQ less than one, not detected  HQ less than one, not detected     |
| 1,4-Dichlorobenzene                                  | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 19.9                            | /                                    | 0.050                         | 0.50            | 0.018              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected  HQ less than one, not detected     |
| 2-Butanone                                           | 5.00 - 5.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 2.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| 2-Hexanone                                           | 5.00 - 5.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 2.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| 4-Methyl-2-pentanone                                 | 5.00 - 5.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 2.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Acetone                                              | 5.00 - 5.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 2.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Benzene                                              | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 109                             | /                                    | 0.0092                        | 0.50            | 0.005              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| Bromodichloromethane                                 | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Bromoform                                            | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 640                             | /                                    | 0.0016                        | 0.50            | 0.001              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| Bromomethane                                         | 1.00 - 1.10                    | 0 / 2 |                                      |                                                | 120                             | /                                    | 0.0092                        | 0.53            | 0.004              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| Carbon disulfide                                     | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Carbon tetrachloride                                 | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 1,500                           | /                                    | 6.67E-04                      | 0.50            | 3.333E-04          |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| Chlorobenzene                                        | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 105                             | /                                    | 0.0095                        | 0.50            | 0.005              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| Chloroethane                                         | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Chloroform                                           | 1.00 - 1.00                    | 1 / 2 | 4.40                                 | IR17-TW01-09C                                  | 815                             | 0 / 2                                | 0.0054                        | 2.45            | 0.003              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, detected, common lab contaminant                 |
| Chloromethane                                        | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 2,700                           | /                                    | 3.70E-04                      | 0.50            | 1.852E-04          |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| cis-1,2-Dichloroethene                               | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| cis-1,3-Dichloropropene                              | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 7.90<br>NSV                     | /                                    | 0.13<br>NSV                   | 0.50<br>0.50    | 0.063              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| Cyclohexane  Dibromochloromethane                    | 1.00 - 1.00<br>1.00 - 1.00     | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV<br>NSV         |                        |                                            |                                 |                                           |                                                    | No<br>No | No screening value, not detected  No screening value, not detected |
| Dichlorodifluoromethane (Freon-12)                   | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Ethylbenzene                                         | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 4.30                            | /                                    | 0.23                          | 0.50            | 0.12               |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| Isopropylbenzene                                     | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Methyl acetate                                       | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Methylcyclohexane                                    | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Methylene chloride                                   | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 2,560                           | /                                    | 3.91E-04                      | 0.50            | 1.953E-04          |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| Methyl-tert-butyl ether (MTBE)                       | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Styrene                                              | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Tetrachloroethene                                    | 1.00 - 1.10                    | 0 / 2 |                                      |                                                | 45.0                            | /                                    | 0.024                         | 0.53            | 0.012              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| Toluene                                              | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 37.0                            | /                                    | 0.027                         | 0.50            | 0.014              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| trans-1,2-Dichloroethene                             | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| trans-1,3-Dichloropropene                            | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | 7.90                            | /                                    | 0.13                          | 0.50            | 0.063              |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| Trichloroethene                                      | 1.00 - 5.10                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 1.53            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Trichlorofluoromethane(Freon-11)                     | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Vinyl chloride                                       | 1.00 - 1.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.50            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| Xylene, total  Semivolatile Organic Compounds (UG/L) | 1.00 - 1.20                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 0.55            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| 1,1-Biphenyl                                         | 10.0 - 10.0                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 5.00            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
| 2,2'-Oxybis(1-chloropropane)                         | 10.0 - 10.0                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 5.00            | NSV                |                        |                                            |                                 |                                           |                                                    | No<br>No | No screening value, not detected  No screening value, not detected |
| 2,4,5-Trichlorophenol                                | 10.0 - 10.0                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 5.00            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected  No screening value, not detected |
| 2,4-Dichlorophenol                                   | 10.0 - 10.0                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 5.00            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected  No screening value, not detected |
| 2,4-Dimethylphenol                                   | 10.0 - 10.0                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 5.00            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected  No screening value, not detected |
| 2,4-Dinitrophenol                                    | 20.0 - 20.0                    | 0 / 2 |                                      |                                                | 48.5                            | /                                    | 0.41                          | 10.0            | 0.21               |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected                                     |
| 2,4-Dinitrotoluene                                   | 10.0 - 10.0                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 5.00            | NSV                |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected                                   |
|                                                      |                                |       | i .                                  |                                                |                                 |                                      |                               |                 |                    |                        |                                            |                                 |                                           |                                                    |          |                                                                    |

Table F-9 ERS Groundwater Screen for Site 17 Camp Johnson Consutrcion Area Focused PA/SI

| MCB Camp Lejeune, I | North Carolina |
|---------------------|----------------|
|---------------------|----------------|

| Chemical                              | Range of Non-<br>Detect Values | Frequency o<br>Detection | Maximum<br>f Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value <sup>1</sup> | Frequency of Exceedance <sup>2</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain?  | Rationale                        |
|---------------------------------------|--------------------------------|--------------------------|----------------------------------------|------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|----------|----------------------------------|
| 2-Chloronaphthalene                   | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| -Chlorophenol                         | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
|                                       | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| Methylphenol                          | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| Nitroaniline                          | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| Nitrophenol                           | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| ,3'-Dichlorobenzidine                 | 20.0 - 20.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 10.0                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| Nitroaniline                          | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| 6-Dinitro-2-methylphenol              | 20.0 - 20.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 10.0                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| -Bromophenyl-phenylether              | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| Chloro-3-methylphenol                 | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| -Chloroaniline                        | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| -Chlorophenyl-phenylether             | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| -Methylphenol                         | 20.0 - 20.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 10.0                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| -Nitroaniline                         | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| -Nitrophenol                          | 20.0 - 20.0                    | 0 / 2                    |                                        |                                                | 71.7                            | /                                    | 0.28                          | 10.0                             | 0.14                    |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected   |
| cenaphthene                           | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 9.70                            | /                                    | 1.03                          | 5.00                             | 0.52                    |                        |                                            |                                 |                                           |                                                    | No       | Not detected                     |
| cenaphthylene                         | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| cetophenone                           | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| nthracene                             | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| trazine                               | 20.0 - 20.0                    | 0 / 2                    | +                                      |                                                | NSV                             | /                                    | NSV                           | 10.0                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
|                                       | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | •                                |
| enzo(a)anthracene                     | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| enzo(a)pyrene                         | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | ļ                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    |          | No screening value, not detected |
| enzo(b)fluoranthene                   |                                |                          |                                        |                                                | NSV                             | /                                    |                               | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No<br>No | No screening value, not detected |
| enzo(g,h,i)perylene                   | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                |                                 |                                      | NSV                           |                                  |                         |                        |                                            |                                 |                                           |                                                    |          | No screening value, not detected |
| enzo(k)fluoranthene                   | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| is(2-Chloroethoxy)methane             | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| s(2-Chloroethyl)ether                 | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| is(2-Ethylhexyl)phthalate             | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| utylbenzylphthalate                   | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 29.4                            | /                                    | 0.34                          | 5.00                             | 0.17                    |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected   |
| aprolactam                            | 10.0 - 10.0                    | 1 / 2                    | 4.50                                   | IR17-TW01-09C                                  | NSV                             | /                                    | NSV                           | 4.75                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | Uncertainy, no screening value   |
| arbazole                              | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| hrysene                               | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| ibenz(a,h)anthracene                  | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| ibenzofuran                           | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| viethylphthalate                      | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 759                             | /                                    | 0.013                         | 5.00                             | 0.007                   |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected   |
| imethyl phthalate                     | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 580                             | /                                    | 0.017                         | 5.00                             | 0.009                   |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected   |
| i-n-butylphthalate                    | 20.0 - 20.0                    | 0 / 2                    |                                        |                                                | 3.40                            | /                                    | 5.88                          | 10.0                             | 2.94                    |                        |                                            |                                 |                                           |                                                    | No       | Not detected                     |
| i-n-octylphthalate                    | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| uoranthene                            | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 1.60                            | /                                    | 6.25                          | 5.00                             | 3.13                    |                        |                                            |                                 |                                           |                                                    | No       | Not detected                     |
| luorene                               | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| exachlorobenzene                      | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| exachlorobutadiene                    | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 0.32                            | /                                    | 31.3                          | 5.00                             | 16                      |                        |                                            |                                 |                                           |                                                    | No       | Not detected                     |
| exachlorocyclopentadiene              | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 0.070                           | /                                    | 143                           | 5.00                             | 71                      |                        |                                            |                                 |                                           |                                                    | No       | Not detected                     |
| exachloroethane                       | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 9.40                            | /                                    | 1.06                          | 5.00                             | 0.53                    |                        |                                            |                                 |                                           |                                                    | No       | Not detected                     |
| deno(1,2,3-cd)pyrene                  | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| ophorone                              | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 129                             | /                                    | 0.078                         | 5.00                             | 0.039                   |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected   |
| aphthalene                            | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 23.5                            | /                                    | 0.43                          | 5.00                             | 0.21                    |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected   |
| Nitroso-di-n-propylamine              | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| Nitrosodiphenylamine                  | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 33,000                          | /                                    | 3.03E-04                      | 5.00                             | 1.515E-04               |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected   |
| trobenzene                            | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 30.0                            | /                                    | 0.33                          | 5.00                             | 0.17                    |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected   |
| entachlorophenol                      | 20.0 - 20.0                    | 0 / 2                    |                                        |                                                | 7.90                            | /                                    | 2.53                          | 10.0                             | 1.27                    |                        |                                            |                                 |                                           |                                                    | No       | Not detected                     |
| nenanthrene                           | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| nenol                                 | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | 58.0                            | /                                    | 0.17                          | 5.00                             | 0.086                   |                        |                                            |                                 |                                           |                                                    | No       | HQ less than one, not detected   |
| /rene                                 | 10.0 - 10.0                    | 0 / 2                    |                                        |                                                | NSV                             | /                                    | NSV                           | 5.00                             | NSV                     |                        |                                            |                                 |                                           |                                                    | No       | No screening value, not detected |
| esticide/Polychlorinated Biphenyls (U |                                |                          | 1                                      |                                                |                                 |                                      |                               |                                  | 1                       |                        | 1                                          |                                 |                                           | ll.                                                |          | 1 2                              |
| <u> </u>                              | 0.050 - 0.050                  | 0 / 2                    |                                        |                                                | 0.025                           | /                                    | 2.00                          | 0.025                            | 1                       |                        |                                            |                                 |                                           |                                                    | No       | Not detected                     |
| 1'-DDD                                | 0,000 - 0.000                  |                          |                                        |                                                |                                 |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                                    |          |                                  |

**Table F-9**ERS Groundwater Screen for Site 17
Camp Johnson Consutrcion Area
Focused PA/SI

|                         |               |              | Maximum       |                        |                    |                         | Maximum  |                 |             |            | Maximum          |                 | Supplemental    | Supplemental    |         |                                                     |
|-------------------------|---------------|--------------|---------------|------------------------|--------------------|-------------------------|----------|-----------------|-------------|------------|------------------|-----------------|-----------------|-----------------|---------|-----------------------------------------------------|
|                         | Range of Non- | Frequency of | Concentration | Sample ID of Maximum   | Screening          | Frequency of            | Hazard   | Arithmetic Mean | Mean Hazard | 2 x Mean   | Exceeds 2 x Mean | Supplemental    | Screening Value | Screening Value |         |                                                     |
| Chemical                | Detect Values | Detection    | Detected      | Detected Concentration | Value <sup>1</sup> | Exceedance <sup>2</sup> | Quotient | Concentration   | Quotient    | Background | Background?      | Screening Value | Source          | Hazard Quotient | Retain? | Rationale                                           |
| 4,4'-DDT                | 0.050 - 0.050 | 0 / 2        |               |                        | 0.0010             | /                       | 50.0     | 0.025           | 25          |            |                  |                 |                 |                 | No      | Not detected                                        |
| Aldrin                  | 0.050 - 0.050 | 0 / 2        |               |                        | 0.13               | /                       | 0.38     | 0.025           | 0.19        |            |                  |                 |                 |                 | No      | HQ less than one, not detected                      |
| alpha-BHC               | 0.050 - 0.050 | 0 / 2        |               |                        | 1,400              | /                       | 3.57E-05 | 0.025           | 1.786E-05   |            |                  |                 |                 |                 | No      | HQ less than one, not detected                      |
| alpha-Chlordane         | 0.050 - 0.050 | 0 / 2        |               |                        | 0.0040             | /                       | 12.5     | 0.025           | 6.25        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Aroclor-1016            | 0.50 - 0.50   | 0 / 2        |               |                        | 0.030              | /                       | 16.7     | 0.25            | 8.33        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Aroclor-1221            | 0.50 - 0.50   | 0 / 2        |               |                        | 0.030              | /                       | 16.7     | 0.25            | 8.33        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Aroclor-1232            | 0.50 - 0.50   | 0 / 2        |               |                        | 0.030              | /                       | 16.7     | 0.25            | 8.33        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Aroclor-1242            | 0.50 - 0.50   | 0 / 2        |               |                        | 0.030              | /                       | 16.7     | 0.25            | 8.33        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Aroclor-1248            | 0.50 - 0.50   | 0 / 2        |               |                        | 0.030              | /                       | 16.7     | 0.25            | 8.33        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Aroclor-1254            | 0.50 - 0.50   | 0 / 2        | -             |                        | 0.030              | /                       | 16.7     | 0.25            | 8.33        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Aroclor-1260            | 0.50 - 0.50   | 0 / 2        | -             |                        | 0.030              | /                       | 16.7     | 0.25            | 8.33        |            |                  |                 |                 |                 | No      | Not detected                                        |
| beta-BHC                | 0.050 - 0.050 | 0 / 2        |               |                        | NSV                | /                       | NSV      | 0.025           | NSV         |            |                  |                 |                 |                 | No      | No screening value, not detected                    |
| delta-BHC               | 0.050 - 0.050 | 0 / 2        |               |                        | NSV                | /                       | NSV      | 0.025           | NSV         |            |                  |                 |                 |                 | No      | No screening value, not detected                    |
| Dieldrin                | 0.050 - 0.050 | 0 / 2        |               |                        | 0.0019             | /                       | 26.3     | 0.025           | 13          |            |                  |                 |                 |                 | No      | Not detected                                        |
| Endosulfan I            | 0.050 - 0.050 | 0 / 2        |               |                        | 0.0087             | /                       | 5.75     | 0.025           | 2.87        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Endosulfan II           | 0.050 - 0.050 | 0 / 2        | -             |                        | 0.0087             | /                       | 5.75     | 0.025           | 2.87        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Endosulfan sulfate      | 0.050 - 0.050 | 0 / 2        |               |                        | NSV                | /                       | NSV      | 0.025           | NSV         |            |                  |                 |                 |                 | No      | No screening value, not detected                    |
| Endrin                  | 0.050 - 0.050 | 0 / 2        |               |                        | 0.0023             | /                       | 21.7     | 0.025           | 10.87       |            |                  |                 |                 |                 | No      | Not detected                                        |
| Endrin aldehyde         | 0.050 - 0.050 | 0 / 2        |               |                        | NSV                | /                       | NSV      | 0.025           | NSV         |            |                  |                 |                 |                 | No      | No screening value, not detected                    |
| Endrin ketone           | 0.050 - 0.050 | 0 / 2        |               |                        | NSV                | /                       | NSV      | 0.025           | NSV         |            |                  |                 |                 |                 | No      | No screening value, not detected                    |
| gamma-BHC (Lindane)     | 0.050 - 0.050 | 0 / 2        |               |                        | 0.016              | /                       | 3.13     | 0.025           | 1.56        |            |                  |                 |                 |                 | No      | Not detected                                        |
| gamma-Chlordane         | 0.050 - 0.050 | 0 / 2        |               |                        | 0.0040             | /                       | 12.5     | 0.025           | 6.25        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Heptachlor              | 0.050 - 0.050 | 0 / 2        |               |                        | 0.0036             | /                       | 13.9     | 0.025           | 6.94        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Heptachlor epoxide      | 0.050 - 0.050 | 0 / 2        |               |                        | 0.0036             | /                       | 13.9     | 0.025           | 6.94        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Methoxychlor            | 0.050 - 0.050 | 0 / 2        |               |                        | 0.030              | /                       | 1.67     | 0.025           | 0.83        |            |                  |                 |                 |                 | No      | Not detected                                        |
| Toxaphene               | 1.00 - 1.00   | 0 / 2        |               |                        | 0.0020             | /                       | 500      | 0.50            | 250         |            |                  |                 |                 |                 | No      | Not detected                                        |
| Inorganics (UG/L)       |               |              |               |                        |                    |                         |          |                 |             |            |                  |                 |                 |                 |         |                                                     |
| Aluminum                |               | 2/2          | 1,680         | IR17-TW01-09C          | NSV                | /                       | NSV      | 1,470           | NSV         | 1886       | No               |                 |                 |                 | No      | Consistent with background                          |
| Antimony                | 20.0 - 20.0   | 0 / 2        |               |                        | NSV                | /                       | NSV      | 10.0            | NSV         | 3.28       |                  |                 |                 |                 | No      | HQ less than one, not detected                      |
| Arsenic                 | 20.0 - 20.0   | 0 / 2        |               |                        | 36.0               | /                       | 0.56     | 10.0            | 0.28        | 5.77       |                  |                 |                 |                 | No      | HQ less than one, not detected                      |
| Barium                  |               | 2 / 2        | 474           | IR17-TW01-09C          | NSV                | /                       | NSV      | 242             | NSV         | 86.2       | Yes              | 25.00           | TCEQ, 2006      | 18.96           | No      | Barium in site soils is within the background range |
| Beryllium               | 2.00 - 2.00   | 1 / 2        | 0.16          | IR17-TW02-09C          | NSV                | /                       | NSV      | 0.58            | NSV         | 0.308      | No               |                 |                 |                 | No      | Consistent with background                          |
| Cadmium                 | 6.00 - 6.00   | 0 / 2        |               |                        | 8.80               | /                       | 0.68     | 3.00            | 0.34        | 0.358      |                  |                 |                 |                 | No      | HQ less than one, not detected                      |
| Calcium <sup>3</sup>    |               | 2/2          | 111,000       | IR17-TW01-09C          | NSV                | /                       | NSV      | 55,956          | NSV         | 69078      | Yes              |                 |                 |                 | No      | Macronutrient                                       |
| Chromium                | 20.0 - 20.0   | 1 / 2        | 1.80          | IR17-TW01-09C          | 50.0               | 0 / 2                   | 0.036    | 5.90            | 0.12        | 3.13       | No               |                 |                 |                 | No      | Consistent with background                          |
| Cobalt                  | 5.00 - 5.00   | 0 / 2        | -             |                        | NSV                | /                       | NSV      | 2.50            | NSV         | 3.4        | Yes              |                 |                 |                 | No      | No screening value, not detected                    |
| Copper                  | 20.0 - 20.0   | 0 / 2        |               |                        | 3.10               | /                       | 6.45     | 10.0            | 3.23        | 2.76       |                  |                 |                 |                 | No      | Not detected                                        |
| Iron                    |               | 2/2          | 2,590         | IR17-TW01-09C          | NSV                | /                       | NSV      | 1,880           | NSV         | 5999       | No               |                 |                 |                 | No      | Consistent with background                          |
| Lead                    |               | 2 / 2        | 3.20          | IR17-TW01-09C          | 8.10               | 0 / 2                   | 0.40     | 3.20            | 0.40        | 2.8        | Yes              |                 |                 |                 | No      | Within background range                             |
| Magnesium <sup>3</sup>  |               | 2 / 2        | 57,300        | IR17-TW01-09C          | NSV                | /                       | NSV      | 28,919          | NSV         | 6363       | Yes              |                 |                 |                 | No      | Macronutrient                                       |
| Manganese               |               | 2/2          | 57.5          | IR17-TW01-09C          | NSV                | /                       | NSV      | 37.6            | NSV         | 214        | No               |                 |                 |                 | No      | Consistent with background                          |
| Mercury                 | 0.20 - 0.20   | 1 / 2        | 0.25          | IR17-TW01-09C          | 0.94               | 0 / 2                   | 0.27     | 0.18            | 0.19        | 0.1        | Yes              |                 |                 |                 | No      | HQ less than one, detected                          |
| Nickel                  | 10.0 - 10.0   | 1 / 2        | 13.8          | IR17-TW01-09C          | 8.20               | 1 / 2                   | 1.68     | 9.40            | 1.15        | 7.97       | Yes              |                 |                 |                 | No      | Within background range                             |
| Potassium <sup>3</sup>  |               | 2/2          | 8,250         | IR17-TW01-09C          | NSV                | /                       | NSV      | 4,660           | NSV         | 3277       | Yes              |                 |                 |                 | No      | Macronutrient                                       |
| Selenium                | 20.0 - 20.0   | 1 / 2        | 4.20          | IR17-TW02-09C          | 71.0               | 0 / 2                   | 0.059    | 7.10            | 0.10        | 3.14       | Yes              |                 |                 |                 | No      | HQ less than one, detected                          |
| Silver                  | 20.0 - 20.0   | 0 / 2        |               |                        | 0.23               | /                       | 87.0     | 10.0            | 43          | 0.77       |                  |                 |                 |                 | No      | Not detected                                        |
| Sodium <sup>3</sup>     |               | 2 / 2        | 499,000       | IR17-TW01-09C          | NSV                | /                       | NSV      | 253,235         | NSV         | 22508      | Yes              |                 |                 |                 | No      | Macronutrient                                       |
| Thallium                | 30.0 - 30.0   | 0 / 2        |               |                        | 21.3               | /                       | 1.41     | 15.0            | 0.70        | 3.78       |                  |                 |                 |                 | No      | Not detected                                        |
| Vanadium                | 50.0 - 50.0   | 0 / 2        |               |                        | NSV                | /                       | NSV      | 25.0            | NSV         | 4.72       | Yes              |                 |                 |                 | No      | No screening value, not detected                    |
| Zinc                    |               | 2/2          | 10.2          | IR17-TW01-09C          | 81.0               | 0 / 2                   | 0.13     | 7.95            | 0.098       | 42.1       | No               |                 |                 |                 | No      | Consistent with background                          |
| Dissolved Metals (UG/L) | -             |              |               | •                      |                    |                         |          |                 |             |            |                  |                 |                 | 1               |         |                                                     |
| Aluminum, Dissolved     | 1,000 - 1,000 | 1 / 2        | 567           | IR17-TW01-09C          | NSV                | /                       | NSV      | 534             | NSV         | 1886       | No               |                 |                 |                 | No      | Consistent with background                          |
| Antimony, Dissolved     | 20.0 - 20.0   | 0 / 2        |               |                        | 160                | /                       | 0.13     | 10.0            | 0.063       | 3.28       |                  |                 |                 |                 | No      | HQ less than one, not detected                      |
| Arsenic, Dissolved      | 20.0 - 20.0   | 0 / 2        |               |                        | 36.0               | /                       | 0.56     | 10.0            | 0.28        | 5.77       |                  |                 |                 |                 | No      | HQ less than one, not detected                      |
| Barium, Dissolved       |               | 2/2          | 498           | IR17-TW01-09C          | NSV                | /                       | NSV      | 252             | NSV         | 86.2       | Yes              | 25.00           | TCEQ, 2006      | 19.92           | No      | Barium in site soils is within the background range |
| Beryllium, Dissolved    | 2.00 - 2.00   | 1 / 2        | 0.10          | IR17-TW02-09C          | NSV                | /                       | NSV      | 0.55            | NSV         | 0.308      | No               |                 |                 |                 | No      | Consistent with background                          |
| Cadmium, Dissolved      | 6.00 - 6.00   | 0 / 2        |               |                        | 8.80               | /                       | 0.68     | 3.00            | 0.34        | 0.358      |                  |                 |                 |                 | No      | HQ less than one, not detected                      |

ERS Groundwater Screen for Site 17 Camp Johnson Consutrcion Area Focused PA/SI

MCB Camp Lejeune, North Carolina

| Chemical                          | Range of Non-<br>Detect Values |       | Maximum<br>Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value <sup>1</sup> | Frequency of Exceedance <sup>2</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain? | Rationale                        |
|-----------------------------------|--------------------------------|-------|--------------------------------------|------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|---------|----------------------------------|
| Calcium, Dissolved <sup>3</sup>   |                                | 2 / 2 | 110,000                              | IR17-TW01-09C                                  | NSV                             | /                                    | NSV                           | 55,306                           | NSV                     | 69078                  | Yes                                        |                                 |                                           |                                                    | No      | Macronutrient                    |
| Chromium, Dissolved               | 20.0 - 20.0                    | 0 / 2 |                                      |                                                | 50.0                            | /                                    | 0.40                          | 10.0                             | 0.20                    | 3.13                   |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Cobalt, Dissolved                 | 5.00 - 5.00                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 2.50                             | NSV                     | 3.4                    | Yes                                        |                                 |                                           |                                                    | No      | Not detected                     |
| Copper, Dissolved                 | 20.0 - 20.0                    | 1 / 2 | 3.80                                 | IR17-TW01-09C                                  | 3.10                            | 1 / 2                                | 1.23                          | 6.90                             | 2.23                    | 2.76                   | Yes                                        |                                 |                                           |                                                    | No      | Within background range          |
| Iron, Dissolved                   |                                | 2 / 2 | 2,760                                | IR17-TW01-09C                                  | NSV                             | /                                    | NSV                           | 1,535                            | NSV                     | 5999                   | No                                         |                                 |                                           |                                                    | No      | Consistent with background       |
| Lead, Dissolved                   | 20.0 - 20.0                    | 1 / 2 | 2.60                                 | IR17-TW01-09C                                  | 8.10                            | 0 / 2                                | 0.32                          | 6.30                             | 0.78                    | 2.8                    | No                                         |                                 |                                           |                                                    | No      | Consistent with background       |
| Magnesium, Dissolved <sup>3</sup> |                                | 2 / 2 | 59,200                               | IR17-TW01-09C                                  | NSV                             | /                                    | NSV                           | 29,733                           | NSV                     | 6363                   | Yes                                        |                                 |                                           |                                                    | No      | Macronutrient                    |
| Manganese, Dissolved              |                                | 2/2   | 64.6                                 | IR17-TW01-09C                                  | NSV                             | /                                    | NSV                           | 38.8                             | NSV                     | 214                    | No                                         |                                 |                                           |                                                    | No      | Consistent with background       |
| Mercury, Dissolved                | 0.20 - 0.20                    | 0 / 2 |                                      |                                                | 0.94                            | /                                    | 0.21                          | 0.10                             | 0.11                    | 0.1                    |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Nickel, Dissolved                 | 10.0 - 10.0                    | 1 / 2 | 15.9                                 | IR17-TW01-09C                                  | 8.20                            | 1 / 2                                | 1.94                          | 10.5                             | 1.27                    | 7.97                   | Yes                                        |                                 |                                           |                                                    | No      | Within background range          |
| Potassium, Dissolved <sup>3</sup> |                                | 2 / 2 | 8,580                                | IR17-TW01-09C                                  | NSV                             | /                                    | NSV                           | 4,820                            | NSV                     | 3277                   | Yes                                        |                                 |                                           |                                                    | No      | Macronutrient                    |
| Selenium, Dissolved               | 20.0 - 20.0                    | 1 / 2 | 4.20                                 | IR17-TW02-09C                                  | 71.0                            | 0 / 2                                | 0.059                         | 7.10                             | 0.10                    | 3.14                   | Yes                                        |                                 |                                           |                                                    | No      | HQ less than one, detected       |
| Silver, Dissolved                 | 20.0 - 20.0                    | 0 / 2 |                                      |                                                | 0.23                            | /                                    | 87.0                          | 10.0                             | 43                      | 0.77                   |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| Sodium, Dissolved <sup>3</sup>    |                                | 2 / 2 | 510,000                              | IR17-TW01-09C                                  | NSV                             | /                                    | NSV                           | 258,905                          | NSV                     | 22508                  | Yes                                        |                                 |                                           |                                                    | No      | Macronutrient                    |
| Thallium, Dissolved               | 30.0 - 30.0                    | 0 / 2 |                                      |                                                | 21.3                            | /                                    | 1.41                          | 15.0                             | 0.70                    | 3.78                   |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| Vanadium, Dissolved               | 50.0 - 50.0                    | 0 / 2 |                                      |                                                | NSV                             | /                                    | NSV                           | 25.0                             | NSV                     | 4.72                   | Yes                                        |                                 |                                           |                                                    | No      | No screening value, not detected |
| Zinc, Dissolved                   |                                | 2 / 2 | 14.7                                 | IR17-TW01-09C                                  | 81.0                            | 0 / 2                                | 0.18                          | 11.3                             | 0.14                    | 42.1                   | No                                         |                                 |                                           |                                                    | No      | Consistent with background       |

# NOTES

- 1 Marine screening values
- 2 Count of detected samples exceeding or equaling Screening Value
- 3 Macronutrient Not considered to be a contaminant of potential concern (COPC)
- UG/L Micrograms per liter
- HQ Hazard Quotient
- NSV No Screening Value Generated by: Sara Kent
- Checked by: Kelly Taylor

Table F-10
ERS Surface Soil Screen for Site 85
Camp Johnson Consutrcion Area
Focused PA/SI
MCB Camp Leieune. North Carolina

| MCB Camp Lejeune, North Carolina                 |                                |           |                                      |                                             |                    |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                      |
|--------------------------------------------------|--------------------------------|-----------|--------------------------------------|---------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------|
| Chemical                                         | Range of Non-<br>Detect Values |           | Maximum<br>Concentration<br>Detected | Sample ID of Maximum Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mear<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Retain? | Rationale                                            |
|                                                  | Detect values                  | Detection | 20100104                             | Dottotica Componication                     | Tuiuo              | Executance                           | <b>Luction</b>                | 0011001111111011                 | - Cuotion               | zuong. ounu            |                                            | Coroning value                  | 554.55                                    | THE CONTRACTOR OF THE CONTRACT | Hotaiii |                                                      |
| Volatile Organic Compounds (UG/KG)               | 4.20 0.50                      | 0 / 10    | 1                                    | 1                                           | 100                | 1 ,                                  | 0.005                         | 2.70                             | 0.000                   |                        | 1                                          | 1                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ne      | HQ less than one, not detected                       |
| 1,1,1-Trichloroethane                            | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 100                | /                                    | 0.095                         | 2.79                             | 0.028                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | ·                                                    |
| 1,1,2,2-Tetrachloroethane                        | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 100                | /                                    | 0.095                         | 2.79                             | 0.028                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| 1,1,2-Trichloroethane                            | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 100                | /                                    | 0.095                         | 2.79                             | 0.028                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| 1,1-Dichloroethane                               | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 100                | /                                    | 0.095                         | 2.79                             | 0.028                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| 1,1-Dichloroethene                               | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 100                | /                                    | 0.095                         | 2.79                             | 0.028                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| 1,2,4-Trichlorobenzene                           | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 10.0               | /                                    | 0.95                          | 2.79                             | 0.28                    | -                      |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| 1,2-Dibromo-3-chloropropane                      | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| 1,2-Dibromoethane                                | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| 1,2-Dichlorobenzene                              | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 10.0               | /                                    | 0.95                          | 2.79                             | 0.28                    |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| 1,2-Dichloroethane                               | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 400                | /                                    | 0.024                         | 2.79                             | 0.007                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| 1,2-Dichloropropane                              | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 700,000            | /                                    | 1.36E-05                      | 2.79                             | 0.000                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| 1,3-Dichlorobenzene                              | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 10.0               | /                                    | 0.95                          | 2.79                             | 0.28                    |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| 1,4-Dichlorobenzene                              | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 10.0               | /                                    | 0.95                          | 2.79                             | 0.28                    |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
|                                                  |                                |           |                                      |                                             |                    |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                      |
| 2-Butanone                                       | 8.60 - 19.0                    | 5 / 10    | 27.0                                 | IR85-SS14-00-01-09C                         | NSV                | /                                    | NSV                           | 8.55                             | NSV                     |                        |                                            | 89,600                          | Buchman, 2008                             | 9.54E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No      | Supplemental HQ less than one, common Lab contaminar |
| 2-Hexanone                                       | 8.60 - 19.0                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 5.59                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| 4-Methyl-2-pentanone                             | 8.60 - 19.0                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 5.59                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
|                                                  |                                |           |                                      |                                             |                    |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                      |
| Acetone                                          |                                | 12 / 12   | 1,300                                | IR85-SS09-00-01-09C                         | NSV                | /                                    | NSV                           | 266                              | NSV                     |                        |                                            | 2500                            | Buchman, 2008                             | 1.06E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No      | Supplemental HQ less than one, common Lab contaminan |
| Benzene                                          | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 50.0               | /                                    | 0.19                          | 2.79                             | 0.056                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| Bromodichloromethane                             | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Bromoform                                        | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Bromomethane                                     | 8.60 - 19.0                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 5.59                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Carbon disulfide                                 | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Carbon tetrachloride                             | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 1,000,000          | /                                    | 9.50E-06                      | 2.79                             | 2.79E-06                |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| Chlorobenzene                                    | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 50.0               | /                                    | 0.19                          | 2.79                             | 0.056                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| Chloroethane                                     | 8.60 - 19.0                    | 0 / 10    |                                      |                                             | 100                | /                                    | 0.19                          | 5.59                             | 0.056                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| Chloroform                                       | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 1.00               | /                                    | 9.50                          | 2.79                             | 2.79                    |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Chloromethane                                    | 8.60 - 19.0                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 5.59                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| cis-1,2-Dichloroethene                           | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| cis-1,3-Dichloropropene                          | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Cyclohexane                                      | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 100                | /                                    | 0.095                         | 2.79                             | 0.028                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| Dibromochloromethane                             | 4.30 - 9.50                    |           |                                      | +                                           | NSV                | +                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
|                                                  | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Not detected                                         |
| Dichlorodifluoromethane (Freon-12)               | +                              | 0 / 10    |                                      |                                             |                    | /                                    | 1                             |                                  |                         |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| Ethylbenzene                                     | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 50.0               | /                                    | 0.19                          | 2.79                             | 0.056                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Isopropylbenzene                                 | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      |                                                      |
| Methylagelehovene                                | 4.20 0.50                      | 10 / 10   | 200                                  | IR85-SS17-00-01-09C                         | NSV                | /                                    | NSV                           | 38.3                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OV)     | Uncertainty, no screening value                      |
| Methylogo oblorida                               | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected  HO is loss than one, detected          |
| Methylene chloride                               | 8.60 - 13.0                    | 1 / 10    | 14.0                                 | IR85-SS17-00-01-09C                         | 2,000              | 0 / 10                               | 0.0070                        | 6.04                             | 0.003                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ is less than one, detected                        |
| Methyl-tert-butyl ether (MTBE)                   | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Styrene                                          | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 100                | /                                    | 0.095                         | 2.79                             | 0.028                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| Tetrachloroethene                                | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 10.0               | /                                    | 0.95                          | 2.79                             | 0.28                    |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| Toluene                                          | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 50.0               | /                                    | 0.19                          | 2.79                             | 0.056                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| trans-1,2-Dichloroethene                         | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 100                | /                                    | 0.095                         | 2.79                             | 0.028                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| trans-1,3-Dichloropropene                        | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Trichloroethene                                  | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 1.00               | /                                    | 9.50                          | 2.79                             | 2.79                    |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Trichlorofluoromethane(Freon-11)                 | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | NSV                | /                                    | NSV                           | 2.79                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Vinyl chloride                                   | 8.60 - 19.0                    | 0 / 10    |                                      |                                             | 10.0               | /                                    | 1.90                          | 5.59                             | 0.56                    |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| Xylene, total                                    | 4.30 - 9.50                    | 0 / 10    |                                      |                                             | 50.0               | /                                    | 0.19                          | 2.79                             | 0.056                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| Semivolatile Organic Compounds (UG/KG)           |                                |           |                                      |                                             |                    |                                      |                               |                                  |                         |                        |                                            |                                 | -                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _       |                                                      |
| 1,1-Biphenyl                                     | 180 - 230                      | 0 / 13    |                                      |                                             | 60,000             | /                                    | 0.0038                        | 95.8                             | 0.002                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| 2,2'-Oxybis(1-chloropropane)                     | 180 - 230                      | 0 / 13    |                                      |                                             | NSV                | /                                    | NSV                           | 95.8                             | NSV                     |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| 2,4,5-Trichlorophenol                            | 180 - 230                      | 0 / 13    |                                      |                                             | 4,000              | /                                    | 0.058                         | 95.8                             | 0.024                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| 2,4-Dichlorophenol                               | 180 - 230                      | 0 / 13    |                                      |                                             | 3.00               | /                                    | 76.7                          | 95.8                             | 32                      |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| 2,4-Dimethylphenol                               | 180 - 230                      | 0 / 13    |                                      |                                             | NSV                | /                                    | NSV                           | 95.8                             | NSV                     | -                      |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | Not detected                                         |
| 2,4-Dinitrophenol                                | 180 - 230                      | 0 / 13    |                                      |                                             | 20,000             | /                                    | 0.012                         | 95.8                             | 0.005                   |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No      | HQ less than one, not detected                       |
| · · · · · · · · · · · · · · · · · · ·            |                                | •         | •                                    |                                             |                    | •                                    | •                             |                                  |                         |                        |                                            |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | •                                                    |

Table F-10
ERS Surface Soil Screen for Site 85
Camp Johnson Consutrcion Area
Focused PA/SI

| MCB Camp Lejeune, North Carolina |               |              |                          |                        |           |                         |                   |                 |             |            |                          |                 |                                 |                                 |          |                                                       |
|----------------------------------|---------------|--------------|--------------------------|------------------------|-----------|-------------------------|-------------------|-----------------|-------------|------------|--------------------------|-----------------|---------------------------------|---------------------------------|----------|-------------------------------------------------------|
| Chaminal                         | Range of Non- | Frequency of | Maximum<br>Concentration | Sample ID of Maximum   | Screening | Frequency of            | Maximum<br>Hazard | Arithmetic Mean | Mean Hazard | 2 x Mean   | Maximum Exceeds 2 x Mean | Supplemental    | Supplemental<br>Screening Value | Supplemental<br>Screening Value | Datain 2 | Dational                                              |
| Chemical                         | Detect Values | Detection    | Detected                 | Detected Concentration | Value     | Exceedance <sup>1</sup> | Quotient          | Concentration   | Quotient    | Background | Background?              | Screening Value | Source                          | Hazard Quotient                 | Retain?  | Rationale                                             |
| 2,4-Dinitrotoluene               | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 2,6-Dinitrotoluene               | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 2-Chloronaphthalene              | 180 - 230     | 0 / 13       |                          |                        | 1,000     | /                       | 0.23              | 95.8            | 0.096       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| 2-Chlorophenol                   | 180 - 230     | 0 / 13       |                          |                        | 10.0      | /                       | 23.0              | 95.8            | 9.58        |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 2-Methylnaphthalene              | 180 - 230     | 0 / 13       |                          |                        | 29,000    | /                       | 0.0079            | 95.8            | 0.003       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| 2-Methylphenol                   | 180 - 230     | 0 / 13       |                          |                        | 500       | /                       | 0.46              | 95.8            | 0.19        |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| 2-Nitroaniline                   | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 2-Nitrophenol                    | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 3,3'-Dichlorobenzidine           | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 3-Nitroaniline                   | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 4,6-Dinitro-2-methylphenol       | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 4-Bromophenyl-phenylether        | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 4-Chloro-3-methylphenol          | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 4-Chloroaniline                  | 180 - 230     | 0 / 13       |                          |                        | 20,000    | /                       | 0.012             | 95.8            | 0.005       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| 4-Chlorophenyl-phenylether       | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 4-Methylphenol                   | 180 - 230     | 0 / 13       |                          |                        | 500       | /                       | 0.46              | 95.8            | 0.19        |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| 4-Nitroaniline                   | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| 4-Nitrophenol                    | 180 - 230     | 0 / 13       |                          |                        | 7,000     | /                       | 0.033             | 95.8            | 0.014       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Acenaphthene                     | 180 - 230     | 0 / 13       |                          |                        | 29,000    | /                       | 0.0079            | 95.8            | 0.003       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Acenaphthylene                   | 180 - 230     | 0 / 13       |                          |                        | 29,000    | /                       | 0.0079            | 95.8            | 0.003       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Acetophenone                     | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Anthracene                       | 180 - 230     | 0 / 13       |                          |                        | 29,000    | /                       | 0.0079            | 95.8            | 0.003       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Atrazine                         | 180 - 230     | 0 / 13       |                          |                        | 0.050     | /                       | 4,600             | 95.8            | 1915        |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Benzaldehyde                     | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Benzo(a)anthracene               | 36.0 - 47.0   | 0 / 13       |                          |                        | 1,100     | /                       | 0.043             | 19.2            | 0.017       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Benzo(a)pyrene                   | 36.0 - 47.0   | 0 / 13       |                          |                        | 1,100     | /                       | 0.043             | 19.2            | 0.017       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Benzo(b)fluoranthene             | 36.0 - 47.0   | 0 / 13       |                          |                        | 1,100     | /                       | 0.043             | 19.2            | 0.017       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Benzo(g,h,i)perylene             | 180 - 230     | 0 / 13       |                          |                        | 1,100     | /                       | 0.21              | 95.8            | 0.087       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Benzo(k)fluoranthene             | 180 - 230     | 0 / 13       |                          |                        | 1,100     | /                       | 0.21              | 95.8            | 0.087       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| bis(2-Chloroethoxy)methane       | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| bis(2-Chloroethyl)ether          | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
|                                  |               |              |                          |                        |           |                         |                   |                 |             |            |                          |                 |                                 |                                 |          | Low frequency and magnitude of exceedance, common lab |
| bis(2-Ethylhexyl)phthalate       | 180 - 230     | 3 / 13       | 140                      | IR85-SS06-00-01-09C    | 100       | 1 / 13                  | 1.40              | 91.7            | 0.92        |            |                          |                 |                                 |                                 | No       | contaminant                                           |
| Butylbenzylphthalate             | 180 - 230     | 0 / 13       |                          |                        | 100       | /                       | 2.30              | 95.8            | 0.96        |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Caprolactam                      | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Carbazole                        | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Chrysene                         | 180 - 230     | 0 / 13       |                          |                        | 1,100     | /                       | 0.21              | 95.8            | 0.087       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Dibenz(a,h)anthracene            | 36.0 - 47.0   | 0 / 13       |                          |                        | 1,100     | /                       | 0.043             | 19.2            | 0.017       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Dibenzofuran                     | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Diethylphthalate                 | 180 - 230     | 0 / 13       |                          |                        | 100,000   | /                       | 0.0023            | 95.8            | 0.001       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Dimethyl phthalate               | 180 - 230     | 0 / 13       |                          |                        | 200,000   | /                       | 0.0012            | 95.8            | 4.79E-04    |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Di-n-butylphthalate              | 180 - 230     | 0 / 13       |                          |                        | 200,000   | /                       | 0.0012            | 95.8            | 4.79E-04    |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Di-n-octylphthalate              | 180 - 230     | 0 / 13       |                          |                        | 100       | /                       | 2.30              | 95.8            | 0.96        |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Fluoranthene                     | 180 - 230     | 0 / 13       |                          |                        | 1,100     | /                       | 0.21              | 95.8            | 0.087       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Fluorene                         | 180 - 230     | 0 / 13       |                          |                        | 29,000    | /                       | 0.0079            | 95.8            | 0.003       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Hexachlorobenzene                | 180 - 230     | 0 / 13       |                          |                        | 2.50      | /                       | 92.0              | 95.8            | 38          |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Hexachlorobutadiene              | 180 - 230     | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 95.8            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Hexachlorocyclopentadiene        | 180 - 230     | 0 / 12       |                          |                        | 10,000    | /                       | 0.023             | 94.6            | 0.009       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Hexachloroethane                 | 180 - 230     | 0 / 13       |                          |                        | 100       | /                       | 2.30              | 95.8            | 0.96        |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Indeno(1,2,3-cd)pyrene           | 36.0 - 47.0   | 0 / 13       |                          |                        | 1,100     | /                       | 0.043             | 19.2            | 0.017       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Isophorone                       | 36.0 - 47.0   | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 19.2            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| Naphthalene                      | 180 - 230     | 0 / 13       |                          |                        | 29,000    | /                       | 0.0079            | 95.8            | 0.003       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| n-Nitroso-di-n-propylamine       | 36.0 - 47.0   | 0 / 13       |                          |                        | NSV       | /                       | NSV               | 19.2            | NSV         |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| n-Nitrosodiphenylamine           | 180 - 230     | 0 / 13       |                          |                        | 20,000    | /                       | 0.012             | 95.8            | 0.005       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Nitrobenzene                     | 180 - 230     | 0 / 13       |                          |                        | 40,000    | /                       | 0.0058            | 95.8            | 0.002       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Pentachlorophenol                | 180 - 230     | 0 / 13       |                          |                        | 2,100     | /                       | 0.0030            | 95.8            | 0.002       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Phenanthrene                     | 180 - 230     | 0 / 13       |                          |                        | 29,000    | /                       | 0.0079            | 95.8            | 0.040       |            |                          |                 |                                 |                                 | No       | HQ less than one, not detected                        |
| Phenol                           | 180 - 230     | 0 / 13       |                          |                        | 50.0      | /                       | 4.60              | 95.8            | 1.92        |            |                          |                 |                                 |                                 | No       | Not detected                                          |
| LINCHUL                          | 100 - 230     | 0 / 13       |                          | <u> </u>               | 50.0      | /                       | 4.00              | 7J.U            | 1.7∠        |            | 1                        |                 |                                 |                                 | INU      |                                                       |

**Table F-10**ERS Surface Soil Screen for Site 85
Camp Johnson Consutrcion Area
Focused PA/SI

| MCB Camp Lejeune, North Carolina          |                                |         |                                      |                                                |                    |                                      |                               |                                         |                         |                        |                                            |                                 |                                           |                                                    |         |                                                                                                    |
|-------------------------------------------|--------------------------------|---------|--------------------------------------|------------------------------------------------|--------------------|--------------------------------------|-------------------------------|-----------------------------------------|-------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|---------|----------------------------------------------------------------------------------------------------|
| Chemical                                  | Range of Non-<br>Detect Values |         | Maximum<br>Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration        | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain? | Rationale                                                                                          |
| Pyrene                                    | 180 - 230                      | 0 / 13  |                                      |                                                | 1,100              | /                                    | 0.21                          | 95.8                                    | 0.087                   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| Pesticide/Polychlorinated Biphenyls (UG/K | (G)                            | •       | •                                    | •                                              |                    |                                      |                               | •                                       |                         |                        | •                                          | •                               |                                           |                                                    |         |                                                                                                    |
| 4,4'-DDD                                  | 1.80 - 2.30                    | 5 / 13  | 3.10                                 | IR85-SS18-00-01-09C                            | 21.0               | 0 / 13                               | 0.15                          | 1.11                                    | 0.053                   |                        |                                            |                                 |                                           |                                                    | No      | HQ is less than one, detected                                                                      |
| 4,4'-DDE                                  | 1.90 - 1.90                    | 12 / 13 | 29.0                                 | IR85-SS18-00-01-09C                            | 21.0               | 1 / 13                               | 1.38                          | 4.35                                    | 0.21                    |                        |                                            |                                 |                                           |                                                    | No      | Low frequency and magnitude of exceedance, mean HQ less than one                                   |
|                                           |                                |         |                                      |                                                |                    |                                      |                               |                                         |                         |                        |                                            |                                 |                                           |                                                    |         | Low frequency and magnitude of exceedance, mean HQ                                                 |
| 4,4'-DDT                                  | 1.80 - 1.90                    | 11 / 13 | 25.0                                 | IR85-SS18-00-01-09C                            | 21.0               | 1 / 13                               | 1.19                          | 3.76                                    | 0.18                    |                        |                                            |                                 |                                           |                                                    | No      | less than one                                                                                      |
| Aldrin                                    | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 2.50               | /                                    | 0.92                          | 0.96                                    | 0.38                    |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| alpha-BHC                                 | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 2.50               | /                                    | 0.92                          | 0.96                                    | 0.38                    |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| alpha-Chlordane                           | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 100                | /                                    | 0.023                         | 0.96                                    | 0.010                   |                        |                                            |                                 |                                           | ==                                                 | No      | HQ less than one, not detected                                                                     |
| Aroclor-1016                              | 17.0 - 23.0                    | 0 / 13  |                                      |                                                | 20.0               | /                                    | 1.15                          | 9.31                                    | 0.47                    |                        |                                            |                                 |                                           | ==                                                 | No      | Not detected                                                                                       |
| Aroclor-1221                              | 17.0 - 23.0                    | 0 / 13  |                                      |                                                | 20.0               | /                                    | 1.15                          | 9.31                                    | 0.47                    | -                      |                                            |                                 |                                           |                                                    | No      | Not detected                                                                                       |
| Aroclor-1232                              | 17.0 - 23.0                    | 0 / 13  |                                      |                                                | 20.0               | /                                    | 1.15                          | 9.31                                    | 0.47                    |                        |                                            |                                 |                                           |                                                    | No      | Not detected                                                                                       |
| Aroclor-1242                              | 17.0 - 23.0                    | 0 / 13  |                                      |                                                | 20.0               | /                                    | 1.15                          | 9.31                                    | 0.47                    |                        |                                            |                                 |                                           |                                                    | No      | Not detected                                                                                       |
| Aroclor-1248                              | 17.0 - 23.0                    | 0 / 13  |                                      |                                                | 20.0               | /                                    | 1.15                          | 9.31                                    | 0.47                    |                        |                                            |                                 |                                           |                                                    | No      | Not detected                                                                                       |
| Aroclor-1254                              | 17.0 - 22.0                    | 2 / 13  | 50.0                                 | IR85-SS17-00-01-09C                            | 20.0               | 2 / 13                               | 2.50                          | 14.6                                    | 0.73                    |                        |                                            |                                 |                                           |                                                    | No      | Low magnitude of exceedance, mean HQ less than one                                                 |
| Aroclor-1260                              | 17.0 - 23.0                    | 0 / 13  |                                      |                                                | 20.0               | /                                    | 1.15                          | 9.31                                    | 0.47                    |                        |                                            |                                 |                                           |                                                    | No      | Not detected                                                                                       |
| beta-BHC                                  | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 1.00               | /                                    | 2.30                          | 0.96                                    | 0.96                    |                        |                                            |                                 |                                           |                                                    | No      | Not detected                                                                                       |
| delta-BHC                                 | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 100                | /                                    | 0.023                         | 0.96                                    | 0.010                   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| Dieldrin                                  | 1.80 - 2.20                    | 1 / 13  | 1.90                                 | IR85-SS17-00-01-09C                            | 4.90               | 0 / 13                               | 0.39                          | 1.02                                    | 0.21                    |                        |                                            |                                 |                                           |                                                    | No      | HQ is less than one, detected                                                                      |
| Endosulfan I                              | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 100                | /                                    | 0.023                         | 0.96                                    | 0.010                   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| Endosulfan II                             | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 100                | /                                    | 0.023                         | 0.96                                    | 0.010                   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| Endosulfan sulfate                        | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 100                | /                                    | 0.023                         | 0.96                                    | 0.010                   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| Endrin                                    | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 1.00               | /                                    | 2.30                          | 0.96                                    | 0.96                    |                        |                                            |                                 |                                           |                                                    | No      | Not detected                                                                                       |
| Endrin aldehyde                           | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 100                | /                                    | 0.023                         | 0.96                                    | 0.010                   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| Endrin ketone                             | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 100                | /                                    | 0.023                         | 0.96                                    | 0.010                   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| gamma-BHC (Lindane)                       | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 0.050              | /                                    | 46.0                          | 0.96                                    | 19                      |                        |                                            |                                 |                                           |                                                    | No      | Not detected                                                                                       |
| gamma-Chlordane                           | 1.80 - 1.90                    | 2 / 13  | 2.70                                 | IR85-SS18-00-01-09C                            | 100                | 0 / 13                               | 0.027                         | 1.06                                    | 0.011                   |                        |                                            |                                 |                                           |                                                    | No      | HQ is less than one, detected                                                                      |
| Heptachlor                                | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 100                | /                                    | 0.023                         | 0.96                                    | 0.010                   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| Heptachlor epoxide                        | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 100                | /                                    | 0.023                         | 0.96                                    | 0.010                   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| Methoxychlor                              | 1.80 - 2.30                    | 0 / 13  |                                      |                                                | 100                | /                                    | 0.023                         | 0.96                                    | 0.010                   |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| Toxaphene                                 | 36.0 - 47.0                    | 0 / 13  |                                      |                                                | 100                | /                                    | 0.47                          | 19.2                                    | 0.19                    |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                                                                     |
| Inorganics (MG/KG)                        |                                |         | l                                    |                                                |                    |                                      |                               | l                                       |                         |                        | l                                          | l                               |                                           |                                                    |         |                                                                                                    |
| Aluminum                                  |                                | 13 / 13 | 7,300                                | IR85-SS14-00-01-09C                            | 50.0               | 13 / 13                              | 146                           | 4,508                                   | 90                      | 5,487                  | Yes                                        |                                 |                                           |                                                    | No      | Within background range                                                                            |
|                                           |                                |         |                                      |                                                |                    |                                      |                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                         |                        |                                            |                                 |                                           |                                                    |         | HQ above 1, maximum concentration well above                                                       |
| Antimony                                  | 1.50 - 38.5                    | 1 / 13  | 5.90                                 | IR85-SS18-00-01-09C                            | 0.27               | 1 / 13                               | 21.9                          | 2.61                                    | 9.66                    | 0.447                  | Yes                                        |                                 |                                           |                                                    | Yes     | background range, and magnitude of exceedance is high                                              |
| Arsenic                                   |                                | 13 / 13 | 9.90                                 | IR85-SS17-00-01-09C                            | 18.0               | 0 / 13                               | 0.55                          | 1.83                                    | 0.102                   | 0.626                  | Yes                                        |                                 |                                           |                                                    | No      | HQ is less than one, detected                                                                      |
| Barium                                    | 24.0 - 24.0                    | 12 / 13 | 31.0                                 | IR85-SS17-00-01-09C                            | 330                | 0 / 13                               | 0.094                         | 12.6                                    | 0.038                   | 14.5                   | Yes                                        |                                 |                                           |                                                    | No      | HQ is less than one, detected                                                                      |
| Beryllium                                 | 0.16 - 3.90                    | 9 / 13  | 0.096                                | IR85-SS18-00-01-09C                            | 21.0               | 0 / 13                               | 0.0046                        | 0.20                                    | 0.010                   | 0.10                   | No                                         |                                 |                                           |                                                    | No      | Consistent with background                                                                         |
|                                           |                                |         |                                      |                                                |                    |                                      |                               |                                         |                         |                        |                                            |                                 |                                           |                                                    |         | HQ above 1, maximum concentration well above                                                       |
| Cadmium                                   | 0.45 - 0.49                    | 3 / 13  | 3.50                                 | IR85-SS18-00-01-09C                            | 0.36               | 3 / 13                               | 9.72                          | 0.72                                    | 2.00                    | 0.033                  | Yes                                        |                                 |                                           |                                                    | Yes     | background range, and magnitude of exceedance is high                                              |
| Calcium <sup>2</sup>                      | 76.4 - 1,930                   |         | 468                                  | IR85-SS16-00-01-09C                            | NSV                | /                                    | NSV                           | 237                                     | NSV                     | 6,360                  | No                                         |                                 |                                           |                                                    | No      | Macronutrient                                                                                      |
| Chromium                                  | 38.5 - 38.5                    | 12 / 13 | 8.50                                 | IR85-SS18-00-01-09C                            | 26.0               | 0 / 13                               | 0.33                          | 5.23                                    | 0.20                    | 6.05                   | Yes                                        |                                 |                                           |                                                    | No      | Within background range                                                                            |
| Cobalt                                    | 0.39 - 0.41                    | 11 / 13 | 2.40                                 | IR85-SS17-00-01-09C                            | 13.0               | 0 / 13                               | 0.18                          | 0.39                                    | 0.030                   | 0.29                   | Yes                                        |                                 |                                           |                                                    | No      | HQ is less than one, detected                                                                      |
| Copper                                    |                                | 13 / 13 | 214                                  | IR85-SS18-00-01-09C                            | 28.0               | 2 / 13                               | 7.64                          | 27.6                                    | 0.99                    | 4.83                   | Yes                                        |                                 |                                           |                                                    | Yes     | HQ above 1, maximum concentration well above background range, and magnitude of exceedance is high |
| Iron                                      |                                | 13 / 13 | 11,500                               | IR85-SS18-00-01-09C                            | 200                | 13 / 13                              | 57.5                          | 3,332                                   | 17                      | 3,245                  | Yes                                        |                                 |                                           |                                                    | No      | Within background range                                                                            |
| Lead                                      |                                | 13 / 13 | 614                                  | IR85-SS18-00-01-09C                            | 11.0               | 6 / 13                               | 55.8                          | 72.3                                    | 6.57                    | 12.3                   | Yes                                        | 50.0                            | Region 4 (EPA,<br>2001)                   | 12.3                                               | Yes     | HQ above 1, maximum concentration well above background range, and magnitude of exceedance is high |
| Magnesium <sup>2</sup>                    |                                | 13 / 13 | 178                                  | IR85-SS14-00-01-09C                            | NSV                | /                                    | NSV                           | 133                                     | NSV                     | 238                    | No                                         |                                 |                                           | ==                                                 | No      | Consistent with background                                                                         |
| Manganese                                 |                                | 13 / 13 | 10,700                               | IR85-SS17-00-01-09C                            | 220                | 4 / 13                               | 48.6                          | 975                                     | 4.43                    | 13.7                   | Yes                                        |                                 |                                           |                                                    | Yes     | HQ above 1, maximum concentration well above background range, and magnitude of exceedance is high |

ERS Surface Soil Screen for Site 85 Camp Johnson Consutrcion Area Focused PA/SI

MCB Camp Lejeune, North Carolina

| Chemical               | Range of Non-<br>Detect Values |         | Maximum<br>Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mear<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain? Rationale                                                                                  |
|------------------------|--------------------------------|---------|--------------------------------------|------------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|-------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                        |                                |         |                                      |                                                |                    |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                                    |                                                                                                    |
|                        |                                |         |                                      |                                                |                    |                                      |                               |                                  |                         |                        |                                            |                                 |                                           |                                                    | HQ above 1, maximum concentration well above                                                       |
| Mercury                | 0.033 - 0.034                  | 11 / 13 | 8.80                                 | IR85-SS18-00-01-09C                            | 0.10               | 5 / 13                               | 88.0                          | 1.21                             | 12                      | 0.081                  | Yes                                        |                                 |                                           |                                                    | Yes background range, and magnitude of exceedance is high                                          |
| Nickel                 |                                | 13 / 13 | 8.70                                 | IR85-SS17-00-01-09C                            | 38.0               | 0 / 13                               | 0.23                          | 2.11                             | 0.06                    | 1.21                   | Yes                                        |                                 |                                           |                                                    | No HQ is less than one, detected                                                                   |
| Potassium <sup>2</sup> | 79.3 - 1,930                   | 9 / 13  | 136                                  | IR85-SS06-00-01-09C                            | NSV                | /                                    | NSV                           | 157                              | NSV                     | 116                    | Yes                                        |                                 |                                           |                                                    | No Within background range                                                                         |
| Selenium               | 1.50 - 38.5                    | 1 / 13  | 0.45                                 | IR85-SS14-00-01-09C                            | 0.52               | 0 / 13                               | 0.87                          | 2.50                             | 4.80                    | 0.56                   | No                                         |                                 |                                           |                                                    | No Consistent with background                                                                      |
| Silver                 | 1.50 - 38.5                    | 5 / 13  | 0.29                                 | IR85-SS16-00-01-09C                            | 4.20               | 0 / 13                               | 0.069                         | 2.28                             | 0.54                    | 0.14                   | Yes                                        |                                 |                                           |                                                    | No HQ is less than one, detected                                                                   |
| Sodium <sup>2</sup>    | 198 - 4,820                    | 7 / 13  | 7.50                                 | IR85-SS09-00-01-09C                            | NSV                | /                                    | NSV                           | 265                              | NSV                     | 80.9                   | No                                         |                                 |                                           |                                                    | No Consistent with background                                                                      |
| Thallium               | 2.30 - 14.4                    | 2 / 13  | 18.7                                 | IR85-SS17-00-01-09C                            | 1.00               | 1 / 13                               | 18.7                          | 2.95                             | 2.95                    | 0.36                   | Yes                                        |                                 |                                           |                                                    | HQ above 1, maximum concentration well above background range, and magnitude of exceedance is high |
| Vanadium               | 96.3 - 96.3                    | 12 / 13 | 10.0                                 | IR85-SS14-00-01-09C                            | 7.80               | 3 / 13                               | 1.28                          | 10.2                             | 1.31                    | 8.90                   | Yes                                        |                                 |                                           |                                                    | No Within background range                                                                         |
| Zinc                   | 3.90 - 4.10                    | 11 / 13 | 5,600                                | IR85-SS17-00-01-09C                            | 46.0               | 5 / 13                               | 122                           | 711                              | 15                      | 10.8                   | Yes                                        |                                 |                                           |                                                    | HQ above 1, maximum concentration well above background range, and magnitude of exceedance is high |

# NOTES

- 1 Count of detected samples exceeding or equaling Screening Value
- 2 Macronutrient Not considered to be a contaminant of potential concern (COPC)

HQ - Hazard Quotient

MG/KG - Milligrams per kilogram

NSV - No Screening Value

UG/KG - Micrograms per kilogram

Generated by: Sara Kent

Checked by: Kelly Taylor

Table F-11
ERS Subsurface Soil Screen for Site 85
Camp Johnson Consutrcion Area
Focused PA/SI

| Chemical                                        | Range of Non-<br>Detect Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean<br>Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain? | Rationale                                             |
|-------------------------------------------------|--------------------------------|------------------------|--------------------------------------|------------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|----------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|---------|-------------------------------------------------------|
| Volatile Organic Compounds (UG/KG)              |                                |                        |                                      |                                                |                    |                                      |                               |                                  |                            |                        |                                            |                                 |                                           |                                                    |         |                                                       |
| 1,1,1-Trichloroethane                           | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 100                | /                                    | 0.021                         | 0.88                             | 0.009                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| 1,1,2,2-Tetrachloroethane                       | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 100                | /                                    | 0.021                         | 0.88                             | 0.009                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113 |                                | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| 1,1,2-Trichloroethane                           | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 100                | /                                    | 0.021                         | 0.88                             | 0.009                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| 1,1-Dichloroethane                              | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 100                | /                                    | 0.021                         | 0.88                             | 0.009                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| 1,1-Dichloroethene                              | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 100                | /                                    | 0.021                         | 0.88                             | 0.009                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| 1,2,4-Trichlorobenzene                          | 1.60 - 1.90                    | 5 / 9                  | 2.70                                 | IR85-SB11-2-7-09C                              | 10.0               | 0 / 9                                | 0.27                          | 1.66                             | 0.17                       |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, detected                            |
| 1,2-Dibromo-3-chloropropane                     | 1.60 - 2.10                    | 1 / 9                  | 2.40                                 | IR85-SB11-2-7-09C                              | NSV                | /                                    | NSV                           | 1.04                             | NSV                        |                        |                                            | 35.2                            | Buchman, 2008                             | 0.068                                              | No      | Supplemental HQ less than one                         |
| 1,2-Dibromoethane                               | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| 1,2-Dichlorobenzene                             | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 10.0               | /                                    | 0.21                          | 0.88                             | 0.088                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| 1,2-Dichloroethane                              | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 400                | /                                    | 0.0053                        | 0.88                             | 0.002                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| 1,2-Dichloropropane                             | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 700,000            | /                                    | 3.00E-06                      | 0.88                             | 1.262E-06                  |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| 1,3-Dichlorobenzene                             | 1.60 - 1.90                    | 3 / 9                  | 1.40                                 | IR85-SB08-2-7-09C                              | 10.0               | 0 / 9                                | 0.14                          | 1.02                             | 0.102                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, detected                            |
| 1,4-Dichlorobenzene                             | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 10.0               | /                                    | 0.21                          | 0.88                             | 0.088                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| 2-Butanone                                      | 3.50 - 3.80                    | 8 / 10                 | 4.10                                 | IR85-SB13-2-7-09C                              | NSV                | /                                    | NSV                           | 2.44                             | NSV                        |                        |                                            | 89,600                          | Buchman, 2008                             | 9.03E-06                                           | No      | Supplemental HQ less than one, common lab contaminant |
| 2-Hexanone                                      | 3.10 - 4.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 1.77                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| 4-Methyl-2-pentanone                            | 3.10 - 4.10                    | 1 / 9                  | 1.50                                 | IR85-SB11-2-7-09C                              | NSV                | /                                    | NSV                           | 1.72                             | NSV                        |                        |                                            | 443,000                         | Buchman, 2008                             | 0.000                                              | No      | Supplemental HQ less than one                         |
| Acetone                                         | 3.50 - 3.80                    | 8 / 10                 | 100                                  | IR85-SB13-2-7-09C                              | NSV                | /                                    | NSV                           | 51.6                             | NSV                        |                        |                                            | 2500                            | Buchman, 2008                             | 1.41E-02                                           | No      | Supplemental HQ less than one                         |
| Benzene                                         | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 50.0               | /                                    | 0.042                         | 0.88                             | 0.018                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| Bromodichloromethane                            | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| Bromoform                                       | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| Bromomethane                                    | 3.50 - 3.80                    | 0 / 2                  |                                      |                                                | NSV                | /                                    | NSV                           | 1.83                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| Carbon disulfide                                | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| Carbon tetrachloride                            | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 1,000,000          | /                                    | 2.10E-06                      | 0.88                             | 8.833E-07                  |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| Chlorobenzene                                   | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 50.0               | /                                    | 0.042                         | 0.88                             | 0.018                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| Chloroethane                                    | 3.10 - 4.10                    | 0 / 8                  |                                      |                                                | 100                | /                                    | 0.041                         | 1.78                             | 0.018                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
|                                                 |                                |                        |                                      |                                                |                    |                                      |                               |                                  |                            |                        |                                            |                                 |                                           |                                                    |         | Low magnitude of exceedance, mean HQ                  |
| Chloroform                                      | 1.60 - 2.10                    | 1 / 9                  | 1.00                                 | IR85-SB11-2-7-09C                              | 1.00               | 1 / 9                                | 1.00                          | 0.89                             | 0.89                       |                        |                                            |                                 |                                           |                                                    | No      | less than one, common lab contaminant.                |
| Chloromethane                                   | 3.10 - 4.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 1.77                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| cis-1,2-Dichloroethene                          | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| cis-1,3-Dichloropropene                         | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| Cyclohexane                                     | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 100                | /                                    | 0.021                         | 0.88                             | 0.009                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| Dibromochloromethane                            | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| Dichlorodifluoromethane (Freon-12)              | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| Ethylbenzene                                    | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 50.0               | /                                    | 0.042                         | 0.88                             | 0.018                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| Isopropylbenzene                                | 1.70 - 1.90                    | 5 / 9                  | 2.70                                 | IR85-SB08-2-7-09C                              | NSV                | /                                    | NSV                           | 1.68                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | Uncertainty, no screening value                       |
| Methyl acetate                                  | 1.60 - 1.90                    | 6 / 10                 | 20.0                                 | IR85-SB07-2-4-09C                              | NSV                | /                                    | NSV                           | 3.91                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | Uncertainty, no screening value                       |
| Methylcyclohexane                               | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| Methylene chloride                              | 3.10 - 3.30                    | 8 / 10                 | 2.30                                 | IR85-SB08-2-7-09C                              | 2,000              | 0 / 10                               | 0.0012                        | 1.51                             | 0.001                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, detected                            |
| Methyl-tert-butyl ether (MTBE)                  | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| Styrene                                         | 1.70 - 3.30                    | 6 / 9                  | 2.80                                 | IR85-SB08-2-7-09C                              | 100                | 0 / 9                                | 0.028                         | 2.01                             | 0.020                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, detected                            |
| Tetrachloroethene                               | 1.60 - 1.90                    | 4 / 9                  | 1.60                                 | IR85-SB08-2-7-09C                              | 10.0               | 0 / 9                                | 0.16                          | 1.13                             | 0.11                       |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, detected                            |
| Toluene                                         | 1.60 - 2.10                    | 1 / 9                  | 0.64                                 | IR85-SB17-6-7-09C                              | 50.0               | 0 / 9                                | 0.013                         | 0.85                             | 0.017                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, detected                            |
| trans-1,2-Dichloroethene                        | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 100                | /                                    | 0.021                         | 0.88                             | 0.009                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| trans-1,3-Dichloropropene                       | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| Trichloroethene                                 | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | 1.00               | /                                    | 2.10                          | 0.88                             | 0.883                      |                        |                                            |                                 |                                           |                                                    | No      | Not detected                                          |
| Trichlorofluoromethane(Freon-11)                | 1.60 - 2.10                    | 0 / 9                  |                                      |                                                | NSV                | /                                    | NSV                           | 0.88                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected                      |
| Vinyl chloride                                  | 3.30 - 3.80                    | 0 / 3                  |                                      |                                                | 10.0               | /                                    | 0.38                          | 1.77                             | 0.18                       |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| Xylene, total                                   | 1.60 - 3.30                    | 0 / 9                  |                                      |                                                | 50.0               | /                                    | 0.066                         | 0.97                             | 0.019                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected                        |
| Semivolatile Organic Compounds (UG/KG)          |                                | 1                      |                                      |                                                | 1                  | · ·                                  | 1 2:230                       |                                  | 1                          | I.                     |                                            | 1                               | 1                                         | 1                                                  |         |                                                       |
| Schlivolatile Organic Combounds totaktar        |                                |                        |                                      |                                                |                    |                                      |                               |                                  |                            |                        |                                            |                                 |                                           |                                                    |         |                                                       |

Table F-11
ERS Subsurface Soil Screen for Site 85
Camp Johnson Consutrcion Area
Focused PA/SI

| Chemical                     | Range of Non-<br>Detect Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of Maximum Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean<br>Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain? | Rationale                        |
|------------------------------|--------------------------------|------------------------|--------------------------------------|---------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|----------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|---------|----------------------------------|
| 2,2'-Oxybis(1-chloropropane) | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 2,4,5-Trichlorophenol        | 180 - 200                      | 0 / 10                 |                                      |                                             | 4,000              | /                                    | 0.050                         | 94.5                             | 0.024                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| 2,4-Dichlorophenol           | 180 - 200                      | 0 / 10                 |                                      |                                             | 3.00               | /                                    | 66.7                          | 94.5                             | 32                         |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| 2,4-Dimethylphenol           | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| 2,4-Dinitrophenol            | 180 - 200                      | 0 / 10                 |                                      |                                             | 20,000             | /                                    | 0.010                         | 94.5                             | 0.005                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| 2,4-Dinitrotoluene           | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| ,6-Dinitrotoluene            | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| Chloronaphthalene            | 180 - 200                      | 0 / 10                 |                                      |                                             | 1,000              | /                                    | 0.20                          | 94.5                             | 0.095                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| -Chlorophenol                | 180 - 200                      | 0 / 10                 |                                      |                                             | 10.0               | /                                    | 20.0                          | 94.5                             | 9.45                       |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| -Methylnaphthalene           | 180 - 200                      | 0 / 10                 |                                      |                                             | 29,000             | /                                    | 0.0069                        | 94.5                             | 0.003                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| -Methylphenol                | 180 - 200                      | 0 / 10                 |                                      |                                             | 500                | /                                    | 0.40                          | 94.5                             | 0.19                       |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Nitroaniline                 | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| -Nitrophenol                 | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| ,3'-Dichlorobenzidine        | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| -Nitroaniline                | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| ,6-Dinitro-2-methylphenol    | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| -Bromophenyl-phenylether     | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| -Chloro-3-methylphenol       | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| -Chloroaniline               | 180 - 200                      | 0 / 10                 |                                      |                                             | 20,000             | /                                    | 0.010                         | 94.5                             | 0.005                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| -Chlorophenyl-phenylether    | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| -Methylphenol                | 180 - 200                      | 0 / 10                 |                                      |                                             | 500                | /                                    | 0.40                          | 94.5                             | 0.19                       |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Nitroaniline                 | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| Nitrophenol                  | 180 - 200                      | 0 / 10                 |                                      |                                             | 7,000              | /                                    | 0.029                         | 94.5                             | 0.014                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| cenaphthene                  | 180 - 200                      | 0 / 10                 |                                      |                                             | 29,000             | /                                    | 0.0069                        | 94.5                             | 0.003                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| cenaphthylene                | 180 - 200                      | 0 / 10                 |                                      |                                             | 29,000             | /                                    | 0.0069                        | 94.5                             | 0.003                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
|                              | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| nthracene                    | 180 - 200                      | 0 / 10                 |                                      |                                             | 29,000             | /                                    | 0.0069                        | 94.5                             | 0.003                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| trazine                      | 180 - 200                      | 0 / 10                 |                                      |                                             | 0.050              | /                                    | 4,000                         | 94.5                             | 1890                       |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| Benzo(a)anthracene           | 36.0 - 39.0                    | 0 / 10                 |                                      |                                             | 1,100              | /                                    | 0.035                         | 18.7                             | 0.017                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
|                              | 36.0 - 39.0                    | 0 / 10                 |                                      |                                             | 1,100              | /                                    | 0.035                         | 18.7                             | 0.017                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Senzo(a)pyrene               | 36.0 - 39.0<br>36.0 - 39.0     | 0 / 10                 |                                      |                                             | 1,100              |                                      | 0.035                         | 18.7                             | 0.017                      |                        |                                            |                                 |                                           |                                                    |         | HQ less than one, not detected   |
| enzo(b)fluoranthene          |                                |                        |                                      |                                             |                    | /                                    |                               |                                  |                            |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| Benzo(g,h,i)perylene         | 180 - 200                      | 0 / 10                 |                                      |                                             | 1,100              | /                                    | 0.18                          | 94.5                             | 0.086                      |                        |                                            |                                 |                                           |                                                    | No      |                                  |
| Senzo(k)fluoranthene         | 180 - 200                      | 0 / 10                 |                                      |                                             | 1,100              | /                                    | 0.18                          | 94.5                             | 0.086                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| is(2-Chloroethoxy)methane    | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| is(2-Chloroethyl)ether       | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| is(2-Ethylhexyl)phthalate    | 180 - 200                      | 1 / 10                 | 58.0                                 | IR85-SB14-2-7-09C                           | 100                | 0 / 10                               | 0.58                          | 90.8                             | 0.91                       |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, detected       |
| utylbenzylphthalate          | 180 - 200                      | 0 / 10                 |                                      |                                             | 100                | /                                    | 2.00                          | 94.5                             | 0.95                       |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| aprolactam                   | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| arbazole                     | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| hrysene                      | 180 - 200                      | 0 / 10                 |                                      |                                             | 1,100              | /                                    | 0.18                          | 94.5                             | 0.086                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| ibenz(a,h)anthracene         | 36.0 - 39.0                    | 0 / 10                 |                                      |                                             | 1,100              | /                                    | 0.035                         | 18.7                             | 0.017                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| ibenzofuran                  | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| piethylphthalate             | 180 - 200                      | 0 / 10                 |                                      |                                             | 100,000            | /                                    | 0.0020                        | 94.5                             | 0.001                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| imethyl phthalate            | 180 - 200                      | 0 / 10                 |                                      |                                             | 200,000            | /                                    | 0.0010                        | 94.5                             | 4.725E-04                  |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| i-n-butylphthalate           | 180 - 200                      | 0 / 10                 |                                      |                                             | 200,000            | /                                    | 0.0010                        | 94.5                             | 4.725E-04                  |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| i-n-octylphthalate           | 180 - 200                      | 0 / 10                 |                                      |                                             | 100                | /                                    | 2.00                          | 94.5                             | 0.95                       |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| luoranthene                  | 180 - 200                      | 0 / 10                 |                                      |                                             | 1,100              | /                                    | 0.18                          | 94.5                             | 0.086                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| luorene                      | 180 - 200                      | 0 / 10                 |                                      |                                             | 29,000             | /                                    | 0.0069                        | 94.5                             | 0.003                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| lexachlorobenzene            | 180 - 200                      | 0 / 10                 |                                      |                                             | 2.50               | /                                    | 80.0                          | 94.5                             | 38                         |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| exachlorobutadiene           | 180 - 200                      | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 94.5                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |
| exachlorocyclopentadiene     | 180 - 200                      | 0 / 10                 |                                      |                                             | 10,000             | /                                    | 0.020                         | 94.5                             | 0.009                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| lexachloroethane             | 180 - 200                      | 0 / 10                 |                                      |                                             | 100                | /                                    | 2.00                          | 94.5                             | 0.95                       |                        |                                            |                                 |                                           |                                                    | No      | Not detected                     |
| ndeno(1,2,3-cd)pyrene        | 36.0 - 39.0                    | 0 / 10                 |                                      |                                             | 1,100              | /                                    | 0.035                         | 18.7                             | 0.017                      |                        |                                            |                                 |                                           |                                                    | No      | HQ less than one, not detected   |
| ophorone                     | 36.0 - 39.0                    | 0 / 10                 |                                      |                                             | NSV                | /                                    | NSV                           | 18.7                             | NSV                        |                        |                                            |                                 |                                           |                                                    | No      | No screening value, not detected |

Table F-11
ERS Subsurface Soil Screen for Site 85
Camp Johnson Consutrcion Area
Focused PA/SI
MCR Camp Leieune

|                                     |                                |                        | Maximum                 |                                             |                    |                                      | Mavimum                       |                                  | Moon                       |                        | Maximum                      |                                 | Supplemental                              | Supplemental                                       |          |                                      |
|-------------------------------------|--------------------------------|------------------------|-------------------------|---------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|----------------------------|------------------------|------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|----------|--------------------------------------|
| Chemical                            | Range of Non-<br>Detect Values | Frequency of Detection | Concentration  Detected | Sample ID of Maximum Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean<br>Hazard<br>Quotient | 2 x Mean<br>Background | Exceeds 2 x Mean Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain?  | Rationale                            |
| Naphthalene                         | 180 - 200                      | 0 / 10                 |                         |                                             | 29,000             | /                                    | 0.0069                        | 94.5                             | 0.003                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| n-Nitroso-di-n-propylamine          | 36.0 - 39.0                    | 0 / 10                 |                         |                                             | NSV                | /                                    | NSV                           | 18.7                             | NSV                        |                        |                              |                                 |                                           |                                                    | No       | No screening value, not detected     |
| n-Nitrosodiphenylamine              | 180 - 200                      | 0 / 10                 |                         |                                             | 20,000             | /                                    | 0.010                         | 94.5                             | 0.005                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Nitrobenzene                        | 180 - 200                      | 0 / 10                 |                         |                                             | 40.000             | /                                    | 0.0050                        | 94.5                             | 0.002                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Pentachlorophenol                   | 180 - 200                      | 0 / 10                 |                         |                                             | 2,100              | /                                    | 0.095                         | 94.5                             | 0.045                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Phenanthrene                        | 180 - 200                      | 0 / 10                 |                         |                                             | 29,000             | /                                    | 0.0069                        | 94.5                             | 0.003                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Phenol                              | 180 - 200                      | 0 / 10                 |                         |                                             | 50.0               | /                                    | 4.00                          | 94.5                             | 1.89                       |                        |                              |                                 |                                           |                                                    | No       | Not detected                         |
| Pyrene                              | 180 - 200                      | 0 / 10                 |                         |                                             | 1,100              | /                                    | 0.18                          | 94.5                             | 0.086                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Pesticide/Polychlorinated Biphenyls | (UG/KG)                        | 1                      |                         |                                             |                    | I.                                   | I                             | l                                |                            | 1                      | 1                            |                                 |                                           | I.                                                 | 1        | -                                    |
| 4,4'-DDD                            | 1.70 - 2.00                    | 2 / 10                 | 1.90                    | IR85-SB09-2-7-09C                           | 21.0               | 0 / 10                               | 0.090                         | 1.07                             | 0.051                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, detected           |
|                                     |                                |                        |                         |                                             |                    |                                      |                               |                                  |                            |                        |                              |                                 |                                           |                                                    |          | Low magnitude of exceedance, mean HC |
| 4,4'-DDE                            | 1.70 - 2.00                    | 2 / 10                 | 31.0                    | IR85-SB07-2-4-09C                           | 21.0               | 1 / 10                               | 1.48                          | 4.04                             | 0.19                       |                        |                              |                                 |                                           |                                                    | No       | less than one                        |
| 4,4'-DDT                            | 1.70 - 2.00                    | 2 / 10                 | 10.0                    | IR85-SB07-2-4-09C                           | 21.0               | 0 / 10                               | 0.48                          | 1.87                             | 0.089                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, detected           |
| Aldrin                              | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 2.50               | /                                    | 0.80                          | 0.93                             | 0.37                       |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| alpha-BHC                           | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 2.50               | /                                    | 0.80                          | 0.93                             | 0.37                       |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| alpha-Chlordane                     | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 100                | /                                    | 0.020                         | 0.93                             | 0.009                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Aroclor-1016                        | 17.0 - 19.0                    | 0 / 10                 |                         |                                             | 20.0               | /                                    | 0.95                          | 9.00                             | 0.45                       |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Aroclor-1221                        | 17.0 - 19.0                    | 0 / 10                 |                         |                                             | 20.0               | /                                    | 0.95                          | 9.00                             | 0.45                       |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Aroclor-1232                        | 17.0 - 19.0                    | 0 / 10                 |                         |                                             | 20.0               | /                                    | 0.95                          | 9.00                             | 0.45                       |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Aroclor-1242                        | 17.0 - 19.0                    | 0 / 10                 |                         |                                             | 20.0               | /                                    | 0.95                          | 9.00                             | 0.45                       |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Aroclor-1248                        | 17.0 - 19.0                    | 0 / 10                 |                         |                                             | 20.0               | /                                    | 0.95                          | 9.00                             | 0.45                       |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Aroclor-1254                        | 17.0 - 19.0                    | 0 / 10                 |                         |                                             | 20.0               | /                                    | 0.95                          | 9.00                             | 0.45                       |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Aroclor-1260                        | 17.0 - 19.0                    | 0 / 10                 |                         |                                             | 20.0               | /                                    | 0.95                          | 9.00                             | 0.45                       |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| beta-BHC                            | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 1.00               | /                                    | 2.00                          | 0.93                             | 0.93                       |                        |                              |                                 |                                           |                                                    | No       | Not detected                         |
| delta-BHC                           | 1.70 - 2.00                    | 1 / 10                 | 1.10                    | IR85-SB13-2-7-09C                           | 100                | 0 / 10                               | 0.011                         | 0.94                             | 0.009                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, detected           |
| Dieldrin                            | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 4.90               | /                                    | 0.41                          | 0.93                             | 0.19                       |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Endosulfan I                        | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 100                | /                                    | 0.020                         | 0.93                             | 0.009                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Endosulfan II                       | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 100                | /                                    | 0.020                         | 0.93                             | 0.009                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Endosulfan sulfate                  | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 100                | /                                    | 0.020                         | 0.93                             | 0.009                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Endrin                              | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 1.00               | /                                    | 2.00                          | 0.93                             | 0.93                       |                        |                              |                                 |                                           |                                                    | No       | Not detected                         |
| Endrin aldehyde                     | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 100                | /                                    | 0.020                         | 0.93                             | 0.009                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Endrin ketone                       | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 100                | /                                    | 0.020                         | 0.93                             | 0.009                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| gamma-BHC (Lindane)                 | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 0.050              | /                                    | 40.0                          | 0.93                             | 19                         |                        |                              |                                 |                                           |                                                    | No       | Not detected                         |
| gamma-Chlordane                     | 1.70 - 2.00                    | 1 / 10                 | 1.90                    | IR85-SB13-2-7-09C                           | 100                | 0 / 10                               | 0.019                         | 1.02                             | 0.010                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, detected           |
| Heptachlor                          | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 100                | /                                    | 0.020                         | 0.93                             | 0.009                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Heptachlor epoxide                  | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 100                | /                                    | 0.020                         | 0.93                             | 0.009                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Methoxychlor                        | 1.70 - 2.00                    | 0 / 10                 |                         |                                             | 100                | /                                    | 0.020                         | 0.93                             | 0.009                      |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Toxaphene                           | 33.0 - 39.0                    | 0 / 10                 |                         |                                             | 100                | /                                    | 0.39                          | 18.2                             | 0.18                       |                        |                              |                                 |                                           |                                                    | No       | HQ less than one, not detected       |
| Inorganics (MG/KG)                  | 30.0 37.0                      | 0 7 10                 | J                       | <u> </u>                                    | 100                | '                                    | 0.07                          | 10.2                             | 0.10                       |                        |                              |                                 | l.                                        |                                                    | 140      |                                      |
| Aluminum                            |                                | 10 / 10                | 12,000                  | IR85-SB09-2-7-09C                           | 50.0               | 10 / 10                              | 240                           | 5,855                            | 117                        | 10,369                 | Yes                          |                                 |                                           |                                                    | No       | Within background range              |
| Antimony                            | 1.60 - 1.70                    | 0 / 10                 |                         |                                             | 0.27               | /                                    | 6.30                          | 0.81                             | 2.98                       | 0.36                   | Yes                          |                                 |                                           |                                                    | No       | Not detected                         |
| Arsenic                             |                                | 10 / 10                | 2.30                    | IR85-SB07-2-4-09C                           | 18.0               | 0 / 10                               | 0.13                          | 1.32                             | 0.073                      | 2.12                   | Yes                          |                                 |                                           |                                                    | No       | Within background range              |
| Barium                              |                                | 10 / 10                | 16.2                    | IR85-SB09-2-7-09C                           | 330                | 0 / 10                               | 0.049                         | 8.40                             | 0.075                      | 16.6                   | No                           |                                 |                                           |                                                    | No       | Consistent with background           |
| Beryllium                           | 0.16 - 0.17                    | 4 / 10                 | 0.072                   | IR85-SB09-2-7-09C                           | 21.0               | 0 / 10                               | 0.0034                        | 0.065                            | 0.023                      | 0.17                   | No                           |                                 |                                           |                                                    | No       | Consistent with background           |
| Cadmium                             | 0.47 - 0.50                    | 0 / 10                 | 0.072                   |                                             | 0.36               | /                                    | 1.39                          | 0.24                             | 0.67                       | 0.023                  |                              |                                 |                                           |                                                    | No       | Not detected                         |
| Calcium <sup>2</sup>                | 78.2 - 83.0                    | 2 / 10                 | 84.8                    | IR85-SB09-2-7-09C                           | NSV                | /                                    | NSV                           | 42.2                             | NSV                        | 441                    | No                           |                                 | <del> </del>                              |                                                    | No       | Consistent with background           |
| Chromium                            | 76.2 - 65.0                    | 10 / 10                | 12.5                    | IR85-SB09-2-7-09C                           | 26.0               | 0 / 10                               | 0.48                          | 6.30                             | 0.24                       | 14.5                   | No                           |                                 |                                           |                                                    | No       | Consistent with background           |
| Cobalt                              | 0.39 - 0.42                    | 4 / 10                 | 0.72                    | IR85-SB09-2-7-09C                           | 13.0               | 0 / 10                               | 0.48                          | 0.26                             | 0.020                      | 0.822                  | No                           |                                 |                                           |                                                    | No       | Consistent with background           |
|                                     | 0.39 - 0.42                    | 10 / 10                | 1.70                    | IR85-SB09-2-7-09C                           | 28.0               | 0 / 10                               | 0.055                         | 1.06                             | 0.020                      | 2.56                   | +                            |                                 |                                           |                                                    |          | Consistent with background           |
| Copper                              |                                |                        |                         |                                             |                    |                                      |                               |                                  |                            |                        | No<br>No                     |                                 |                                           |                                                    | No<br>No | · ·                                  |
| Iron                                |                                | 10 / 10                | 5,040                   | IR85-SB09-2-7-09C                           | 200                | 10 / 10                              | 25.2                          | 3,351                            | 17                         | 5,439                  | No                           |                                 |                                           |                                                    | No<br>No | Consistent with background           |
| Lead                                |                                | 10 / 10                | 7.70                    | IR85-SB09-2-7-09C                           | 11.0               | 0 / 10                               | 0.70                          | 4.48                             | 0.41                       | 8.49                   | No                           |                                 |                                           |                                                    | No       | Consistent with background           |
| Magnesium <sup>2</sup>              |                                | 10 / 10                | 424                     | IR85-SB09-2-7-09C                           | NSV                | /                                    | NSV                           | 198                              | NSV                        | 363                    | Yes                          |                                 |                                           |                                                    | No       | Macronutrient                        |
| Manganese                           |                                | 10 / 10                | 31.2                    | IR85-SB08-2-7-09C                           | 220                | 0 / 10                               | 0.14                          | 9.60                             | 0.044                      | 9.25                   | Yes                          |                                 |                                           |                                                    | No       | Within background range              |

# Table F-11 ERS Subsurface Soil Screen for Site 85 Camp Johnson Consutrcion Area Focused PA/SI MCB Camp Lejeune

| Chemical               | Range of Non-<br>Detect Values |         | Maximum<br>Concentration<br>Detected | Sample ID of Maximum<br>Detected Concentration | Screening<br>Value | Frequency of Exceedance <sup>1</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean<br>Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Hazard Quotient | Retain? | Rationale                                                         |
|------------------------|--------------------------------|---------|--------------------------------------|------------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------------------------------|----------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------|---------|-------------------------------------------------------------------|
|                        |                                |         |                                      |                                                |                    |                                      |                               |                                  |                            |                        |                                            |                                 |                                           |                                                    |         | Low frequency and magnitude of exceedance, barely exceeds maximum |
| Mercury                | 0.033 - 0.037                  | 2 / 10  | 0.17                                 | IR85-SB06-2-7-09C                              | 0.10               | 1 / 10                               | 1.70                          | 0.034                            | 0.34                       | 0.071                  | Yes                                        |                                 |                                           |                                                    | No      | background value                                                  |
| Nickel                 | 0.83 - 0.83                    | 9 / 10  | 2.40                                 | IR85-SB09-2-7-09C                              | 38.0               | 0 / 10                               | 0.063                         | 1.11                             | 0.029                      | 2.27                   | Yes                                        |                                 |                                           |                                                    | No      | Within background range                                           |
| Potassium <sup>2</sup> |                                | 10 / 10 | 306                                  | IR85-SB09-2-7-09C                              | NSV                | /                                    | NSV                           | 152                              | NSV                        | 361                    | No                                         |                                 |                                           |                                                    | No      | Consistent with background                                        |
| Selenium               | 1.60 - 1.70                    | 1 / 10  | 0.47                                 | IR85-SB09-2-7-09C                              | 0.52               | 0 / 10                               | 0.90                          | 0.77                             | 1.48                       | 0.505                  | No                                         |                                 |                                           |                                                    | No      | Consistent with background                                        |
| Silver                 | 1.60 - 1.60                    | 3 / 10  | 0.17                                 | IR85-SB14-2-7-09C                              | 4.20               | 0 / 10                               | 0.040                         | 0.59                             | 0.14                       | 0.13                   | Yes                                        |                                 |                                           |                                                    | No      | Within background range                                           |
| Sodium <sup>2</sup>    | 199 - 199                      | 9 / 10  | 23.1                                 | IR85-SB09-2-7-09C                              | NSV                | /                                    | NSV                           | 17.9                             | NSV                        | 68                     | No                                         |                                 |                                           |                                                    | No      | Consistent with background                                        |
| Thallium               | 2.30 - 2.50                    | 0 / 10  |                                      |                                                | 1.00               | /                                    | 2.50                          | 1.20                             | 1.20                       | 0.38                   |                                            |                                 |                                           |                                                    | No      | Not detected                                                      |
| Vanadium               |                                | 10 / 10 | 16.4                                 | IR85-SB09-2-7-09C                              | 7.80               | 7 / 10                               | 2.10                          | 9.68                             | 1.24                       | 17.2                   | No                                         |                                 |                                           |                                                    | No      | Consistent with background                                        |
| Zinc                   | 4.00 - 4.00                    | 6 / 10  | 52.9                                 | IR85-SB17-6-7-09C                              | 46.0               | 2 / 10                               | 1.15                          | 16.0                             | 0.35                       | 6.59                   | Yes                                        |                                 |                                           |                                                    | No      | Low magnitude of exceedance, mean HQ less than one                |

# NOTES

1 - Count of detected samples exceeding or equaling Screening Value

2 - Macronutrient - Not considered to be a contaminant of potential concern (COPC)

HQ - Hazard Quotient

MG/KG - Milligrams per kilogram NSV - No Screening Value UG/KG - Micrograms per kilogram Generated by: Sara Kent Checked by: Kelly Taylor

Table F-12
ERS Groundwater Screen for Site 85
Camp Johnson Consultcion Area
Focused PA/SI

| Chemical                                         | Range of Non-<br>Detect Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of<br>Maximum Detected<br>Concentration | Screening<br>Value <sup>1</sup> | Frequency of Exceedance <sup>2</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean<br>Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain?  | Rationale                                                        |
|--------------------------------------------------|--------------------------------|------------------------|--------------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|----------------------------------|----------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|----------|------------------------------------------------------------------|
| Volatile Organic Compounds (UG/L)                | l                              |                        | <u> </u>                             |                                                   |                                 | <u> </u>                             |                               | <u> </u>                         | <u> </u>                   | <u>I</u>               | 1                                          |                                 |                                           |                                               |          |                                                                  |
| 1,1,1-Trichloroethane                            | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 312                             | /                                    | 0.0032                        | 0.50                             | 0.002                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| 1,1,2,2-Tetrachloroethane                        | 1.00 - 2.40                    | 0 / 9                  |                                      |                                                   | 90.2                            | /                                    | 0.027                         | 0.73                             | 0.008                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| 1,1,2-Trichloroethane                            | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| 1,1-Dichloroethane                               | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| 1,1-Dichloroethene                               | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 2,240                           | /                                    | 4.46E-04                      | 0.50                             | 2.232E-04                  |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| ,2,4-Trichlorobenzene                            | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 4.50                            | /                                    | 0.22                          | 0.50                             | 0.11                       |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| ,2-Dibromo-3-chloropropane                       | 2.00 - 2.00                    | 0 / 6                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 1.00                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| ,2-Dibromoethane                                 | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| I,2-Dichlorobenzene                              | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 19.7                            | /                                    | 0.051                         | 0.50                             | 0.025                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| 1,2-Dichloroethane                               | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 1,130                           | /                                    | 8.85E-04                      | 0.50                             | 4.425E-04                  |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| ,2-Dichloropropane                               | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 2,400                           | /                                    | 4.17E-04                      | 0.50                             | 2.083E-04                  |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| ,3-Dichlorobenzene                               | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 28.5                            | /                                    | 0.035                         | 0.50                             | 0.018                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| ,4-Dichlorobenzene                               | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 19.9                            | /                                    | 0.050                         | 0.50                             | 0.025                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| 2-Butanone                                       | 5.00 - 5.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 2.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| 2-Hexanone                                       | 5.00 - 5.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 2.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| I-Methyl-2-pentanone                             | 5.00 - 5.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 2.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| Acetone                                          | 5.00 - 5.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 2.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| Benzene                                          | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 109                             | /                                    | 0.0092                        | 0.50                             | 0.005                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| Bromodichloromethane                             | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| Bromoform                                        | 1.00 - 1.00                    | 0/9                    |                                      |                                                   | 640                             | /                                    | 0.0016                        | 0.50                             | 0.001                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
|                                                  | 1.00 - 1.00                    | 0 / 8                  |                                      |                                                   | 120                             | /                                    | 0.0010                        | 0.52                             | 0.001                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| Bromomethane<br>Carbon disulfide                 |                                | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | 0.0092<br>NSV                 | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               |          | No screening value, not detected                                 |
|                                                  | 1.00 - 1.00<br>1.00 - 1.00     | 0 / 9                  |                                      |                                                   | 1,500                           | /                                    | 6.67E-04                      | 0.50                             | 3.333E-04                  |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| Carbon tetrachloride                             | 1.00 - 1.00                    | 0/9                    |                                      |                                                   | 1,500                           | /                                    | 0.07E-04                      | 0.50                             | 1                          |                        |                                            |                                 |                                           |                                               | No<br>No | HQ less than one, not detected                                   |
| Chlorobenzene                                    |                                |                        |                                      |                                                   |                                 | /                                    |                               | 0.50                             | 0.005                      |                        |                                            |                                 |                                           |                                               |          | No screening value, not detected                                 |
| Chloroethane                                     | 1.00 - 1.00<br>1.00 - 2.20     | 0 / 8                  |                                      | <br>IR85-MW05-09C                                 | NSV<br>815                      | 0 / 9                                | NSV<br>0.013                  | 2.37                             | NSV<br>0.003               |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, detected                                       |
| Chloroform                                       |                                |                        | 11.0                                 |                                                   |                                 |                                      |                               |                                  |                            |                        |                                            |                                 |                                           |                                               | No<br>No | HQ less than one, not detected                                   |
| Chloromethane                                    | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 2,700                           | /                                    | 3.70E-04                      | 0.50<br>0.50                     | 1.852E-04<br>NSV           |                        |                                            |                                 |                                           |                                               | No<br>No |                                                                  |
| cis-1,2-Dichloroethene                           | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           |                                  |                            |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected  HQ less than one, not detected |
| cis-1,3-Dichloropropene                          | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 7.90                            | /                                    | 0.13                          | 0.50                             | 0.063                      |                        |                                            |                                 |                                           |                                               | No       |                                                                  |
| Cyclohexane                                      | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| Dibromochloromethane                             | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| Dichlorodifluoromethane (Freon-12)               | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | Not detected, no screening value                                 |
| Ethylbenzene                                     | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 4.30                            | /                                    | 0.23                          | 0.50                             | 0.12                       |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| sopropylbenzene                                  | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| Methyl acetate                                   | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| Methylcyclohexane                                | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| Methylene chloride                               | 1.00 - 1.00                    | 2 / 9                  | 190                                  | IR85-TW06-09C                                     | 2,560                           | 0 / 9                                | 0.074                         | 23.1                             | 0.009                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, detected                                       |
| Methyl-tert-butyl ether (MTBE)                   | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| Styrene                                          | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| Tetrachloroethene                                | 1.00 - 1.10                    | 0 / 9                  |                                      |                                                   | 45.0                            | /                                    | 0.024                         | 0.52                             | 0.012                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| oluene                                           | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 37.0                            | /                                    | 0.027                         | 0.50                             | 0.014                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| rans-1,2-Dichloroethene                          | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| rans-1,3-Dichloropropene                         | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | 7.90                            | /                                    | 0.13                          | 0.50                             | 0.063                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                                   |
| richloroethene                                   | 1.00 - 5.10                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 1.41                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| richlorofluoromethane(Freon-11)                  | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| inyl chloride                                    | 1.00 - 1.00                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.50                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| ylene, total                                     | 1.00 - 1.20                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.54                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| emivolatile Organic Compounds (UG/L)             |                                |                        |                                      |                                                   |                                 |                                      |                               |                                  |                            |                        |                                            |                                 |                                           |                                               |          |                                                                  |
| 1-Biphenyl                                       | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| ,2'-Oxybis(1-chloropropane)                      | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| ,4,5-Trichlorophenol                             | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |
| ,4-Dichlorophenol                                | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                                 |

Table F-12
ERS Groundwater Screen for Site 85
Camp Johnson Consutrcion Area
Focused PA/SI

| Chemical                 | Range of Non-<br>Detect Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of<br>Maximum Detected<br>Concentration | Screening<br>Value <sup>1</sup> | Frequency of Exceedance <sup>2</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean<br>Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain? | Rationale                        |
|--------------------------|--------------------------------|------------------------|--------------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|----------------------------------|----------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|---------|----------------------------------|
| 2,4-Dimethylphenol       | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| 4-Dinitrophenol          | 20.0 - 21.0                    | 0 / 9                  |                                      |                                                   | 48.5                            | /                                    | 0.43                          | 10.2                             | 0.21                       |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected   |
| 4-Dinitrotoluene         | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| 6-Dinitrotoluene         | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Chloronaphthalene        | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Chlorophenol             | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Methylnaphthalene        | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Methylphenol             | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Nitroaniline             | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Nitrophenol              | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| 3'-Dichlorobenzidine     | 20.0 - 21.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 10.2                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Vitroaniline             | 10.0 - 11.0                    | 0/9                    |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| 5-Dinitro-2-methylphenol | 20.0 - 21.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 10.2                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Bromophenyl-phenylether  | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Chloro-3-methylphenol    | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Chloroaniline            | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
|                          | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | -       | No screening value, not detected |
| Chlorophenyl-phenylether |                                |                        |                                      |                                                   |                                 |                                      |                               |                                  |                            |                        |                                            |                                 |                                           |                                               | No      | <u> </u>                         |
| Methylphenol             | 20.0 - 21.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 10.2                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Vitroaniline             | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| Nitrophenol              | 20.0 - 21.0                    | 0 / 9                  |                                      |                                                   | 71.7                            | /                                    | 0.29                          | 10.2                             | 0.14                       |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected   |
| enaphthene               | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 9.70                            | /                                    | 1.13                          | 5.06                             | 0.52                       |                        |                                            |                                 |                                           |                                               | No      | Not detected                     |
| enaphthylene             | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| etophenone               | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| thracene                 | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| razine                   | 20.0 - 21.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 10.2                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| enzaldehyde              | 10.0 - 10.0                    | 0 / 4                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.00                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| enzo(a)anthracene        | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| enzo(a)pyrene            | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| enzo(b)fluoranthene      | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| enzo(g,h,i)perylene      | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| enzo(k)fluoranthene      | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| s(2-Chloroethoxy)methane | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| s(2-Chloroethyl)ether    | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| (2-Ethylhexyl)phthalate  | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| ıtylbenzylphthalate      | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 29.4                            | /                                    | 0.37                          | 5.06                             | 0.17                       |                        |                                            |                                 |                                           |                                               | No      | Not detected, HQ less than one   |
| aprolactam               | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| arbazole                 | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| nrysene                  | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| benz(a,h)anthracene      | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| benzofuran               | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| ethylphthalate           | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 759                             | /                                    | 0.014                         | 5.06                             | 0.007                      |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected   |
| methyl phthalate         | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 580                             | /                                    | 0.019                         | 5.06                             | 0.009                      |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected   |
| -n-butylphthalate        | 20.0 - 21.0                    | 0/9                    |                                      |                                                   | 3.40                            | /                                    | 6.18                          | 10.2                             | 2.99                       |                        |                                            |                                 |                                           |                                               | No      | Not detected                     |
| -n-octylphthalate        | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| uoranthene               | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 1.60                            | /                                    | 6.88                          | 5.06                             | 3.16                       |                        |                                            |                                 |                                           |                                               | No      | Not detected                     |
|                          | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               |         | No screening value, not detected |
| Jorene                   |                                |                        |                                      |                                                   |                                 |                                      |                               |                                  |                            |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| exachlorobenzene         | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | Ů .                              |
| exachlorobutadiene       | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 0.32                            | /                                    | 34.4                          | 5.06                             | 16                         |                        |                                            |                                 |                                           |                                               | No      | Not detected                     |
| exachlorocyclopentadiene | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 0.070                           | /                                    | 157                           | 5.06                             | 72                         |                        |                                            |                                 |                                           |                                               | No      | Not detected                     |
| exachloroethane          | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 9.40                            | /                                    | 1.17                          | 5.06                             | 0.54                       |                        |                                            |                                 |                                           |                                               | No      | Not detected                     |
| leno(1,2,3-cd)pyrene     | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |
| phorone                  | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 129                             | /                                    | 0.085                         | 5.06                             | 0.039                      |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected   |
| phthalene                | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 23.5                            | /                                    | 0.47                          | 5.06                             | 0.22                       |                        |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected   |
| Nitroso-di-n-propylamine | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No      | No screening value, not detected |

Table F-12
ERS Groundwater Screen for Site 85
Camp Johnson Consutrcion Area
Focused PA/SI

| MCB Camp Lejeune, North Carolina        | <u> </u>                       |                        | 1                                    |                                                   | 1                               | 1                                    | 1                             | 1                                | ,                          | 1                      | 1                                          |                                 | T                                         |                                               |          |                                                        |
|-----------------------------------------|--------------------------------|------------------------|--------------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|----------------------------------|----------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|----------|--------------------------------------------------------|
| Chemical                                | Range of Non-<br>Detect Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of<br>Maximum Detected<br>Concentration | Screening<br>Value <sup>1</sup> | Frequency of Exceedance <sup>2</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean<br>Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain?  | Rationale                                              |
| n-Nitrosodiphenylamine                  | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 33,000                          | /                                    | 3.33E-04                      | 5.06                             | 1.532E-04                  |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                         |
| Nitrobenzene                            | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 30.0                            | /                                    | 0.37                          | 5.06                             | 0.17                       |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                         |
| Pentachlorophenol                       | 20.0 - 21.0                    | 0 / 9                  |                                      |                                                   | 7.90                            | /                                    | 2.66                          | 10.2                             | 1.29                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Phenanthrene                            | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                       |
| Phenol                                  | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | 58.0                            | /                                    | 0.19                          | 5.06                             | 0.087                      |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                         |
| Pyrene                                  | 10.0 - 11.0                    | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 5.06                             | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                       |
| Pesticide/Polychlorinated Biphenyls (UC |                                | 0 1 7                  |                                      |                                                   | 1434                            | /                                    | IVSV                          | 5.00                             | IVSV                       |                        |                                            |                                 |                                           |                                               | INU      | The server mig value, for detected                     |
| resticide/rolychlormated diphenyis (oc  | 5/L)                           |                        |                                      |                                                   |                                 |                                      |                               |                                  |                            |                        |                                            |                                 |                                           |                                               |          | Law magnitude of everedance and frequency of           |
| 4,4'-DDD                                | 0.050 - 0.078                  | 1 / 9                  | 0.079                                | IR85-TW06-09C                                     | 0.025                           | 1 / 9                                | 3.16                          | 0.033                            | 1.31                       |                        |                                            |                                 |                                           |                                               | No       | Low magnitude of exceedance and frequency of detection |
| 4,4'-DDE                                | 0.050 - 0.078                  | 0 / 9                  | 0.077                                |                                                   | 0.023                           | /                                    | 0.56                          | 0.033                            | 0.19                       |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                         |
| 4,4'-DDE<br>4,4'-DDT                    | 0.050 - 0.078                  | 0/9                    |                                      |                                                   | 0.0010                          | /                                    | 78.0                          | 0.027                            | 27                         |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Aldrin                                  | 0.050 - 0.078                  | 0/9                    |                                      |                                                   | 0.0010                          |                                      | 0.60                          | 0.027                            | 0.21                       |                        |                                            |                                 |                                           |                                               |          | HQ less than one, not detected                         |
|                                         |                                |                        |                                      |                                                   |                                 | /                                    |                               |                                  |                            |                        |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                         |
| alpha-BHC                               | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | 1,400                           | /                                    | 5.57E-05                      | 0.027                            | 1.909E-05                  |                        |                                            |                                 |                                           |                                               | No       | · ·                                                    |
| alpha-Chlordane                         | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | 0.0040                          | /                                    | 19.5                          | 0.027                            | 6.68                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Aroclor-1016                            | 0.50 - 0.78                    | 0 / 9                  |                                      |                                                   | 0.030                           | /                                    | 26.0                          | 0.27                             | 8.94                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Aroclor-1221                            | 0.50 - 0.78                    | 0 / 9                  |                                      |                                                   | 0.030                           | /                                    | 26.0                          | 0.27                             | 8.94                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Aroclor-1232                            | 0.50 - 0.78                    | 0 / 9                  |                                      |                                                   | 0.030                           | /                                    | 26.0                          | 0.27                             | 8.94                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Aroclor-1242                            | 0.50 - 0.78                    | 0 / 9                  |                                      |                                                   | 0.030                           | /                                    | 26.0                          | 0.27                             | 8.94                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Aroclor-1248                            | 0.50 - 0.78                    | 0 / 9                  |                                      |                                                   | 0.030                           | /                                    | 26.0                          | 0.27                             | 8.94                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Aroclor-1254                            | 0.50 - 0.78                    | 0 / 9                  |                                      |                                                   | 0.030                           | /                                    | 26.0                          | 0.27                             | 8.94                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Aroclor-1260                            | 0.50 - 0.78                    | 0 / 9                  |                                      |                                                   | 0.030                           | /                                    | 26.0                          | 0.27                             | 8.94                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| beta-BHC                                | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.027                            | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                       |
| delta-BHC                               | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.027                            | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                       |
| Dieldrin                                | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | 0.0019                          | /                                    | 41.1                          | 0.027                            | 14                         |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Endosulfan I                            | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | 0.0087                          | /                                    | 8.97                          | 0.027                            | 3.07                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Endosulfan II                           | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | 0.0087                          | /                                    | 8.97                          | 0.027                            | 3.07                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Endosulfan sulfate                      | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.027                            | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                       |
| Endrin                                  | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | 0.0023                          | /                                    | 33.9                          | 0.027                            | 12                         |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Endrin aldehyde                         | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.027                            | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                       |
| Endrin ketone                           | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 0.027                            | NSV                        |                        |                                            |                                 |                                           |                                               | No       | No screening value, not detected                       |
| gamma-BHC (Lindane)                     | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | 0.016                           | /                                    | 4.88                          | 0.027                            | 1.67                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| gamma-Chlordane                         | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | 0.0040                          | /                                    | 19.5                          | 0.027                            | 6.68                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Heptachlor                              | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | 0.0036                          | /                                    | 21.7                          | 0.027                            | 7.42                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Heptachlor epoxide                      | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | 0.0036                          | /                                    | 21.7                          | 0.027                            | 7.42                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Methoxychlor                            | 0.050 - 0.078                  | 0 / 9                  |                                      |                                                   | 0.030                           | /                                    | 2.60                          | 0.027                            | 0.89                       |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Toxaphene                               | 1.00 - 1.60                    | 0 / 9                  |                                      |                                                   | 0.0020                          | /                                    | 800                           | 0.53                             | 267                        |                        |                                            |                                 |                                           |                                               | No       | Not detected                                           |
| Inorganics (UG/L)                       | 1.00 - 1.00                    | 0 7 7                  |                                      |                                                   | 0.0020                          | /                                    | 000                           | 0.55                             | 207                        |                        |                                            |                                 |                                           |                                               | INO      |                                                        |
| morganics (OO/L)                        |                                | 1                      |                                      |                                                   |                                 | 1                                    |                               |                                  |                            |                        |                                            |                                 |                                           |                                               |          | 1                                                      |
| Aluminum                                |                                | 9 / 9                  | 15,100                               | IR85-TW06-09C                                     | NSV                             | /                                    | NSV                           | 2,054                            | NSV                        | 1886                   | Yes                                        |                                 |                                           |                                               | No       | Dissolved data are consistent with background          |
| Antimony                                | 20.0 - 40.0                    | 0/9                    | 15,100                               |                                                   | 160                             | /                                    | 0.25                          | 11.1                             | 0.069                      | 3.28                   |                                            |                                 |                                           |                                               | No       | HQ less than one, not detected                         |
|                                         | 20.0 - 40.0                    |                        |                                      | <br>IR85-MW02-09C                                 |                                 | 0 / 9                                |                               | 9.11                             |                            | 5.77                   |                                            |                                 |                                           |                                               |          | Consistent with background                             |
| Arsenic                                 |                                | 1 / 9                  | 2.00                                 | _                                                 | 36.0                            | 1                                    | 0.056                         |                                  | 0.25                       |                        | No                                         |                                 |                                           |                                               | No<br>No | Consistent with background                             |
| Barium                                  | 50.0 - 50.0                    | 5 / 9                  | 56.9                                 | IR85-MW02-09C                                     | NSV                             | /                                    | NSV                           | 33.2                             | NSV                        | 86.2                   | No                                         |                                 |                                           |                                               | No       | -                                                      |
| Beryllium                               | 2.00 - 2.00                    | 5 / 9                  | 0.27                                 | IR85-MW02-09C                                     | NSV                             | /                                    | NSV                           | 0.53                             | NSV                        | 0.308                  | No                                         |                                 |                                           |                                               | No       | Consistent with background                             |
| Cadmium                                 | 6.00 - 6.00                    | 3 / 9                  | 0.28                                 | IR85-TW08-09C                                     | 8.80                            | 0 / 9                                | 0.032                         | 2.06                             | 0.23                       | 0.358                  | No                                         |                                 |                                           |                                               |          | Consistent with background                             |
| Calcium <sup>3</sup>                    |                                | 9 / 9                  | 3,190                                | IR85-TW06-09C                                     | NSV                             | /                                    | NSV                           | 1,444                            | NSV                        | 69078                  | No                                         |                                 |                                           |                                               |          | Consistent with background                             |
| Chromium                                | 20.0 - 20.0                    | 2 / 9                  | 18.9                                 | IR85-TW06-09C                                     | 50.0                            | 0 / 9                                | 0.38                          | 10.1                             | 0.20                       | 3.13                   | Yes                                        |                                 |                                           |                                               |          | Within background range                                |
| Cobalt                                  | 5.00 - 5.00                    | 5 / 9                  | 1.20                                 | IR85-TW05-09C                                     | NSV                             | /                                    | NSV                           | 1.58                             | NSV                        | 3.4                    | No                                         |                                 |                                           |                                               | No       | Consistent with background                             |
|                                         |                                |                        |                                      |                                                   |                                 |                                      | ]                             |                                  | ]                          |                        |                                            |                                 |                                           |                                               | _        |                                                        |
| Copper                                  | 20.0 - 40.0                    | 5 / 9                  | 6.80                                 | IR85-TW06-09C                                     | 3.10                            | 3 / 9                                | 2.19                          | 7.92                             | 2.56                       | 2.76                   | Yes                                        |                                 |                                           |                                               | No       | Consistent with background in subsurface soils         |
| Iron                                    |                                | 9 / 9                  | 6,900                                | IR85-TW06-09C                                     | NSV                             | /                                    | NSV                           | 2,016                            | NSV                        | 5999                   | Yes                                        |                                 |                                           |                                               | No       | Within background range                                |
|                                         |                                |                        |                                      |                                                   |                                 |                                      |                               |                                  |                            |                        |                                            |                                 |                                           |                                               |          |                                                        |
| Lead                                    | 20.0 - 40.0                    | 3 / 9                  | 15.9                                 | IR85-TW06-09C                                     | 8.10                            | 1 / 9                                | 1.96                          | 10.2                             | 1.26                       | 2.8                    | Yes                                        |                                 |                                           |                                               | No       | Consistent with background in subsurface soils         |
| Magnesium <sup>3</sup>                  |                                | 9 / 9                  | 2,510                                | IR85-TW05-09C                                     | NSV                             | /                                    | NSV                           | 1,503                            | NSV                        | 6363                   | No                                         |                                 |                                           |                                               |          | Consistent with background                             |
| Manganese                               |                                | 9 / 9                  | 72.5                                 | IR85-TW05-09C                                     | NSV                             | /                                    | NSV                           | 28.7                             | NSV                        | 214                    | No                                         |                                 |                                           |                                               |          | Consistent with background                             |
| manganese                               |                                | 7 1 7                  | 12.0                                 | 11700-1 0000-090                                  | INOV                            | /                                    | INOV                          | 20.1                             | IVOV                       | Z 14                   | INU                                        |                                 |                                           |                                               | INU      | OSTOROGE WILL BUONGFOUND                               |

ERS Groundwater Screen for Site 85 Camp Johnson Consutrcion Area Focused PA/SI

MCB Camp Lejeune, North Carolina

| Chemical                          | Range of Non-<br>Detect Values | Frequency of Detection | Maximum<br>Concentration<br>Detected | Sample ID of<br>Maximum Detected<br>Concentration | Screening<br>Value <sup>1</sup> | Frequency of Exceedance <sup>2</sup> | Maximum<br>Hazard<br>Quotient | Arithmetic Mean<br>Concentration | Mean<br>Hazard<br>Quotient | 2 x Mean<br>Background | Maximum<br>Exceeds 2 x Mean<br>Background? | Supplemental<br>Screening Value | Supplemental<br>Screening Value<br>Source | Supplemental<br>Screening Value<br>Maximum HQ | Retain? | Rationale                                      |
|-----------------------------------|--------------------------------|------------------------|--------------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|----------------------------------|----------------------------|------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------|---------|------------------------------------------------|
| Mercury                           | 0.20 - 0.20                    | 2 / 9                  | 0.085                                | IR85-MW02-09C                                     | 0.94                            | 0 / 9                                | 0.090                         | 0.091                            | 0.097                      | 0.1                    | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Nickel                            | 10.0 - 10.0                    | 7 / 9                  | 19.7                                 | IR85-TW05-09C                                     | 8.20                            | 2 / 9                                | 2.40                          | 6.11                             | 0.75                       | 7.97                   | Yes                                        |                                 |                                           |                                               | No      | Within background range in subsurface soils    |
| Potassium <sup>3</sup>            |                                | 9 / 9                  | 2,180                                | IR85-MW02-09C                                     | NSV                             | /                                    | NSV                           | 873                              | NSV                        | 3277                   | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Selenium                          | 20.0 - 20.0                    | 1 / 9                  | 4.30                                 | IR85-TW05-09C                                     | 71.0                            | 0 / 9                                | 0.061                         | 9.37                             | 0.13                       | 3.14                   | Yes                                        |                                 |                                           |                                               | No      | Consistent with background in subsurface soils |
| Silver                            | 20.0 - 20.0                    | 1 / 9                  | 1.50                                 | IR85-TW04-09C                                     | 0.23                            | 1 / 9                                | 6.52                          | 9.06                             | 39                         | 0.77                   | Yes                                        |                                 |                                           |                                               | No      | Within background range in subsurface soils    |
| Sodium <sup>3</sup>               |                                | 9 / 9                  | 26,800                               | IR85-TW06-09C                                     | NSV                             | /                                    | NSV                           | 9,110                            | NSV                        | 22508                  | Yes                                        |                                 |                                           |                                               | No      | Macronutrient                                  |
| Thallium                          | 30.0 - 30.0                    | 0 / 9                  |                                      |                                                   | 21.3                            | /                                    | 1.41                          | 15.0                             | 0.70                       | 3.78                   |                                            |                                 |                                           |                                               | No      | Not detected                                   |
| Vanadium                          | 50.0 - 100                     | 0 / 9                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 27.8                             | NSV                        | 4.72                   |                                            |                                 |                                           |                                               | No      | No screening value, not detected               |
| Zinc                              | 50.0 - 50.0                    | 7 / 9                  | 110                                  | IR85-TW08-09C                                     | 81.0                            | 1 / 9                                | 1.36                          | 31.8                             | 0.39                       | 42.1                   | Yes                                        |                                 |                                           |                                               | No      | Within background range                        |
| Dissolved Inorganics (UG/L)       | •                              |                        |                                      |                                                   |                                 |                                      |                               |                                  |                            |                        |                                            |                                 |                                           |                                               |         | •                                              |
| Aluminum, Dissolved               | 1,000 - 1,000                  | 3 / 5                  | 106                                  | IR85-TW07-09C                                     | NSV                             | /                                    | NSV                           | 248                              | NSV                        | 1886                   | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Antimony, Dissolved               | 20.0 - 20.0                    | 0 / 5                  |                                      |                                                   | 160                             | /                                    | 0.13                          | 10.0                             | 0.063                      | 3.28                   |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                 |
| Arsenic, Dissolved                | 20.0 - 20.0                    | 0 / 5                  |                                      |                                                   | 36.0                            | /                                    | 0.56                          | 10.0                             | 0.28                       | 5.77                   |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                 |
| Barium, Dissolved                 | 50.0 - 50.0                    | 2 / 5                  | 41.5                                 | IR85-TW05-09C                                     | NSV                             | /                                    | NSV                           | 28.0                             | NSV                        | 86.2                   | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Beryllium, Dissolved              | 2.00 - 2.00                    | 1 / 5                  | 0.13                                 | IR85-TW05-09C                                     | NSV                             | /                                    | NSV                           | 0.83                             | NSV                        | 0.308                  | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Cadmium, Dissolved                | 6.00 - 6.00                    | 0 / 5                  |                                      |                                                   | 8.80                            | /                                    | 0.68                          | 3.00                             | 0.34                       | 0.358                  |                                            |                                 |                                           |                                               | No      | HQ less than one, not detected                 |
| Calcium, Dissolved 3              | 1,000 - 1,000                  | 3 / 5                  | 2,130                                | IR85-TW07-09C                                     | NSV                             | /                                    | NSV                           | 971                              | NSV                        | 69078                  | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Chromium, Dissolved               | 20.0 - 20.0                    | 1 / 5                  | 1.40                                 | IR85-TW07-09C                                     | 50.0                            | 0 / 5                                | 0.028                         | 8.28                             | 0.17                       | 3.13                   | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Cobalt, Dissolved                 | 5.00 - 5.00                    | 3 / 5                  | 1.10                                 | IR85-TW05-09C                                     | NSV                             | /                                    | NSV                           | 1.54                             | NSV                        | 3.4                    | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Copper, Dissolved                 | 20.0 - 20.0                    | 3 / 5                  | 5.20                                 | IR85-TW07-09C                                     | 3.10                            | 1 / 5                                | 1.68                          | 6.00                             | 1.94                       | 2.76                   | Yes                                        |                                 |                                           |                                               | No      | Consistent with background in subsurface soils |
| Iron, Dissolved                   | 150 - 150                      | 4 / 5                  | 6,090                                | IR85-TW05-09C                                     | NSV                             | /                                    | NSV                           | 1,558                            | NSV                        | 5999                   | Yes                                        |                                 |                                           |                                               | No      | Within background range                        |
| Lead, Dissolved                   | 20.0 - 20.0                    | 0 / 5                  |                                      |                                                   | 8.10                            | /                                    | 2.47                          | 10.0                             | 1.23                       | 2.8                    |                                            |                                 |                                           |                                               | No      | Not detected                                   |
| Magnesium, Dissolved <sup>3</sup> | 250 - 250                      | 4 / 5                  | 2,460                                | IR85-TW05-09C                                     | NSV                             | /                                    | NSV                           | 936                              | NSV                        | 6363                   | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Manganese, Dissolved              |                                | 5 / 5                  | 70.1                                 | IR85-TW05-09C                                     | NSV                             | /                                    | NSV                           | 25.1                             | NSV                        | 214                    | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Mercury, Dissolved                | 0.20 - 0.20                    | 1 / 5                  | 0.040                                | IR85-TW07-09C                                     | 0.94                            | 0 / 5                                | 0.043                         | 0.088                            | 0.094                      | 0.1                    | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Nickel, Dissolved                 | 10.0 - 10.0                    | 3 / 5                  | 19.5                                 | IR85-TW05-09C                                     | 8.20                            | 2 / 5                                | 2.38                          | 8.08                             | 0.99                       | 7.97                   | Yes                                        |                                 |                                           |                                               | No      | Within background range in subsurface soils    |
| Potassium, Dissolved <sup>3</sup> |                                | 5 / 5                  | 852                                  | IR85-TW05-09C                                     | NSV                             | /                                    | NSV                           | 646                              | NSV                        | 3277                   | No                                         |                                 |                                           |                                               | No      | Consistent with background                     |
| Selenium, Dissolved               | 20.0 - 20.0                    | 1 / 5                  | 4.30                                 | IR85-TW05-09C                                     | 71.0                            | 0 / 5                                | 0.061                         | 8.86                             | 0.12                       | 3.14                   | Yes                                        |                                 |                                           |                                               | No      | HQ less than one, detected                     |
| Silver, Dissolved                 | 20.0 - 20.0                    | 0 / 5                  |                                      |                                                   | 0.23                            | /                                    | 87.0                          | 10.0                             | 43                         | 0.77                   |                                            |                                 |                                           |                                               | No      | Not detected                                   |
| Sodium, Dissolved 3               |                                | 5 / 5                  | 27,300                               | IR85-TW06-09C                                     | NSV                             | /                                    | NSV                           | 10,256                           | NSV                        | 22508                  | Yes                                        |                                 |                                           |                                               | No      | Macronutrient                                  |
| Thallium, Dissolved               | 30.0 - 30.0                    | 0 / 5                  |                                      |                                                   | 21.3                            | /                                    | 1.41                          | 15.0                             | 0.70                       | 3.78                   |                                            |                                 |                                           |                                               | No      | Not detected                                   |
| Vanadium, Dissolved               | 50.0 - 50.0                    | 0 / 5                  |                                      |                                                   | NSV                             | /                                    | NSV                           | 25.0                             | NSV                        | 4.72                   |                                            |                                 |                                           |                                               | No      | Not detected                                   |
| Zinc, Dissolved                   | 50.0 - 50.0                    | 4 / 5                  | 49.5                                 | IR85-TW08-09C                                     | 81.0                            | 0 / 5                                | 0.61                          | 25.3                             | 0.31                       | 42.1                   | Yes                                        |                                 |                                           |                                               | No      | Within background range                        |

# NOTES

- 1 Marine screening values
- 2 Count of detected samples exceeding or equaling Screening Value
- 3 Macronutrient Not considered to be a contaminant of potential concern (COPC)
- HQ Hazard Quotient
- NSV No Screening Value
- UG/L Micrograms per liter Generated by: Sara Kent